InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
Find the characteristic of logarithm of following numbers :(i) 1270(ii) 20.125(iii) 7.985(iv) 431.5(v) 0.02(vi) 0.02539(vii) 70(viii) 0.000287(ix) 0.005(x) 0.00003208(xi) 0.000485(xii) 0.007(xiii) 0.0005309 |
|
Answer» (i) Number 1270 is 4 digit number. So, characteristic of its logarithm will be 4 – 1 = 3. (ii) In 20.125, integral part is 20 which contains 2 digit. So, characteristic of its logarithm will be 2 – 1 = 1. (iii) In 7.985, integral part is 7 which contains 1 digit. So, characteristic of its logarithm will be 1 – 1 = 0. (iv) In 431.5, integral part is 431 which contains 3 digit. So, characteristic of its logarithm will be 3 – 1 = 2. (v) In 0.02, there are 1 zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (1 + 1) = – 2 or \(\bar{2}\) . (vi) In 0.02539, there are zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (1 + 1) = – 2 or \(\bar{2}\). (vii) Number 70 is 2 digit number. So, characteristic of its logarithm will be 2 – 1 = 1. (viii) In 0.000287, there are 3 zero between decimal point and first significant digit. So, characteristic of its logarithm will be -(3 + 1) = -4 or \(\bar{4}\). (ix) In 0.005, there are 2 zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (2 + 1) = – 3 or \(\bar{3}\). (x) In 0.00003208, there are 4 zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (4 + 1) = – 5 or \(\bar{5}\) . (xi) In 0.000485, there are 3 zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (3 + 1) = -4 or \(\bar{4}\). (xii) In 0.007, there are 2 zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (2 + 1) = – 3 or \(\bar{3}\). (xiii) In 0.0005309, there are 3 zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (3 + 1 ) = – 4 or \(\bar{4}\). |
|
| 152. |
Write the following in logarithm form :(i) 5-2 = 1/25(ii) 10-3 = 0.001(iii) 43/2 = 8 |
|
Answer» (i) 5-2 = 1/25 Logarithm form of 5-2 = 1/25 is log5(1/25) = -2. (ii) 10-3 = 0.001 Logarithm form of 10-3 = 0.001 is log100.001 = – 3 (iii) 43/2 = 8 Logarithm form of 43/2 = 8 is log4 8 = 3/2 |
|
| 153. |
Write the following in logarithm form :(i) 26 = 64(ii) 104 = 10000(iii) 210 = 1024 |
|
Answer» (i) 26 = 64 Logarithm form of 26 = 64 is log2 64 = 6 (ii) 104 = 10000 Logarithm form of 104 = 10000 is log1010000 = 4 (iii) 210 = 1024 Logarithm form of 210= 1024 is log2 1024 = 10 |
|
| 154. |
(a) If antilog 1.5662 = 36.83, then find the value of the following :(i) antilog \(\bar{1}\).5662(ii) antilog 2.5662(iii) antilog \(\bar{2}\).5662(b) Find the value of antilog (log x). |
|
Answer» (a) Given, antilog 1.5662 = 36.83 (i) ∵ Mantissa of 1.5662 and 1.5662 are same. So, anitlog of two number will be same digit numbers. Now, characteristics of which number is 1 then there will be no zero after decimal point in antilog. ∴ Required antilog \(\bar{1}\).5662 = 0.3683. (ii) ∵ Mantissas of 1.5662 and 2.5662 are same. So, antilog of two numbers will be same digit number. Now, characteristic of which number is 2 then decimal point will be after 3 digit in antilog. ∴ Required anitlog 2.5662 = 368.3. (iii) ∵ Mantìssa of 1.5662 and \(\bar{2}\).5662 are same. So. antilog of two numbers will be same digit number. Now, characteristic of which number is \(\bar{2}\) then there will be one zero after decimal point in anitlog. ∴ Required antilog \(\bar{2}\).5662 = 0.03683. (b) antilog and log are opposite to each other. ∴ antilog (log x) x. |
