Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Differentiate the following with respect to xy = (√x + 1/√x)2

Answer»

y = x + 1/x + 2 = x + x-1 + 2

dy/dx = 1 - x-2 + 0 = 1 - 1/x2

102.

Differentiate the following with respect to xy = (x + 1/x)2, x ≠0

Answer»

y = x2 + 1/x2 + 2 

= x2 + x-2 + 2

dy/dx = 2x - 2x-3 + 0 

= 2x - 2x-3

103.

Explain the meaning of x → a .

Answer»

Let x be a variable and ‘a’ be a constant. Since ‘x’ is a variable we can change its value at pleasure. It can be changed so that its value comes nearer and nearer to a. 

Then we say that x approaches ‘a’ and it is denoted by x → a .

104.

Evaluate: \(\lim\limits_{x \to 0}(\frac{3^{2x}-2^{3x}}{x})\)

Answer»

\(\lim\limits_{x \to 0}(\frac{3^{2x}-2^{3x}}{x})\) 

\(=\lim\limits_{x \to 0}\{\frac{(3^{2x}-1)-(2^{3x}-1)}{x}\}\) 

\(=\lim\limits_{x \to 0}\frac{3^{2x}-1}{x}-\lim\limits_{x \to 0}\frac{2^{3x}-1}{x}\) 

\(=\lim\limits_{x \to 0}\frac{1}{2}[\frac{3^{2x}-1}{x}]-3.[\lim\limits_{x \to 0}\frac{2^{3x}-1}{x}]\) 

= 2 ∙ (log 3) − 3(log 2)

= log32 − log2

= log \(\frac{9}{8}\)

105.

Define a derivative of f(x) at a point.

Answer»

Suppose f is a real valued function and ‘a’ is a point in its domain of definition. The derivative of f at ‘a’ is defined by

lim(h→0) (f(a + h) - f(a))/h

Provided this limit exists. Derivative of f(x) at 'a' is denoted by f'(a)

∴ f'(a) = lim(h→a) (f(a + h) - f(a))/h

106.

Find lim(x→4) (4x + 3)/(x - 2)

Answer»

lim(x 4) (4x + 3)/(x - 2) = (4(4) + 3)/(4 - 2) = 19/2

107.

Find lim(x→1) πr2

Answer»

lim(x→1) πr2 = (1)2 = π

108.

`lim_(xrarr oo)(1+sin.(1)/(n))^n` equalsA. `e^a`B. `e`C. `e^2a`D. `0`

Answer» Correct Answer - A
We have,
`lim_(xto oo) (1+sin(a)/(n))^n`
`=e^(lim_(ntooo) nsin.(a)/(n))=e^(lim_(ntooo)sin((a//a)/(a//n))xx a )=e^(1xxa)=e^(a)`
109.

Find lim(x→0) ((x + 1)2 - 1)/x

Answer»

lim(x→0) ((x + 1)2 - 1)/x

= lim(x →0) (x2 + 2x + 1 - 1)/x

= lim(x →0) (x + 2) = 0 + 2 = 2

110.

Find lim(x →-1) (x10 + x5 + 1)/(x - 1)

Answer»

lim(x →-1) (x10 + x5 + 1)/(x - 1)

= ((-1)10 + (-1)5 + 1)/(-1 - 1)

= (1 - 1 + 1)/-2 = - 1/2

111.

Find lim(x →a) (x√x - a√a)/(x - a)

Answer»

lim(x →a) (x√x - a√a)/(x - a) = lim(x →a) (x3/2 - a3/2)/(x - a)

= 3/2a3/2 - 1 = 3/2a1/2

112.

Find lim(2x →-1) (8x3 + 1)/(2x + 1)

Answer»

lim(2x →-1) (8x3 + 1)/(2x + 1)

((2x)3 - (-1)3)/(2x - (-1))

= 3(-1)2 = 3

113.

