Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Find the characteristic of logarithm of following numbers :(i) 1270(ii) 20.125(iii) 7.985(iv) 431.5(v) 0.02(vi) 0.02539(vii) 70(viii) 0.000287(ix) 0.005(x) 0.00003208(xi) 0.000485(xii) 0.007(xiii) 0.0005309

Answer»

(i) Number 1270 is 4 digit number.

So, characteristic of its logarithm will be 4 – 1 = 3.

(ii) In 20.125, integral part is 20 which contains 2 digit.

So, characteristic of its logarithm will be 2 – 1 = 1.

(iii) In 7.985, integral part is 7 which contains 1 digit.

So, characteristic of its logarithm will be 1 – 1 = 0.

(iv) In 431.5, integral part is 431 which contains 3 digit.

So, characteristic of its logarithm will be 3 – 1 = 2.

(v) In 0.02, there are 1 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (1 + 1) = – 2 or \(\bar{2}\) .

(vi) In 0.02539, there are zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (1 + 1) = – 2 or \(\bar{2}\).

(vii) Number 70 is 2 digit number.

So, characteristic of its logarithm will be 2 – 1 = 1.

(viii) In 0.000287, there are 3 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be -(3 + 1) = -4 or \(\bar{4}\).

(ix) In 0.005, there are 2 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (2 + 1) = – 3 or \(\bar{3}\).

(x) In 0.00003208, there are 4 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (4 + 1) = – 5 or \(\bar{5}\) .

(xi) In 0.000485, there are 3 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (3 + 1) = -4 or \(\bar{4}\).

(xii) In 0.007, there are 2 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (2 + 1) = – 3 or \(\bar{3}\).

(xiii) In 0.0005309, there are 3 zero between decimal point and first significant digit.

So, characteristic of its logarithm will be – (3 + 1 ) = – 4 or \(\bar{4}\).

152.

Write the following in logarithm form :(i) 5-2 = 1/25(ii) 10-3 = 0.001(iii) 43/2 = 8

Answer»

(i) 5-2 = 1/25

Logarithm form of 5-2 = 1/25 is

log5(1/25) = -2.

(ii) 10-3 = 0.001

Logarithm form of 10-3 = 0.001 is

log100.001 = – 3

(iii) 43/2 = 8

Logarithm form of 43/2 = 8 is

log4 8 = 3/2

153.

Write the following in logarithm form :(i) 26 = 64(ii) 104 = 10000(iii) 210 = 1024

Answer»

(i) 26 = 64

Logarithm form of 26 = 64 is

log2 64 = 6

(ii) 104 = 10000

Logarithm form of 104 = 10000 is

log1010000 = 4

(iii) 210 = 1024

Logarithm form of 210= 1024 is

log2 1024 = 10

154.

(a) If antilog 1.5662 = 36.83, then find the value of the following :(i) antilog \(\bar{1}\).5662(ii) antilog 2.5662(iii) antilog \(\bar{2}\).5662(b) Find the value of antilog (log x).

Answer»

(a) Given, antilog 1.5662 = 36.83

(i) ∵ Mantissa of 1.5662 and 1.5662 are same. 

So, anitlog of two number will be same digit numbers.

Now, characteristics of which number is 1 then there will be no zero after decimal point in antilog.

∴ Required antilog \(\bar{1}\).5662 = 0.3683.

(ii) ∵ Mantissas of 1.5662 and 2.5662 are same.

So, antilog of two numbers will be same digit number.

Now, characteristic of which number is 2 then decimal point will be after 3 digit in antilog.

∴ Required anitlog 2.5662 = 368.3.

(iii) ∵ Mantìssa of 1.5662 and \(\bar{2}\).5662 are same.

So. antilog of two numbers will be same digit number.

Now, characteristic of which number is \(\bar{2}\) then there will be one zero after decimal point in anitlog.

∴ Required antilog \(\bar{2}\).5662 = 0.03683.

(b) antilog and log are opposite to each other.

∴ antilog (log x) x.

155.

Find the logarithm of the following numbers by using log table :(i) 2813(ii) 400(iii) 27.28(iv) 9(v) 0.678(vii) 0.08403(viii) 0.000287(ix) 1.234(x) 0.00003258(xi) 0.000125(xii) 0.00003208

Answer»

(i) 2813

Characteristic : There are characteristic will be 4 – 1 = 3.