|
| 155. |
Find the logarithm of the following numbers by using log table :(i) 2813(ii) 400(iii) 27.28(iv) 9(v) 0.678(vii) 0.08403(viii) 0.000287(ix) 1.234(x) 0.00003258(xi) 0.000125(xii) 0.00003208 |
|
Answer» (i) 2813 Characteristic : There are characteristic will be 4 – 1 = 3. Mantissa : In log table, in first column, in front of 28 and under the column 1. Find the number which is = 4487. For fourth digit 3’s mean difference = 5 On adding = 4492 So, mantissa of log10 2813 = 0.4492 Thus, log10 2813 = Characteristic + Mantissa = 3 + 0.4492 = 3.4492 (ii) 400 Characteristic : There are 3 digit in number 400. So, characteristic will be 3 – 1 = 2. Mantissa : In log table, in first column, in front of 40 and under the column 0, find the number which is 6021. So, mantissa of log10 400 = 0.6021 Thus, log10 400 = Characteristic + Mantissa = 2 + 0.6021 =2.6021 (iii) 27.28 Characteristic : Here, integral part is 27 which contains 2 digit. So, characteristic of its logarithm will be 2 – 1 = 1. Mantissa : In log table, in first column, in front of 27 (ignoring decimal point) and under the column 2, find the number which is = 4346 For fourth digit 8’s mean difference = 13 On adding = 4359 So, mantissa of log10 27.28 = 0.4359 Thus, log10 27.28 = Characteristic + Mantissa = 1+ 0.04359 =1.4359 (iv) 9 Characteristic : There are only 1 digit in number 9. So, characteristic will be 1 – 1 = 0. Mantissa : In log table, in first column, in front of 90 and under the column 0 find the number which is = 9542. So mantissa of log10 9 = 0.9542 Thus, log10 9 = Characteristic + Mantissa = 0 + 0.9542 = 0.9542 (v) 0-678 Characteristic : In 0.678, there are no zero between decimal point and first significant digit. So, characteristic of its logarithm will be – (0+ 1) = – 1 = 1 Mantissa : In log table, in first column, in front of 67 (ignoring decimal point) and under the column 8 find the number which is 8312. So, mantissa of log10 0.678 = 0.8312 = \(\bar{1}\) + 0.8312 = \(\bar{1}\). 8312 (vi) 0.0035 Characteristic : In 0.0035, there are 2 zero between decimal point and first significant digit. So, characteristic of its logarithm will be Mantissa : In log table, in first column, in front of 35 (ignoring decimal point) and under the column 0, find the number which is = 5441 So, mantissa of log100.0035 = 0.5441 Thus, log10 0.0035 = Characteristic + Mantissa = \(\bar{3}\) + 0.5441 = \(\bar{3}\).5441 (vii) 0.08403 Characteristic : In 0.08403, there are 1 zero between decimal point and first significant digit. So, characteristic of its logarithm will be Mantissa : In log table, in first column, in front of 84 (ignoring decimal point) and under the column 