\(\lim\limits_{x \to 0}(\frac{\sqrt {1+x^2}-\sqrt {1+x}}{\sqrt {1+x^3}-\sqrt {1+x}})= ?\)

Answer»

\(\lim\limits_{x \to 0}(\frac{\sqrt {1+x^2}-\sqrt {1+x}}{\sqrt {1+x^3}-\sqrt {1+x}})\)

\(=\lim\limits_{x \to 0}\{\frac{\sqrt {1+x^2}-\sqrt {1+x}}{\sqrt {1+x^3}-\sqrt {1+x}}\times\)\(\frac{\sqrt {1+x^3}+\sqrt {1+x}}{\sqrt {1+x^3}+\sqrt {1+x}}\times\)\(\frac{\sqrt {1+x^2}+\sqrt {1+x}}{\sqrt {1+x^2}+\sqrt {1+x}}\}\) 

\(=\lim\limits_{x \to 0}\{\frac{(1+x^2)- (1+x)}{(1+x^3)-(1+x)}\times\)\(\frac{\sqrt{1+x^3}+ \sqrt {1+x}}{\sqrt{1+x^2}+\sqrt{1+x}}\}\)

\(=\lim\limits_{x \to 0}\{\frac{x(x-1)}{(x^3-x)}\times\)\(\frac{\sqrt{1+x^3}+ \sqrt {1+x}}{\sqrt{1+x^2}+\sqrt{1+x}}\}\) 

\(=\lim\limits_{x \to 0}\frac{x(x-1)(\sqrt{1+x^3}+\sqrt{1+x})}{x(x-1)x(x+1)(\sqrt{1+x^2}+\sqrt{1+x})}\) 

\(=\lim\limits_{x \to 0}\frac{(\sqrt{1+x^3}+\sqrt{1+x})}{(x+1)(\sqrt{1+x^2}+\sqrt{1+x})}\) 

\(=\frac{(\sqrt{1+0^3}+\sqrt{1+0})}{(0+1)(\sqrt{1+0^2}+\sqrt{1+0})}\) 

\(= \frac{2}{1.2}\)

= 1

114.

Find the value of 'a' and 'b' if \(\lim\limits_{x \to 2}f(x)\) and \(\lim\limits_{x \to 4}f(x)\)exists where.\(f(x) = \begin{cases} x^2+as+b & \quad \text, 0\leq{x} <{2}\\ 3x+2, & \quad \text, 2\leq{x}\leq{4}\\2ax+5b & \quad \text,4<x\leq{8} \end{cases} \)

Answer»

Given,

\(f(x) = \begin{cases} x^2+as+b & \quad \text, 0\leq{x} <{2}\\ 3x+2, & \quad \text, 2\leq{x}\leq{4}\\2ax+5b & \quad \text,4<x\leq{8} \end{cases} \) 

To find  \(\lim\limits_{x \to 2}f(x)\)

L.H.L

\(=\lim\limits_{x \to 2^-}f(x)\) 

\(=\lim\limits_{x \to 2^-}(x^2+ax+b)\) 

= 2+ a∙2 + b 

= 2a + b + 4

And,

R.H.L

\(=\lim\limits_{x \to 2^+}f(x)\)

\(=\lim\limits_{x \to 2^+}(3x+2)\) 

= 3 ∙ 2 + 2 = 8

Since \(\lim\limits_{x \to 2}f(x) \) exists,

∴ \(\lim\limits_{x \to 2^-}f(x)\) \(=\lim\limits_{x \to 2^+}f(x)\)

⇒ 2a + b + 4 = 8

⇒ 2a + b = 4 … (1)

To find  \(\lim\limits_{x \to 2}f(x)\).

L.H.L

\(=\lim\limits_{x \to 4^-}f(x)\)

\(=\lim\limits_{x \to 4^-}(3x+2)\) 

= 3 ∙ 4 + 2 = 14

And

R.H.L

\(=\lim\limits_{x \to 4^+}f(x)\)

\(=\lim\limits_{x \to 4^+}(2ax+5b)\) 

= 2a. 4 + 5b 

= 8a + 5b

Since \(\lim\limits_{x \to 4}f(x) \) exists.

∴ \(\lim\limits_{x \to 4^-}f(x) \) = \(\lim\limits_{x \to 4^+}f(x) \)

⇒ 8a + 5b = 14 … (2)

From (1) and (2),

a = 3 and b = -2.