Mantissa : In log table, in first column, in front of 28 and under the column 1.

Find the number which is = 4487.

For fourth digit 3’s mean difference = 5

On adding = 4492

So, mantissa of log10 2813 = 0.4492

Thus, log10 2813 = Characteristic + Mantissa

= 3 + 0.4492 = 3.4492

(ii) 400

Characteristic : There are 3 digit in number 400.

So, characteristic will be 3 – 1 = 2.

Mantissa : In log table, in first column, in front of 40 and under the column 0, find the number which is 6021.

So, mantissa of log10 400 = 0.6021

Thus, log10 400 = Characteristic + Mantissa

= 2 + 0.6021 =2.6021

(iii) 27.28

Characteristic : 

Here, integral part is 27 which contains 2 digit. 

So, characteristic of its logarithm will be 2 – 1 = 1.

Mantissa : In log table, in first column, in front of 27 (ignoring decimal point) and under the column 2, find the number which is = 4346

For fourth digit 8’s mean difference = 13

On adding = 4359

So, mantissa of log10 27.28 = 0.4359

Thus, log10 27.28 = Characteristic + Mantissa

= 1+ 0.04359 =1.4359

(iv) 9

Characteristic : There are only 1 digit in number 9.

So, characteristic will be 1 – 1 = 0.

Mantissa : In log table, in first column, in front of 90 and under the column 0 find the number which is = 9542.

So mantissa of log10 9 = 0.9542

Thus, log10 9 = Characteristic + Mantissa

= 0 + 0.9542 = 0.9542

(v) 0-678

Characteristic : In 0.678, there are no zero between decimal point and first significant digit. 

So, characteristic of its logarithm will be – (0+ 1) = – 1 = 1

Mantissa : In log table, in first column, in front of 67 (ignoring decimal point) and under the column 8 find the number which is 8312.

So, mantissa of log10 0.678 = 0.8312
Thus,
log10 0.678 = Characteristic + Mantissa

\(\bar{1}\) + 0.8312 = \(\bar{1}\). 8312

(vi) 0.0035

Characteristic : In 0.0035, there are 2 zero between decimal point and first significant digit. 

So, characteristic of its logarithm will be
-(2+1) = -3 = \(\bar{3}\)

Mantissa : In log table, in first column, in front of 35 (ignoring decimal point) and under the column 0, find the number which is = 5441

So, mantissa of log100.0035 = 0.5441

Thus, log10 0.0035 = Characteristic + Mantissa

\(\bar{3}\) + 0.5441 = \(\bar{3}\).5441

(vii) 0.08403

Characteristic : In 0.08403, there are 1 zero between decimal point and first significant digit. 

So, characteristic of its logarithm will be
-(1 + 1) = – 2 = 2

Mantissa : In log table, in first column, in front of 84 (ignoring decimal point) and under the column 0 find the number, which is = 9243

For fourth digit 3 mean difference = 2

On adding = 9245

So, mantissa of log100.08403 = 0.9245

Thus,
log10 0.08403 = Characteristic + Mantissa

\(\bar{2}\) + 0.9245 = \(\bar{2}\).9245.

(viii) 0.000287

Characteristic: In 0.000287, there are 3 zero between decimal point and first significant digit. 

So, characteristic of its logarithm will be
-(3 + 1) = -4 = \(\bar{4}\)

Mantissa : In log table, in first column, in front of 28 (ignoring decimal point) and under the column 7 find the number which is 4579.

So, mantissa of log10 0.000287 = 0.4579

Thus,

log10 0.000287 = Characteristic + Mantissa

\(\bar{4}\) + 0.4579

\(\bar{4}\).4579

(ix) 1.234

Characteristic = 1- 1 = 0

Mantissa = 0.0899 + 14

= 0.0913

log101.234 = Characteristic + Mantissa

= 0 + 0.0913

= 0.0913

(x) 0.00003258

Characteristic: In 0.00003258, there are 4 zero between decimal point and first significant digit. 

So characteristic of its logarithm will be
-(4 + 1) = -5 = \(\bar{5}\)

Mantissa : In log table, in first column, in front of 32 (ignoring decimal point) and under the column 5 find the number, which is = 5119

For fourth digit 8 mean difference = 11

On adding = 5130

So, mantissa of log10 0.00003258 = 0-5130
Thus,

log10 0.00003258 = Characteristic + Mantissa

\(\bar{5}\) + 0.5130

\(\bar{5}\).5130

(xi) 0.000125

Characteristic : In 0.000125, there are 3 zero between decimal point and first significant digit. 