0 find the number, which is = 9243 For fourth digit 3 mean difference = 2 On adding = 9245 So, mantissa of log100.08403 = 0.9245 Thus, = \(\bar{2}\) + 0.9245 = \(\bar{2}\).9245. (viii) 0.000287 Characteristic: In 0.000287, there are 3 zero between decimal point and first significant digit. So, characteristic of its logarithm will be Mantissa : In log table, in first column, in front of 28 (ignoring decimal point) and under the column 7 find the number which is 4579. So, mantissa of log10 0.000287 = 0.4579 Thus, log10 0.000287 = Characteristic + Mantissa = \(\bar{4}\) + 0.4579 = \(\bar{4}\).4579 (ix) 1.234 Characteristic = 1- 1 = 0 Mantissa = 0.0899 + 14 = 0.0913 log101.234 = Characteristic + Mantissa = 0 + 0.0913 = 0.0913 (x) 0.00003258 Characteristic: In 0.00003258, there are 4 zero between decimal point and first significant digit. So characteristic of its logarithm will be Mantissa : In log table, in first column, in front of 32 (ignoring decimal point) and under the column 5 find the number, which is = 5119 For fourth digit 8 mean difference = 11 On adding = 5130 So, mantissa of log10 0.00003258 = 0-5130 log10 0.00003258 = Characteristic + Mantissa = \(\bar{5}\) + 0.5130 = \(\bar{5}\).5130 (xi) 0.000125 Characteristic : In 0.000125, there are 3 zero between decimal point and first significant digit. So, characteristic of its logarithm will be Mantissa : In log table, in first column, in front of 12 (ignoring decimal point) and under the column 5 find the number which is = 0969 So, mantissa of log100.000125 = 0.0969 log10o 0.000125 = Characteristic + Mantissa = \(\bar{4}\) + 0.0969 = \(\bar{4}\).0969 (xii) 0.00003208 Characteristic: In 0-00003208, there are 4 zero between decimal point and first significant digit. So, characteristic of its logarithm will be Mantissa : In log table, in first column, in front of 32 (ignoring decimal point) and under the column 0 find the number which is = 5051 For fourth digit 8’s mean difference = 11 On adding = 5062 So, mantissa of log100.0003208 = 0.5062 log100.0003208 = Characteristic + Mantissa = \(\bar{5}\) + 0.5062 = \(\bar{5}\) .5062 |
|
| 156. |
If log2= 0,301 , then the find the number of digital in ` 2^(1024)` from the following options. (A) 307 (B) 308 ( C) 309 (D) 310 |
|
Answer» Let`x=2^(1024)` `Rightarrowlogx=log2^(1024)` `= 1024 log2= 1024(0.301)` `Rightarrow log x = 308.22` The characteristic is 308 The number of digits in `2^(1024)` is 309 |
|
| 157. |
`2 ^(16-log_(2)1024)` = ______A. 16B. 32C. 64D. 8 |
|
Answer» Correct Answer - C Write 1024 as a power of 2 |
|
| 158. |
If log2 = 0.301 then find the number of digits in `2^(1024)`.A. 307B. 308C. 309D. 310 |
|
Answer» Correct Answer - C Let x=`2^(1024)` ` Rightarrow x= log2^(1024)` ` = 1024 log2 = 1024 ( 0.301)` ` Rightarrow logx = 308.22` The characteristic is 308 The number of digits in `2^(1024) " is " 309` . |
|
| 159. |
log(113/(57 x 75)) in the sum and difference of logarithm. |
|
Answer» log(113/(57 x 75)) = log (11)3 – log{(5)7 x (7)5} = 3 log 11 – log (5)7 – log (7)5 = 3 log 11 – 7 log 5 – 5 log 7 |