115.

If `lim_(x to 0) (cos4x+acos2x+b)/(x^(4))` is finite, find a and b using expansion formula. Also, find the limit.

Answer» `underset(xto0)lim(cos4x+acos2x+b)/(x^(4))="Finite"`
Using expansion formula for `cos4x" and "cos2x,` we get
`underset(xto0)lim((1-(4x)^(2)/(2!)+(4x)^(4)/(4!))+a(1-(2x)^(2)/(2!)+(2x)^(4)/(4!))+b)/(x^(4))`
or `" "underset(xto0)lim((1+a+b)+(-8-2a)x^(2)+((32)/(3)+2/3a)x^(4)+...)/(x^(4))`
or `" "1+a+b=0`
`-8-2=0`
Solving (1) and (2) for a and b, we get
`a=-4" and " b=3`
Also, Limit`=32/3+2/3a=(32-8)/(3)=8`
116.

Evaluate `lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).`

Answer» `underset(xto0)lim((1)/(x^(2))-(1)/(sin^(2)x))`
`=underset(xto0)lim((sin^(2)x-x^(2))/(x^(2)sin^(2)x))`
`=underset(xto0)lim((sinx+x)(sinx-x))/(x^(2)sin^(2)x)`
`=underset(xto0)lim(((x-(x^(3))/(3!)+(x^(5))/(5!)...)+x)((x-(x^(3))/(3!)+(x^(5))/(5!)...)-x))/(x^(2)(x-(x^(3))/(3!)+(x^(5))/(5!)...)^(2))`
`=underset(xto0)lim(-(2-(x^(2))/(3!)+(x^(4))/(5!)...)((1)/(3!)-(x^(2))/(5!)...))/(x^(2))=-1/3`
117.

Let `kgt0 and lambda =lim_(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^2))` be finite. Then the value of `lambdak`, isA. `lambda=8,k=(1)/(2)`B. `lambda=8,k=(1)/(4)`C. `lambda=4, k=(1)/(2)`D. `6lambda=4,k=(1)/(4)`

Answer» Correct Answer - B
It is given that
` lambda =lim_(xto0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^2)) "exists "`
`rArrlim_(xto0)k(1-4sqrt(k^2-x^2))=0 rArr 1-4k=0rArr k=(1)/(4)`
`therefore lambda =lim_(xto0) (1-sqrt(1-16x^2))/(x^2sqrt(1-16x^2))`
` rArr lambda =lim_(xto0)(1)/(x^2(1+sqrt(1-16x^2)sqrt(1-16x^2))`
` rArr lambda =16lim_(xto0)(1)/(x^2(1+sqrt(1-16x^2))sqrt(1-16x^2))`
Hence ,`lambda =8 and k=(1)/(4)`
118.

If `f(x)=0`is a quadratic equation such that `f(-pi)=f(pi)=0`and `f(pi/2)=-(3pi^2)/4,`then `("lim")_(xvecpi)(f(x))/("sin"(sinx)`is equal to0 (b) `pi`(c)`2pi`(d)none of these

Answer» Correct Answer - C
It is given that `f(-pi)=f(pi)=0`. Therefore ,`-pi` and `pi` are zeroes of `f(x)`.
`therefore f(x)=a(x+pi)(x-pi),a ne 0`
` rArr f((pi)/(2))=-(3api^2)/(4)rArr(-3pi^2)/(4)=-(3api^2)/(4)rArr a=1`
`therefore f(x)=(x+pi)(x-pi)`
So, `lim_(xto-pi) (f(x))/(sin(sinx))`
`=lim_(xto-pi)((x-pi)(x+pi))/((sin(sinx))/(sinx)xx sinx )=-lim_(xto-pi)((x-pi))/((sin(sinx))/(sinx))xx((x+pi))/(sin(pi+x))=-((-pi-pi))/(1)xx1=2pi`
119.