So, characteristic of its logarithm will be
– (3 + 1) = – 4 = \(\bar{4}\)

Mantissa : In log table, in first column, in front of 12 (ignoring decimal point) and under the column 5 find the number which is = 0969

So, mantissa of log100.000125 = 0.0969
Thus,

log10o 0.000125 = Characteristic + Mantissa

\(\bar{4}\) + 0.0969

\(\bar{4}\).0969

(xii) 0.00003208

Characteristic: In 0-00003208, there are 4 zero between decimal point and first significant digit. 

So, characteristic of its logarithm will be
-(4 + 1) = -5 = 5

Mantissa : In log table, in first column, in front of 32 (ignoring decimal point) and under the column 0 find the number which is = 5051

For fourth digit 8’s mean difference = 11

On adding = 5062

So, mantissa of log100.0003208 = 0.5062
Thus,

log100.0003208 = Characteristic + Mantissa = \(\bar{5}\) + 0.5062

\(\bar{5}\) .5062

156.

If log2= 0,301 , then the find the number of digital in ` 2^(1024)` from the following options. (A) 307 (B) 308 ( C) 309 (D) 310

Answer» Let`x=2^(1024)`
`Rightarrowlogx=log2^(1024)`
`= 1024 log2= 1024(0.301)`
`Rightarrow log x = 308.22`
The characteristic is 308
The number of digits in `2^(1024)` is 309
157.

`2 ^(16-log_(2)1024)` = ______A. 16B. 32C. 64D. 8

Answer» Correct Answer - C
Write 1024 as a power of 2
158.

If log2 = 0.301 then find the number of digits in `2^(1024)`.A. 307B. 308C. 309D. 310

Answer» Correct Answer - C
Let x=`2^(1024)`
` Rightarrow x= log2^(1024)`
` = 1024 log2 = 1024 ( 0.301)`
` Rightarrow logx = 308.22`
The characteristic is 308
The number of digits in `2^(1024) " is " 309` .
159.

log(113/(57 x 75)) in the sum and difference of logarithm.

Answer»

log(113/(57 x 75))

= log (11)3 – log{(5)7 x (7)5}

= 3 log 11 – log (5)7 – log (7)5

= 3 log 11 – 7 log 5 – 5 log 7

160.

If log4 2 + log4 4 + log4 x + log4 16 = 6, then x is equal to(a) 4 (b) 8 (c) 32 (d) 64

Answer»

(c) 32

Hint.

Given, log4 (2 × 4 × \(x\) × 16) = 6 ⇒ log4 (128\(x\)) = 6 

⇒ 128x\(x\) = 46              [Using loga x = n ⇒ x = an]

161.

If log x – log (x – 1) = log 3, then find the value of x.

Answer»

log x – log (x – 1) = log 3

⇒ log(x/(x - 1)) = log 3

On comparing,

x/(x - 1) = 3

⇒ x = 3 (x – 1)

⇒ x = 3x – 3

⇒ 3x – x = 3

⇒ 2x = 3

⇒ x = 3/2

Hence, the value of x is 3/2.

162.

If `log_(x) ((1)/(243))=-5`, then find the value of x.

Answer» Correct Answer - 3
163.

log\(_{4\sqrt[3]{4^2}}\) \(\bigg(\frac{1}{1024}\bigg)\) is equal to(a) – 5 (b) – 3 (c) 3 (d) 5

Answer»

(b) - 3

Hint. 

Since \({4\sqrt[3]{4^2}}\) = 22.(24)\(^{\frac{1}{3}}\)\(2^{2+\frac{4}{3}}\) = \(2^{\frac{10}{3}}\) and 

1024 = 210, therefore,

log\(_{4.\sqrt[3]{4^2}}\) \(\bigg(\frac{1}{1024}\bigg)\) = log210/3 (2-10) = \(\frac{-10}{\frac{10}{3}}\) log2 2

= – 3 × 1 = – 3. \(\bigg[\)Using logx\(\frac{m}{n}\) loga x\(\bigg].\)

164.