|
| 160. |
If log4 2 + log4 4 + log4 x + log4 16 = 6, then x is equal to(a) 4 (b) 8 (c) 32 (d) 64 |
|
Answer» (c) 32 Hint. Given, log4 (2 × 4 × \(x\) × 16) = 6 ⇒ log4 (128\(x\)) = 6 ⇒ 128x\(x\) = 46 [Using loga x = n ⇒ x = an] |
|
| 161. |
If log x – log (x – 1) = log 3, then find the value of x. |
|
Answer» log x – log (x – 1) = log 3 ⇒ log(x/(x - 1)) = log 3 On comparing, x/(x - 1) = 3 ⇒ x = 3 (x – 1) ⇒ x = 3x – 3 ⇒ 3x – x = 3 ⇒ 2x = 3 ⇒ x = 3/2 Hence, the value of x is 3/2. |
|
| 162. |
If `log_(x) ((1)/(243))=-5`, then find the value of x. |
| Answer» Correct Answer - 3 | |
| 163. |
log\(_{4\sqrt[3]{4^2}}\) \(\bigg(\frac{1}{1024}\bigg)\) is equal to(a) – 5 (b) – 3 (c) 3 (d) 5 |
|
Answer» (b) - 3 Hint. Since \({4\sqrt[3]{4^2}}\) = 22.(24)\(^{\frac{1}{3}}\)= \(2^{2+\frac{4}{3}}\) = \(2^{\frac{10}{3}}\) and 1024 = 210, therefore, log\(_{4.\sqrt[3]{4^2}}\) \(\bigg(\frac{1}{1024}\bigg)\) = log210/3 (2-10) = \(\frac{-10}{\frac{10}{3}}\) log2 2 = – 3 × 1 = – 3. \(\bigg[\)Using loga xm = \(\frac{m}{n}\) loga x\(\bigg].\) |
|
| 164. |
The number of meaningful solutions of log4(x – 1) = log2 (x – 3) is(a) zero (b) 1 (c) 2 (d) 3 |
|
Answer» (b) 1 log4(x – 1) = log2(x – 3) ⇒ log22 (x − 1) = log2(x – 3) ⇒ \(\frac{1}{2}\) log2 (x–1) = log2 (x– 3) ⇒ log2 (x–1) = 2 log2 (x– 3) \(\big[\)Using logam (bn) = \(\frac{n}{m}\) loga b\(\big]\) ⇒ log2(x – 1) = log2(x – 3)2 ⇒ (x – 1) = (x – 3)2 ⇒ x – 1 = x2 – 6x + 9 ⇒ x2 – 7x + 10 = 0 ⇒ (x – 2) (x – 5) = 0 ⇒ x = 2 or 5 Neglecting x = 2 as log2(x – 3) is defined when x > 2. ⇒ There is only one meaningful solution of the given equation. |
|
| 165. |
Find the value of x, if log2 (5.2x + 1), log4(21–x + 1) and 1 are in A.P.(a) 1 + log52 (b) 1 – log25 (c) log210 (d) log25 + 1 |
|
Answer» (b) 1 – log25 Given, log2 (5.2x + 1), log4 (21– x + 1), 1 are in A.P. ⇒ log2 (5.2x + 1) + 1 = 2 log4 (21 – x + 1) ⇒ log2 (5.2x + 1) + log22 = 2 log22 (21-x + 1) ⇒ log2 (5.2x + 1).2 = 2 x \(\frac12\)log2 (21-x + 1) \(\big(\because\,\text{log}_{a^n}x=\frac{1}{n}\text{log}_ax\big)\) ⇒ log2 (10.2x + 2) = log2 (21-x + 1) ⇒ 10.2x + 2 = 21 – x + 1 ⇒ 10.2x + 2 = \(\frac{2}{2^x}\) + 1 Let 2x = a, then 10. a + 2 = \(\frac{2}{a}\) + 1 ⇒ 10a + 1 = \(\frac{2}{a}\) ⇒ 10 a2 + a – 2 = 0 ⇒ (5 a – 2) (2a + 1) = 0 ⇒ a = \(\frac{2}{5}\) ⇒ 2x = \(\frac{2}{5}\) \(\big(\because\,2^x>0,\text{reject}\,a=-\frac{1}{2}\big)\) ⇒ log 2x = log \(\frac{2}{5}\) ⇒ x log2 2 = log2 2 – log2 5 ⇒ \(x\) = 1 – log2 5. |
|
| 166. |
The value of `log_(16)root(5)(64)` = ______. |
| Answer» Correct Answer - `(3)/(10)` | |
| 167. |
If `log_(4)3` = x, then `log_(root(4)(3))root(4)(64)` = ______. |
| Answer» Correct Answer - `(3)/(x)` | |
| 168. |
If \(2^{log_{10}3\sqrt3}\) = \(3^{k\,log_{10}}\)2 then the value of k is :(a) 1 (b) \(\frac{1}{2}\)(c) 2 (d) \(\frac{3}{2}\) |
|