Let `f(x)=[x]+[-x]`, where `[x]` denotes the greastest integer less than or equal to x . Then, for any integer mA. `lim_(xtom) f(x)=f(m)`B. `lim_(xtom)f(x)ne f(m)`C. `lim_(xtom)f(x)` does not existD. none of these

Answer» Correct Answer - B
We have
` f(x)=[x]+[-x]`
`rArr f(x)={([x]-[x]=0,"if x is an integer",),([x]+(-[x]-1)=-1,"if x is not an integer",):}`
` therefore lim_(xotm^-)f(x)=lim_(xtom^+)f(x)=-1and , f(m)=0`.
Hence, `lim_(xtom^-)f(x)ne f(m)`.
120.

The value of `lim_(xrarr oo) {(x^4sin((1)/(x))+x^2)/(1+|x^3|)}` isA. 1B. -1C. 0D. `oo`

Answer» Correct Answer - B
We have ,
`lim_(xto oo) {(x^4sin((1)/(x))+x^2)/(1+|x^3|)}`
` =lim_(yto oo)(y^4sin((-1)/(y))+y^2)/(1+|x|^3),"where "y=-x`
` =lim_(yto oo) (-y^4sin((1)/(y))+y^2)/(1+y^3)`
` lim_(yto oo) (-ysin((1)/(y))+(1)/(y))/((1)/y^(3)+1)=(-1+0)/(0+1)=-1`
121.

If `[.]` denotes the greatest intger function, then `lim_(xrarr0) (tan([-2pi^2]x^2)-x^2tan[-2pi^2])/(sin^2x)` is equal toA. `20 +tan 20`B. `20+tan 20`C. `20`D. none of these

Answer» Correct Answer - A
We have, `[-2pi^2]=-20`.
`therefore lim_(xto0) (tan([-2pi^2]x^2)-x^2tan[-2pi^2])/(sin^2x)`
`=lim_(xto0) (tan(-20x^2)-x^2tan(-20))/(sin^2x)`
`=lim_(xto0) -(tan20x^2)/(20x^2)xx20xx(x^2)/(sin^2x)xx((x)/(sinx))^2tan20 =-20+tan20`.
122.

Find lim(x→1) (x3 - 1)/(x - 1)

Answer»

lim(x1) (x3 - 1)/(x - 1) = lim(x1) (x3 - 13)/(x - 1)

= 3(12) = 3

123.

Prove that \(\lim\limits_{x \to a^+}\) [x] = [a] for all a ∈ R. Also, prove that \(\lim\limits_{x \to 1^-}\)[x] = 0lim [x], x ∈ a+ = [a]

Answer»

To Prove : lim [x], x ∈ a+ = [a]

L.H.S = \(\lim\limits_{x \to a^+}\) [x] = \(\lim\limits_{h \to 0}\)[a+h] = [a]

(Since, [a + h] = [a])

Hence, Proved. 

Also, 

To prove : \(\lim\limits_{x \to 1^-}\) [x] = 0

L.H.S = \(\lim\limits_{x \to 1^-}\) [x] 

\(\lim\limits_{h \to 0}\) [1-h]

= 0

(Since, [1 – h] = 0)

Hence, Proved.

124.

Evaluate `lim_(xtoa) (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)),(ane0).`

Answer» We have,
`underset(xtoa)lim(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x))" "("from"0/0)`
`=underset(xtoa)lim((sqrt(a+2x)-sqrt(3x))(sqrt(a+2x)+sqrt(3x)))/((sqrt(3a+x)-2sqrt(x))(sqrt(3a+x)+2sqrt(x)))`
`" "((sqrt(3a+x)+2sqrt(x)))/((sqrt(a+2x)+sqrt(3x)))" "("from"0/0)`
`=underset(xtoa)lim((a+2x-3x))/((3a+x-4x))((sqrt(3a+x)+2sqrt(x)))/((sqrt(a+2x)+sqrt(3x)))`
`=underset(xtoa)lim(sqrt(3a+x)+2sqrt(x))/(3(sqrt(a+2x)+sqrt(3x)))`
`=(sqrt(3a+x)+2sqrt(x))/(3(sqrt(a+2a)+sqrt(3a)))=1/3.(4sqrt(a))/(2sqrt(3a))=(2)/(3sqrt(3))`
125.