The number of meaningful solutions of log4(x – 1) = log2 (x – 3) is(a) zero (b) 1 (c) 2 (d) 3

Answer»

(b) 1

log4(x – 1) = log2(x – 3) ⇒ log22 (x − 1) = log2(x – 3)

⇒ \(\frac{1}{2}\) log2 (x–1) = log2 (x– 3) ⇒ log2 (x–1) = 2 log2 (x– 3)

\(\big[\)Using loga(bn) = \(\frac{n}{m}\) loga b\(\big]\)

⇒ log2(x – 1) = log2(x – 3)2 

⇒ (x – 1) = (x – 3)2 ⇒ x – 1 = x2 – 6x + 9 

⇒ x2 – 7x + 10 = 0 ⇒ (x – 2) (x – 5) = 0 ⇒ x = 2 or 5 

Neglecting x = 2 as log2(x – 3) is defined when x > 2.

⇒ There is only one meaningful solution of the given equation.

165.

Find the value of x, if log2 (5.2x  + 1), log4(21–x + 1) and 1 are in A.P.(a) 1 + log52 (b) 1 – log25 (c) log210 (d) log25 + 1

Answer»

(b) 1 – log2

Given, log2 (5.2x + 1), log4 (21– x + 1), 1 are in A.P. 

⇒ log2 (5.2x + 1) + 1 = 2 log4 (21 – x + 1) 

⇒ log2 (5.2x + 1) + log22 = 2 log22 (21-x + 1)

⇒ log2 (5.2x + 1).2 = 2 x \(\frac12\)log2 (21-x + 1)

\(\big(\because\,\text{log}_{a^n}x=\frac{1}{n}\text{log}_ax\big)\)

⇒ log2 (10.2x + 2) = log(21-x + 1)

⇒ 10.2x + 2 = 21 – x + 1 ⇒ 10.2x + 2 = \(\frac{2}{2^x}\) + 1

Let 2x = a, then

10. a + 2 = \(\frac{2}{a}\) + 1 ⇒ 10a + 1 = \(\frac{2}{a}\) ⇒ 10 a2 + a – 2 = 0

⇒ (5 a – 2) (2a + 1) = 0 ⇒ a = \(\frac{2}{5}\) ⇒ 2x\(\frac{2}{5}\)

\(\big(\because\,2^x>0,\text{reject}\,a=-\frac{1}{2}\big)\)

⇒ log 2x = log \(\frac{2}{5}\)

⇒ x log2 2 = log2 2 – log2 5 ⇒ \(x\) = 1 – log2 5.

166.

The value of `log_(16)root(5)(64)` = ______.

Answer» Correct Answer - `(3)/(10)`
167.

If `log_(4)3` = x, then `log_(root(4)(3))root(4)(64)` = ______.

Answer» Correct Answer - `(3)/(x)`
168.

If \(2^{log_{10}3\sqrt3}\) = \(3^{k\,log_{10}}\)2 then the value of k is :(a) 1 (b) \(\frac{1}{2}\)(c) 2 (d) \(\frac{3}{2}\)

Answer»

(d) \(\frac{3}{2}\)

  \(2^{log_{10}3\sqrt3}\) = \(3^{k\,log_{10}}\)⇒ \(2^{log_{10}\big(3^{\frac{3}{2}}\big)}\) = \(3^{k\,log_{10}}\)2

\(2^{log_{2}\big(3^{\frac{3}{2}}\big).log_{10^2}}\) =  \(3^{k\,log_{10}}\)2       [Using logax = logbx .logab]

⇒ \(\bigg[2^{log_{2}\big(3^{\frac{3}{2}}\big)}\bigg]^{log_{10^2}}\) =  \((3^{k})^{log_{10}}\)⇒ \(2^{log_2\,3^{\frac{3}{2}}}\) = 3k

\(3^{\frac{3}{2}}\) = 3⇒ k = \(\frac{3}{2}\)               (\(a^{log_a\,x}\) = x)

169.