Answer» (d) \(\frac{3}{2}\) \(2^{log_{10}3\sqrt3}\) = \(3^{k\,log_{10}}\)2 ⇒ \(2^{log_{10}\big(3^{\frac{3}{2}}\big)}\) = \(3^{k\,log_{10}}\)2 ⇒\(2^{log_{2}\big(3^{\frac{3}{2}}\big).log_{10^2}}\) = \(3^{k\,log_{10}}\)2 [Using logax = logbx .logab] ⇒ \(\bigg[2^{log_{2}\big(3^{\frac{3}{2}}\big)}\bigg]^{log_{10^2}}\) = \((3^{k})^{log_{10}}\)2 ⇒ \(2^{log_2\,3^{\frac{3}{2}}}\) = 3k ⇒\(3^{\frac{3}{2}}\) = 3k ⇒ k = \(\frac{3}{2}\) (∵ \(a^{log_a\,x}\) = x) |
|
| 169. |
The value of log√b a \(\text{log}_\sqrt[3]{c}\) b \(\text{log}_\sqrt[4]{c}\) c is:(a) 1 (b) 10 (c) 24 (d) 0 |
|
Answer» (c) 24 Using the formula logan xm = \(\frac{m}{n}\) loga x , we have log√b a \(\text{log}_\sqrt[3]{c}\) b \(\text{log}_\sqrt[4]{c}\) c = \(\text{log}_{b^\frac{1}{2}}\) a \(\text{log}_{c^\frac{1}{3}}\) b \(\text{log}_{a^\frac{1}{4}}\)c = 2 logba × 3 logcb × 4 logac = 24 \(\frac{log\,a}{log\,b}\times\frac{log\,b}{log\,c}\times\frac{log\,c}{log\,a}\) = 24. |
|
| 170. |
Find the value of `root(3)(16.51)` approximately. |
|
Answer» Let P = `root(3)(16.51)` log P = log `(16.51)^(1//3)` `=(1)/(3)log16.51` `=(1)/(3) (1.2178)=0.4059` log P = 0.4059 P = antilog (0.4059) `therefore` P = 2.546. |
|
| 171. |
The value of `(3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125)))`, isA. 3B. 2C. 1D. `(3)/(2)` |
| Answer» Correct Answer - A | |
| 172. |
If log3 [log2 (log3x)] = 1, show that x = 6561. |
|
Answer» log3 [log2(log3 x)] = 1 \(\therefore\) log2 (log3 x) = 31 \(\therefore\) log3 x = 23 \(\therefore\) log3 x = 8 \(\therefore\) x = 38 \(\therefore\) x = 6561 |
|
| 173. |
Prove that : log4[log2{log2 (log3 81)}] = 0 |
|
Answer» We know that logm mn = n logmm and logmm = 1 ∴ logm(m)n = n x logmm = n x 1 = n ⇒ logm(m)n = n …(i) L.H.S. = log4[log2{log2(log3 81)}] = log4[log2 {log2(log334)}] (∵ 81 = 34) = log4[log2 {(log24)} [According to equal (i)] = log4{log2(log222)} (∵ 4 = 22) = log4(log22) [According to equal (i)] = log4(1) (∵ logmm = 1) = 0 = R.H.S. |
|
| 174. |
If `log_(16x) = 2.5`, then x = ______.A. 40B. 256C. 1024D. 1025 |
|
Answer» Correct Answer - C `log_(b) a = n implies a = b^(n)`. |
|
| 175. |
The value of log`((18)/(14))+log((35)/(48))-log((15)/(16))=` |
|
Answer» Correct Answer - A `log a + log b - log c = log ((ab)/(c ))` and log 1 = 0. |
|
| 176. |
If log 5 = 0.699 and `(1000)^(x)` = 5, then find the value of x.A. 0.0699B. 0.0233C. 0.0233D. 10 |
|
Answer» Correct Answer - C Taking logarithms for `10^(3x)=5` and substituting in the given equation we get the value of x. |
|
| 177. |
If n = 1000 !, then the value of \(\frac{1}{log_2\,n}\) + \(\frac{1}{log_3\,n}\) + .... + \(\frac{1}{log_{1000}\,n}\) is(a) 0 (b) 1 (c) 10 (d) 103 |
|
Answer» Given, 1000! = n. Now, \(\frac{1}{log_2\,n}\) + \(\frac{1}{log_3\,n}\) + .... + \(\frac{1}{log_{1000}\,n}\) = logn 2 + logn 3 + .... + logn 1000 \(\bigg[\text{Using}\frac{1}{log_b\,a}= log_a\,b\bigg]\) = logn (2 × 3 × 4 × ... × 1000) = logn (1000!) = logn n = 1. |
|
| 178. |
If `"log"_(30) 3 = x, "log"_(30) 5 =y, "then log"_(30) 8=`A. `3(1-x-y)`B. `x-y +1`C. `1-x-y`D. `2(x-y+1)` |
| Answer» Correct Answer - A | |
| 179. |
if `a^2+4b^2=12ab,` then `log(a+2b)`A. `(1)/(2)("log"a + "log"b - "log"2)`B. `"log"(a)/(2) + "log" (b)/(2) + "log" 2`C. `(1)/(2)("log"a + "log"b + 4 "log"2)`D. `(1)/(2)("log"a - "log"b + 4"log" 2)` |