Evaluate`lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).`

Answer» We have
`underset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1)" "`(0/0 from)
`=underset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1)((sqrt(1+x)+1))/((sqrt(1+x)+1))`
`=underset(xto0)lim(2^(x)-1)/(x)underset(xto0)lim(sqrt(1+x)+1)`
=(log2)2
=log4
126.

Evaluate `lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).`

Answer» When `xto0,` the expression `underset(xto0)lim(sqrt(2+x)-sqrt(2))/(x).` takes the form 0/0. Rationalizing the numerator, we have
`underset(xto0)lim(sqrt(2+x)-sqrt(2))/(x)=underset(xto0)lim((sqrt(2+x)-sqrt(2))(sqrt(2+x)+sqrt(2)))/(x(sqrt(2+x)+sqrt(2)))`
`=underset(xto0)lim(2+x-2)/(x(sqrt(2+x)+sqrt2))`
`=underset(xto0)lim(1)/(sqrt(2+x)+sqrt(2))=(1)/(2sqrt(2))`
127.

Evaluate `lim_(ntooo) (4^(n)+5^(n))^(1//n)`

Answer» We have,
`underset(ntooo)lim(4^(n)+5^(n))^(1//n)" "(oo^(0)"from")`
`=underset(ntooo)lim5(1+((4)/(5))^(n))^(1//n)`
`=5" "(because((4)/(5))^(n)to0" as n"tooo)`
128.

Evaluate `lim_(xtooo) (log_(e)x)/(x)`

Answer» We have `underset(xtooo)lim(log_(e)x)/(x)`
When `xtooo, log_(e)xtooo.` So, we have indeterminate form `(oo)/(oo).` But `log_(e)x` is very sluggish function, i.e., increases very slowly compared to x. So, at ifinity though both `log_(e)x` and x approaches to infinity but the cifference between these infinity values is also infinity, i.e., x is far more infinite than `log_(e)x.`
Therefore `underset(xtooo)lim(log_(e)x)/(x)=0`
129.

In the neighbourhood of `x=0` it is known that `1+|x|lt(e^(x)-1)/(x)lt1-|x|"then find"lim_(xto0)(e^(x)-1)/(x).`

Answer» We have `1+|x|lt(e^(x)1-)/(x)lt1-|x|"for "x in(0-delta,0+delta).`
`:." "`Using Sandwich rule,
`underset(xto0)lim(1+|x|)ltunderset(xto0)lim(e^(x)-1)/(x)ltunderset(xto0)lim(1-|x|)`
`implies" "1ltunderset(xto0)lim(e^(x)-1)/(x)lt1`
`underset(xto0)lim(e^(x)-1)/(x)=1`
130.

If `0ltlog_(e)xltsqrt(x)` for all `xlt1,` then find the value of `lim_(xtooo) (log_(e)x)/(x).`

Answer» As `0ltlog_(e)xltsqrt(x)(xlt1)`
`implies" "0ltunderset(xtooo)lim(log_(e)x)/(x)lt(1)/(sqrt(x)`
`implies" "oltunderset(xtooo)lim(log_ex)/(x)ltunderset(xtooo)lim(1)/(sqrt(x))`
`implies" "0ltunderset(xtooo)lim(log_(e)x)/(x)lt0`
`underset(xtooo)lim(log_(x)x)/(x)=0" "`(Using Sandwich Rule)
131.

If `f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)," then "lim_(xto3) [f(x)+g(x)+h(x)]" is "`A. 1B. `oo`C. `sqrt(2)`D. none of these

Answer» Correct Answer - C
We have
`f(x)+g(x)+h(x)=(x^(2)-4x+17-4x-2)/(x^(2)+x-12)`
`=(x^(2)-8x+15)/(x^(2)+x-12)=((x-3)(x-5))/((x-3)(x+4))`
`:. underset(xto3)lim[f(x)+g(x)+h(x)]=underset(xto3)lim((x-3)(x-5))/((x-3)(x+4))=-(2)/(7)`
132.