The value of log√b a \(\text{log}_\sqrt[3]{c}\)  b \(\text{log}_\sqrt[4]{c}\) c is:(a) 1 (b) 10 (c) 24 (d) 0

Answer»

(c) 24

Using the formula logan x\(\frac{m}{n}\) loga x , we have

 log√b a \(\text{log}_\sqrt[3]{c}\)  b \(\text{log}_\sqrt[4]{c}\) c = \(\text{log}_{b^\frac{1}{2}}\) a \(\text{log}_{c^\frac{1}{3}}\) b \(\text{log}_{a^\frac{1}{4}}\)c

= 2 logba × 3 logcb × 4 logac

= 24 \(\frac{log\,a}{log\,b}\times\frac{log\,b}{log\,c}\times\frac{log\,c}{log\,a}\) = 24.

170.

Find the value of `root(3)(16.51)` approximately.

Answer» Let P = `root(3)(16.51)`
log P = log `(16.51)^(1//3)`
`=(1)/(3)log16.51`
`=(1)/(3) (1.2178)=0.4059`
log P = 0.4059
P = antilog (0.4059)
`therefore` P = 2.546.
171.

The value of `(3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125)))`, isA. 3B. 2C. 1D. `(3)/(2)`

Answer» Correct Answer - A
172.

If log3 [log2 (log3x)] = 1, show that x = 6561.

Answer»

log3 [log2(log3 x)] = 1

\(\therefore\) log2 (log3 x) = 31

\(\therefore\) log3 x = 23

\(\therefore\) log3 x = 8

\(\therefore\) x = 38

\(\therefore\) x = 6561

173.

Prove that : log4[log2{log2 (log3 81)}] = 0

Answer»

We know that logm mn = n logmm

and logmm = 1

∴ logm(m)n = n x logmm = n x 1 = n

⇒ logm(m)n = n …(i)

L.H.S. = log4[log2{log2(log3 81)}]

= log4[log2 {log2(log334)}] (∵ 81 = 34)

= log4[log2 {(log24)} [According to equal (i)]

= log4{log2(log222)} (∵ 4 = 22)

= log4(log22) [According to equal (i)]

= log4(1) (∵ logmm = 1)

= 0 = R.H.S.

174.

If `log_(16x) = 2.5`, then x = ______.A. 40B. 256C. 1024D. 1025

Answer» Correct Answer - C
`log_(b) a = n implies a = b^(n)`.
175.

The value of log`((18)/(14))+log((35)/(48))-log((15)/(16))=`

Answer» Correct Answer - A
`log a + log b - log c = log ((ab)/(c ))` and log 1 = 0.
176.

If log 5 = 0.699 and `(1000)^(x)` = 5, then find the value of x.A. 0.0699B. 0.0233C. 0.0233D. 10

Answer» Correct Answer - C
Taking logarithms for `10^(3x)=5` and substituting in the given equation we get the value of x.
177.

If n = 1000 !, then the value of \(\frac{1}{log_2\,n}\) + \(\frac{1}{log_3\,n}\) + .... + \(\frac{1}{log_{1000}\,n}\) is(a) 0 (b) 1 (c) 10 (d) 103

Answer»

Given, 1000! = n. Now, \(\frac{1}{log_2\,n}\) + \(\frac{1}{log_3\,n}\) + .... + \(\frac{1}{log_{1000}\,n}\) 

= logn 2 + logn 3 + .... + logn 1000 \(\bigg[\text{Using}\frac{1}{log_b\,a}= log_a\,b\bigg]\)

= logn (2 × 3 × 4 × ... × 1000) = logn (1000!) = logn n = 1.

178.

If `"log"_(30) 3 = x, "log"_(30) 5 =y, "then log"_(30) 8=`A. `3(1-x-y)`B. `x-y +1`C. `1-x-y`D. `2(x-y+1)`

Answer» Correct Answer - A
179.

if `a^2+4b^2=12ab,` then `log(a+2b)`A. `(1)/(2)("log"a + "log"b - "log"2)`B. `"log"(a)/(2) + "log" (b)/(2) + "log" 2`C. `(1)/(2)("log"a + "log"b + 4 "log"2)`D. `(1)/(2)("log"a - "log"b + 4"log" 2)`

Answer» Correct Answer - C
180.

The number of solutions of the equation `"log"_(4) (x-1) = "log"_(2) (x-3)`, isA. 3B. 1C. 2D. 0

Answer» Correct Answer - B
181.

The number of real solutions of the equation `"log" (-x) = 2"log" (x+1)`, is

Answer» Correct Answer - B
182.