| Answer» Correct Answer - C | |
| 180. |
The number of solutions of the equation `"log"_(4) (x-1) = "log"_(2) (x-3)`, isA. 3B. 1C. 2D. 0 |
| Answer» Correct Answer - B | |
| 181. |
The number of real solutions of the equation `"log" (-x) = 2"log" (x+1)`, is |
| Answer» Correct Answer - B | |
| 182. |
The number of solutions of the equation `3"log"_(3)|-x| = "log"_(3) x^(2),` is |
|
Answer» Correct Answer - C We have, `3 "log"_(3)|-x| = "log"_(3) x^(2)` `rArr "log"_(3) |-x|^(3) = "log"_(3) x^(2)` `rArr |-x|^(3) = x^(2)` `rArr |x|^(3) = x^(2) rArr |x|^(2) (|x|-1) = 0 rArr x = 0, x = +-1` But, the equation is not meaningful for x = 0. Therefore, `x = +-1` |
|
| 183. |
If `(2.3)^x=(0.23)^y=1000`, then find the value of `1/x-1/y`.A. `(1)/(5)`B. `(1)/(4)`C. `(1)/(3)`D. `(1)/(2)` |
| Answer» Correct Answer - C | |
| 184. |
If `"log"_(a)x, "log"_(b) x, "log"_(c) x` are in A.P., where `x ne 1, "then" c^(2) =0`A. `(ab)^("log"_(a)b)`B. `(ac)^("log"_(a)b)`C. `(ab)^("log"_(b)a)`D. `(ac)^("log"_(b)a)` |
| Answer» Correct Answer - B | |
| 185. |
The number of solutions of `"log"_(2) (x-1) = 2 "log"_(2) (x-3)` isA. 2B. 1C. 6D. 7 |
| Answer» Correct Answer - B | |
| 186. |
If `"log"_(x+2) (x^(3)-3x^(2)-6x +8) =3`, then x equals toA. 1B. 2C. 3D. none of these |
| Answer» Correct Answer - D | |
| 187. |
If `"log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3)`, then x equals toA. 5B. 4C. 3D. 2 |
| Answer» Correct Answer - D | |
| 188. |
If `"log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x`, then x equals toA. `4, 5`B. `-1, 5`C. `4, -1`D. `5, (1)/(3)` |
| Answer» Correct Answer - D | |
| 189. |
If `x^((3)/(2)("log"_(2) x-3)) = (1)/(8)`, then x equals toA. 2B. 3C. 5D. 6 |
| Answer» Correct Answer - A | |
| 190. |
If `"log"_(a) ab = x,` then the value of `"log"_(b)ab,` isA. `(x-1)/(x)`B. `(x)/(x-1)`C. `(x)/(x+1)`D. `(x+1)/(x)` |
| Answer» Correct Answer - B | |
| 191. |
If `"log"_(a) x xx "log"_(5)a = "log"_(x) 5, a ne 1, a gt 0, " then "x =`A. aB. `5, (1)/(5)`C. 1D. none of these |
|
Answer» Correct Answer - B We have, `"log"_(a) x xx "log"_(5)a = "log"_(x)5` `rArr "log"_(5) x= "log"_(x) 5` `rArr "log"_(5)x = (1)/("log"_(5)x)` `rArr ("log"_(5)x)^(2) = 1 rArr "log"_(5)x = +-1 rArr x = 5^(+-1) rArr x = 5, (1)/(5)` |
|
| 192. |
The number of ordered pairs (x, y) satisfying `4("log"_(2) x^(2))^(2) + 1 = 2 "log"_(2)y " and log"_(2)x^(2) ge "log"_(2) y`, isA. 1B. 2C. more than 2 but finiteD. infinite |
|
Answer» Correct Answer - D We have, `4("log"_(2) x)^(2) + 1 = 2"log"_(2) y " and log"_(2) x^(2) ge "log"_(2)y` `rArr 4("log"_(2)x)^(2) + "log"_(2)2 le 2 "log"_(2)x^(2)` `rArr 4("log"_(2) x)^(2) - 4"log"_(2) x + 1 le 0` `rArr (2"log"_(2)x-1)^(2) le 0 rArr "log"_(2) = (1)/(2) rArr x = sqrt(2)` Now, `"log"_(2) x^(2) ge "log"_(2) y` `rArr x^(2) ge y " and " y gt 0 rArr 2 ge y gt 0 rArr 0 lt y le 2` Hence, the ordered pairs are `(sqrt(2), y)`, where `0 lt y lt 2` |
|
| 193. |
If `"log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2)`, then y equalsA. 9B. 18C. 27D. 81 |