Find the limits of the following: `(i)lim_(xto0) (sin3x)/(x)" "(ii)lim_(xto0) (sin7x)/(sin4x)" "(iii)lim_(xto0) (1-cos^(2)x)/(x^(2))`

Answer» `(i)underset(xto0)lim(sin3x)/(x)=3underset(xto0)lim(sin3x)/(3x)`
`3xx1["as " underset(xto0)lim(sin(f(x)))/(f(x))=1, if underset(xto0)limf(x)=0]`
=3
`(ii)underset(xto0)lim(sin7x)/(sin4x)=underset(xto0)lim((sin7x)/(7x))/((sin4x)/(4x))xx(7x)/(4x)`
`(underset(xto0)lim((sin7x))/(7x))/(underset(xto0)lim(sin4x)/(4x))xx7/4`
`=1/1xx7/4=7/4`
`(iii)underset(xto0)lim(1-cos2x)/(x^(2))=underset(xto0)lim(2sin^(2)x)/(x^(2))`
`=2(underset(xto0)lim(sinx)/(x))^(2)=2`
133.

If `lim_(xto0) (x^(-3)sin3x+ax^(-2)+b)` exists and is equal to 0, thenA. `a=1`B. `a=0`C. `b=1`D. `b=-1`

Answer» Correct Answer - A
`underset(xto0)lim((sin3x)/(x^(3))+(a)/(x^(2))+b)=underset(xto0)lim(sin3x+ax+bx^(3))/(x^(3))`
`=underset(xto0)lim(3(sin3x)/(3x)+a+bx^(2))/(x^(2))`
For existence,
`(3+a)=0`
or `a=-3`
`:. L=underset(xto0)lim(sin3x-3x+bx^(3))/(x^(3))`
`=27underset(t to0)lim(sint-t)/(t^(3))+b=0(3x=t)`
`=-(27)/(6)+b=0`
or `b=(9)/(2)`
134.

The value of `lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x)))` is _________.A. `(pi)/(2)`B. 1C. `-pi`D. `pi`

Answer» Correct Answer - `(0)`
`Let L=underset(xtooo)lim(log_(e)(log_(e)x))/(e^(sqrt(x)))" "((oo)/(oo)" form")`
`=underset(xtooo)lim((1)/(xlog_(e)x))/(e^(sqrt(x)(1)/(2sqrt(x))))=underset(xtooo)lim(2sqrt(x))/(e^(sqrt(x))xlog_(e)x)`
`=underset(xtooo)lim(2)/(e^(sqrt(x)sqrt(x)log_(e)x))`
`=0`
135.

The value of `lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x)))` is _______.A. 1B. `(1)/(2)`C. `(1)/(4)`D. 2

Answer» Correct Answer - `(0.5)`
Let` x=1//y`
`:." "underset(xtooo)lim(x-x^(2)log_(e)(1+(1)/(x)))=underset(yto0)lim((1)/(y)-(log_(e)(1+y))/(y^(2)))`
`=underset(yto0)lim((y-log_(e)(1+y))/(y^(2)))`
`=underset(yto0)lim((y-(y-(y^(2))/(2)))/(y^(2)))=1//2`
136.

Differentiate the following with respect to x(i) y = a(x - 2)(x - b)(ii) y = (ax2 + b)2

Answer»

(i) y = x2 - (a + b)x + ab

∴ dy/dx = 2x - (a + b) + 0

= 2x - (a + b)

(ii) y = (ax2 + b)2

= a2x4 + 2abx2 + b2

∴ dy/dx = a2(4x3) + 2ab(2x) + 0

= 4a2x3 + 4abx

137.

Evaluate `lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n-1)))+n)`.

Answer» `underset(ntooo)lim(1)/(n^(2(log_(e)n-log_(e)(n-1)))+n)`
`=underset(ntooo)lim(1)/(n^(2)("log"_(e)(n)/(n+1))+n)`
`=underset(ntooo)lim(1)/(n^(2)("log"_(e)(1)/(1+(1)/(n)))+n)`
`=underset(xto0)lim(1)/((1)/(x^(2))("log"_(e)(1)/(1+x))+(1)/(x))`
`=underset(xto0)lim(1)/(-(log_(e)(1+x))/(x^(2))+(1)/(x))`
`=underset(xto0)lim(x^(2))/(x-log_(e)(1+x))`
`=underset(xto0)lim(x^(2))/(x-(x-(x^(2))/(2)))=2`
138.