The number of solutions of the equation `3"log"_(3)|-x| = "log"_(3) x^(2),` is

Answer» Correct Answer - C
We have,
`3 "log"_(3)|-x| = "log"_(3) x^(2)`
`rArr "log"_(3) |-x|^(3) = "log"_(3) x^(2)`
`rArr |-x|^(3) = x^(2)`
`rArr |x|^(3) = x^(2) rArr |x|^(2) (|x|-1) = 0 rArr x = 0, x = +-1`
But, the equation is not meaningful for x = 0. Therefore, `x = +-1`
183.

If `(2.3)^x=(0.23)^y=1000`, then find the value of `1/x-1/y`.A. `(1)/(5)`B. `(1)/(4)`C. `(1)/(3)`D. `(1)/(2)`

Answer» Correct Answer - C
184.

If `"log"_(a)x, "log"_(b) x, "log"_(c) x` are in A.P., where `x ne 1, "then" c^(2) =0`A. `(ab)^("log"_(a)b)`B. `(ac)^("log"_(a)b)`C. `(ab)^("log"_(b)a)`D. `(ac)^("log"_(b)a)`

Answer» Correct Answer - B
185.

The number of solutions of `"log"_(2) (x-1) = 2 "log"_(2) (x-3)` isA. 2B. 1C. 6D. 7

Answer» Correct Answer - B
186.

If `"log"_(x+2) (x^(3)-3x^(2)-6x +8) =3`, then x equals toA. 1B. 2C. 3D. none of these

Answer» Correct Answer - D
187.

If `"log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3)`, then x equals toA. 5B. 4C. 3D. 2

Answer» Correct Answer - D
188.

If `"log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x`, then x equals toA. `4, 5`B. `-1, 5`C. `4, -1`D. `5, (1)/(3)`

Answer» Correct Answer - D
189.

If `x^((3)/(2)("log"_(2) x-3)) = (1)/(8)`, then x equals toA. 2B. 3C. 5D. 6

Answer» Correct Answer - A
190.

If `"log"_(a) ab = x,` then the value of `"log"_(b)ab,` isA. `(x-1)/(x)`B. `(x)/(x-1)`C. `(x)/(x+1)`D. `(x+1)/(x)`

Answer» Correct Answer - B
191.

If `"log"_(a) x xx "log"_(5)a = "log"_(x) 5, a ne 1, a gt 0, " then "x =`A. aB. `5, (1)/(5)`C. 1D. none of these

Answer» Correct Answer - B
We have,
`"log"_(a) x xx "log"_(5)a = "log"_(x)5`
`rArr "log"_(5) x= "log"_(x) 5`
`rArr "log"_(5)x = (1)/("log"_(5)x)`
`rArr ("log"_(5)x)^(2) = 1 rArr "log"_(5)x = +-1 rArr x = 5^(+-1) rArr x = 5, (1)/(5)`
192.

The number of ordered pairs (x, y) satisfying `4("log"_(2) x^(2))^(2) + 1 = 2 "log"_(2)y " and log"_(2)x^(2) ge "log"_(2) y`, isA. 1B. 2C. more than 2 but finiteD. infinite

Answer» Correct Answer - D
We have,
`4("log"_(2) x)^(2) + 1 = 2"log"_(2) y " and log"_(2) x^(2) ge "log"_(2)y`
`rArr 4("log"_(2)x)^(2) + "log"_(2)2 le 2 "log"_(2)x^(2)`
`rArr 4("log"_(2) x)^(2) - 4"log"_(2) x + 1 le 0`
`rArr (2"log"_(2)x-1)^(2) le 0 rArr "log"_(2) = (1)/(2) rArr x = sqrt(2)`
Now,
`"log"_(2) x^(2) ge "log"_(2) y`
`rArr x^(2) ge y " and " y gt 0 rArr 2 ge y gt 0 rArr 0 lt y le 2`
Hence, the ordered pairs are `(sqrt(2), y)`, where `0 lt y lt 2`
193.

If `"log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2)`, then y equalsA. 9B. 18C. 27D. 81

Answer» Correct Answer - A
194.

The value of `"log"_(b)a xx "log"_(c) b xx "log"_(a)c`, is

Answer» Correct Answer - B
195.

`log_(11)3. log_(3) 1331` =_____A. 3B. 11C. 121D. 9

Answer» Correct Answer - A
Apply laws of logarithm.
196.