| Answer» Correct Answer - A | |
| 194. |
The value of `"log"_(b)a xx "log"_(c) b xx "log"_(a)c`, is |
| Answer» Correct Answer - B | |
| 195. |
`log_(11)3. log_(3) 1331` =_____A. 3B. 11C. 121D. 9 |
|
Answer» Correct Answer - A Apply laws of logarithm. |
|
| 196. |
The solution set of the equation `"log"_(1//3)(2^(x+2)-4^(x)) ge -2`, isA. `(-oo, 2-sqrt(13))`B. `(-oo, 2+sqrt(13))`C. `(-oo, 2)`D. none of these |
|
Answer» Correct Answer - C We have, `"log"_(1//3) (2^(x+2)-4^(x)) ge-2` `rArr (2^(x+2)-4^(x)) le ((1)/(3))^(-2)` `rArr 2^(x+2)-(2^(x))^(2) le 9` `rArr (2^(x))^(2)-4(2^(x))+9 ge 0`, which is true for all ` x in R`. Now, `"log"_(1//3) (2^(x+2)-4^(x))` is defined, if `2^(x+2)-4^(x) gt 0` `rArr 4(2^(x))-(2^(x))^(2) gt 0` `rArr 2^(x) (4-2^(x)) gt 0` `rArr 4-2^(x) gt 0 rArr 2^(x) lt 4 rArr x lt 2 rArr x in (-oo, 2)` Hence the solution set is `(-oo, 2)` |
|
| 197. |
The solution set of the equation `"log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2,` isA. `{2^(-sqrt(2)), 2^(sqrt(2))}`B. `{(1)/(2), 2}`C. `{(1)/(4), 4}`D. none of these |
|
Answer» Correct Answer - A We have, `"log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x)2` `rArr (1)/("log"_(2)x) xx (1)/("log"_(2)2x) = (1)/("log"_(2)4x), x ne 1, x gt 0` `rArr (1)/("log"_(2)x) xx (1)/((1+"log"_(2)x)) = (1)/((2+"log"_(2)x))` `rArr ("log"_(2)x + 2) = ("log"_(2)x)(1+"log"_(2)x)` `rArr ("log"_(2)x)^(2) = 2 rArr "log"_(2) x = +- sqrt(2) rArr x = 2^(sqrt(2)), 2^(-sqrt(2))` |
|
| 198. |
The set of real values of x for which `2^("log"_(sqrt(2))(x-1)) gt x+ 5,` isA. `(-oo, -1) cup (4, oo)`B. `(4, oo)`C. `(-1, 4)`D. none of these |
|
Answer» Correct Answer - B We have , `2^("log"_(sqrt(2))(x-1)) gt x+ 5` `rArr 2^(2"log"2 (x-1)) gt x+ 5` `rArr (x-1)^(2) gt x+ 5` `rArr x^(2) -3x-4 gt 0` `rArr (x-4)(x+1) gt 0` `rArr x lt -1 "or" x gt 4` `rArr x gt 4 " " [because "log"_(sqrt(2))(x-1) " is defined for " (x-1) gt 0]` `rArr x in (4, oo)` |
|
| 199. |
The set of real values of x satisfying `"log"_(0.2) ((x+2)/(x)) le 1`, isA. `(-oo, -5//2] cup (0, oo)`B. `[5//2, oo)`C. `(-oo, -2) cup (0, oo)`D. none of these |
|
Answer» Correct Answer - A Note that `"log"_(0.2) ((x+2)/(x))` is meaningful, if `(x+2)/(x) gt0 rArr x in (-oo, -2) cup (0, oo)` Now, `"log"_(0.2) ((x+2)/(x)) le 1` `rArr (x+2)/(x) ge (0.2)^(-1)` `rArr (x+2)/(x) ge (1)/(5)` `rArr (x+2)/(x) - (1)/(5) ge 0` `rArr (4x + 10)/(5x) ge 0 rArr (2x+5)/(x) ge 0 rArr x in (-oo, -5//2] cup (0, oo)` |
|
| 200. |
Statement-1: The solution set of the equation `"log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}.` Statement-2 : `"log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
|
Answer» Correct Answer - A We have, `"log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x)2` `rArr (1)/("log"_(2)x) xx (1)/("log"_(2)2x) = (1)/("log"_(2)4x)` `rArr (1)/("log"_(2)x(1+"log"_(2)x)) = (1)/((2+"log"_(2)x))` `rArr ("log"_(2)x)^(2) = 2 rArr "log"_(2) x = +- sqrt(2) rArr x = 2^(sqrt(2)), 2^(-sqrt(2))` Hence, the solution set is `{2^(-sqrt(2)), 2^(sqrt(2))}` |
|