If `lim_(xrarroo) (8x^3+mx^2)^(1//3)-nx` exists and is equal to 1 , then the vlaue of `(m)/(n)` isA. `(1)/(6)`B. 6C. 3D. `(1)/(3)`

Answer» Correct Answer - B
It is given that
`lim_(xtooo) {(8x^3+mx^2)^(1//3)-nx}` exists and is equal to 1
`rArr lim_(xto oo) {2x(1+(m)/(8x))^(1//3)-nx}` exists and is equal to 1
`rArr lim_(xtooo) {2x(1+(m)/(24x)-(m^2)/(576x^2)+......)-nx}` exists and is equal to 1
`rArr 2-n=0and, (m)/(12)=1`
`rArr n=2 and m=12 rArr (m)/(n)=6`.
139.

If ` a .lim_(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0)` , thenA. `a=1,b=e^-1`B. `a=2,b=e^-1`C. `a=-1,b=e^-1`D. `a=1,b=0`

Answer» Correct Answer - D
We have
`a. lim_(xto1) x^(1//1-x+b=e^(-1))`
` rArr a. lim_(xto1)[1+(x-1)]^(1//1-x)+b=e^(-1)`
` rArr ae ^(lim_(xto1)(x-1)/(1-x))+b=e^(-1)`
` rArr a.e ^-1+b=e^-1rArr a=1and b=0`.
140.

`lim_(xrarr1) (sinsqrt(x))/(sqrt(sinx))` is equal to

Answer» Correct Answer - B
We have,
`lim_(xto0^+) (sinsqrt(x))/(sqrt(sinx))=lim_(xto0^+)((sinsqrt(x))/(sqrt(x)))/(sqrt((sinx)/(x)))=(1)/(1)=1`.
141.

`lim_(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|)` is equaol toA. 2B. `sin 2`C. `2sin2`D. none of these

Answer» Correct Answer - C
We have,
`lim_(xto -1) (cos 2 -cos 2x)/(x^2-|x|)`
` =lim_(xto-1)(2sin(1+x)sin(x-1))/(x^2+x)[because |x|=-x " for " x lt 0]`
` =2 lim_(xto-1) (sin(xto1))/(xto1)xx(sin(x-1))/(x)`
` =2xx1 xx(sin(-2))/((-1))=2sin 2`.
142.

`Lim_(x->oo) ((x/(x+1))^a + sin (1/x))^x` is equal toA. `e^a-1`B. `e^1-a`C. `e`D. `0`

Answer» Correct Answer - B
We have
`lim_(xto oo) {((x)/(x+1))^a a+sin.(1)/(x)}^x`
`lim_(xto oo) {(1)/(x+(1)/(x))^a +sin.(1)/(x)}^x`
` lim_(xto oo) {1+(1+(1)/(x))^-a+ sin .(1)/(x)-1}^x`
`= lim_(y to oo) {1+(1+y)^-a+siny 1}^(1//y)`, where `y-(1)/(x)`
`=e^(lim_(xto0)((1+y)^-1+siny-1)/(y)`
`=e^(lim_(yto0) {(siny)/(y)+((1+y)^-a)/(y)}`
` =e^(1-a)[because lim_(yto0) (siny)/(y)=1and lim_(yto0) ((1+y)^-a-1)/(y)=-a]`
143.

If `{x}` denotes the fractional part of x, then `lim_(xrarr1) (x sin {x})/(x-1)`, is

Answer» Correct Answer - C
We,
` lim_(xto1^-)(xsin{x})/(x-1)=lim_(xto1)(xsinx)/(x-1)to-oo`
and
` lim_(xto1^+)(sin{x})/(x-1)=lim_(xto1^-) ((x sin x-1))/(x-1)=1xx1=1`
Clearly , `lim_(xto1^-)(xsin{x})/(x-1) ne lim_(xto1^-)(xsin{x})/(x-1)`
So `lim_(xto1^-)(xsin{x})/(x-1)` does not exist.
144.