The solution set of the equation `"log"_(1//3)(2^(x+2)-4^(x)) ge -2`, isA. `(-oo, 2-sqrt(13))`B. `(-oo, 2+sqrt(13))`C. `(-oo, 2)`D. none of these

Answer» Correct Answer - C
We have,
`"log"_(1//3) (2^(x+2)-4^(x)) ge-2`
`rArr (2^(x+2)-4^(x)) le ((1)/(3))^(-2)`
`rArr 2^(x+2)-(2^(x))^(2) le 9`
`rArr (2^(x))^(2)-4(2^(x))+9 ge 0`, which is true for all ` x in R`.
Now,
`"log"_(1//3) (2^(x+2)-4^(x))` is defined, if
`2^(x+2)-4^(x) gt 0`
`rArr 4(2^(x))-(2^(x))^(2) gt 0`
`rArr 2^(x) (4-2^(x)) gt 0`
`rArr 4-2^(x) gt 0 rArr 2^(x) lt 4 rArr x lt 2 rArr x in (-oo, 2)`
Hence the solution set is `(-oo, 2)`
197.

The solution set of the equation `"log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2,` isA. `{2^(-sqrt(2)), 2^(sqrt(2))}`B. `{(1)/(2), 2}`C. `{(1)/(4), 4}`D. none of these

Answer» Correct Answer - A
We have,
`"log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x)2`
`rArr (1)/("log"_(2)x) xx (1)/("log"_(2)2x) = (1)/("log"_(2)4x), x ne 1, x gt 0`
`rArr (1)/("log"_(2)x) xx (1)/((1+"log"_(2)x)) = (1)/((2+"log"_(2)x))`
`rArr ("log"_(2)x + 2) = ("log"_(2)x)(1+"log"_(2)x)`
`rArr ("log"_(2)x)^(2) = 2 rArr "log"_(2) x = +- sqrt(2) rArr x = 2^(sqrt(2)), 2^(-sqrt(2))`
198.

The set of real values of x for which `2^("log"_(sqrt(2))(x-1)) gt x+ 5,` isA. `(-oo, -1) cup (4, oo)`B. `(4, oo)`C. `(-1, 4)`D. none of these

Answer» Correct Answer - B
We have ,
`2^("log"_(sqrt(2))(x-1)) gt x+ 5`
`rArr 2^(2"log"2 (x-1)) gt x+ 5`
`rArr (x-1)^(2) gt x+ 5`
`rArr x^(2) -3x-4 gt 0`
`rArr (x-4)(x+1) gt 0`
`rArr x lt -1 "or" x gt 4`
`rArr x gt 4 " " [because "log"_(sqrt(2))(x-1) " is defined for " (x-1) gt 0]`
`rArr x in (4, oo)`
199.

The set of real values of x satisfying `"log"_(0.2) ((x+2)/(x)) le 1`, isA. `(-oo, -5//2] cup (0, oo)`B. `[5//2, oo)`C. `(-oo, -2) cup (0, oo)`D. none of these

Answer» Correct Answer - A
Note that `"log"_(0.2) ((x+2)/(x))` is meaningful, if
`(x+2)/(x) gt0 rArr x in (-oo, -2) cup (0, oo)`
Now,
`"log"_(0.2) ((x+2)/(x)) le 1`
`rArr (x+2)/(x) ge (0.2)^(-1)`
`rArr (x+2)/(x) ge (1)/(5)`
`rArr (x+2)/(x) - (1)/(5) ge 0`
`rArr (4x + 10)/(5x) ge 0 rArr (2x+5)/(x) ge 0 rArr x in (-oo, -5//2] cup (0, oo)`
200.

Statement-1: The solution set of the equation `"log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}.` Statement-2 : `"log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True.

Answer» Correct Answer - A
We have,
`"log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x)2`
`rArr (1)/("log"_(2)x) xx (1)/("log"_(2)2x) = (1)/("log"_(2)4x)`
`rArr (1)/("log"_(2)x(1+"log"_(2)x)) = (1)/((2+"log"_(2)x))`
`rArr ("log"_(2)x)^(2) = 2 rArr "log"_(2) x = +- sqrt(2) rArr x = 2^(sqrt(2)), 2^(-sqrt(2))`
Hence, the solution set is `{2^(-sqrt(2)), 2^(sqrt(2))}`