If {x} denotes the fractional part of x, then `underset(x to 0)(lim) ({x})/(tan {x})` is equal toA. 1B. 0C. -1D. none of these

Answer» Correct Answer - D
We have
` lim_(xto0^-)({x})/(tan{x})`
` =lim_(xto0^-)(x-[x])/(tan (x-[x]))=lim_(xto0^-)(x+1)/(tan(x+1))=(1)/(tanx+1)=(1)/(tan1)=cot 1`
and
` lim_(xto0^-)({x})/(tan{x})=lim_(xto0^+)(x-[x])/(tan(x-[x]))=lim_(xto0^+)(x)/(tanx)=1`
Clearly , `lim_(xto0^-)({x})/(tan{x}) ne lim_(xt0^+)({x})/(tan{x})`
So , `lim_(xto0) ({x})/(tan{x})` does not exist.
145.

Evaluate: lim(x→0)(log(1 + x3))/sin3x

Answer»

lim(x→0)(log(1 + x3))/sin3

= lim(x→0)(log(1 + x3))/x3 . x3/sin3x

= 1 x 1 = 1

146.

Discuss the limit of f(x) = x3  at x = 1.

Answer»

LHL = lim(x1-)x3 = 1

RHL = lim(x 1+)x3 = 1 

⇒ LHL = RHL = 1

∴ lim(x1) f(x) = 1

147.

Evaluate `lim_(xto0) (e-(1+x)^(1//x))/(x)`.

Answer» `underset(xto0)lim(e-(1+x)^(1//x))/(x)=underset(xto0)lim(e-e^((1)/(x)log_(e)(1+x)))/(x)`
`=underset(xto0)lim(e-e^((1)/(x)(x-(x^(3))/(2)+(x^(3))/(3)+(x^(4))/(4)+...)))/(x)`
`=underset(xto0)lim(e-e.e^(-((x)/(2)+(x^(2))/(3)+(x^(3))/(4)+...)))/(x)`
`=-e.underset(xto0)lim(e^(-((x)/(2)-(x^(2))/(3)+(x^(3))/(4)......))-1)/(-((x)/(2)-(x^(2))/(3)+(x^(3))/(4)...)).(-((x)/(2)-(x^(2))/(3)+(x^(3))/(4)...))/(x)`
`=(e)/(2)`
148.

Evaluate `lim_(xto0) (e^(sinx)-(1+sinx))/((tan(sinx))^(2))`

Answer» `underset(xto0)lim(e^(sinx)-(1+sinx))/((tan(sinx))^(2))`
`=underset(hto0)lim(e^(h)-(1+h))/((tan h)^(2))" "`(where `sin x=h`)
`=underset(hto0)lim((1+h+(h^(2))/(2!)+* * * )-(1+h))/((h+(h^(3))/(3)+* * * )^(2))`
`=underset(hto0)lim((h^(2))/(2!))/(h^(2))`
`=1/2`
149.

Evaluate `lim_(xto0) {1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//sin^(2)x)}^(sin^(2)x)`.

Answer» Putting `(1)/(sin^(2)x)=t(ge1)`,we have
`underset(t tooo)lim(1^(t)+2^(t)+...+n^(t))^(1//t)`
`=underset(t tooo)lim(n^(t))^(1//t)[((1)/(n))^(t)+((2)/(n))^(t)+...+1]^(1//t)`
`=n underset(t tooo)lim[((1)/(n))^(t)+((2)/(n))^(t)+...+1]^(1//t)`
`=n[0+0+...+1]^(0)`
`=n`
150.

Evaluate `lim_(xto0) (sinx-x)/(x^(3)).`

Answer» `underset(xto0)lim(sinx-x)/(x^(3))" "`(0/0" from")
`=underset(xto0)lim((x-(x^(3))/(3!)+x^(5)/(5!)-...)-x)/(x^(3))`
`=underset(xto0)lim[-(1)/(3!)+x^(2)/(5!)-... ]=(-1)/(3!)=(-1)/(6)`