InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
If `log_(10)2` = 0.3010 , then `log_(10) 2000` = |
| Answer» Correct Answer - `3.3010` | |
| 52. |
If ` log_(10)2= 0.3010`, then the number of digits in `16^(12)` isA. 14B. 15C. 13D. 16 |
|
Answer» Correct Answer - B Find the value of `16^(12)` by applying logarithm. |
|
| 53. |
Given `log_(10)x = y` if the characteristic of y is 10, then the number of digits to the left the decimal point in x is ______ |
| Answer» Correct Answer - 11 | |
| 54. |
`log_(x)x xx log_(y)y xx log_(z)z` = ______ |
| Answer» Correct Answer - 1 | |
| 55. |
The value of x satisfying log2(3x – 2) = \(\text{log}_{\frac{1}{2}}\) x is(a) – 1 (b) − \(\frac{1}{3}\)(c) \(\frac{1}{3}\)(d) 1 |
|
Answer» (d) 1 Given, log2(3x-2) = \(\text{log}_{\frac{1}{2}}\)x ⇒ log2(3x-2) = log2-1 x ⇒ log2(3x-2) = \(\frac{1}{-1}\) log2 x \(\bigg[\)Using logan x = \(\frac{1}{n}\) loga x\(\bigg]\) ⇒ log2 (3x – 2) = (– 1) log2 x = log2 x– 1 [Using n loga x = loga xn] ⇒ (3x – 2) = x– 1 = \(\frac{1}{x}\) ⇒ 3x2 – 2x – 1 = 0 ⇒ (3x + 1) (x – 1) = 0 ⇒ \(-\frac{1}{3}\) x = or 1 ⇒ x = 1, since log2 (3x – 2) is not defined when x = − \(\frac{1}{3}\). |
|
| 56. |
If log72 = λ, then the value of log49(28) is(a) \(\frac{1}{2}\) (2λ + 1)(b) (2λ + 1) (c) 2 (2λ + 1) (d) \(\frac{3}{2}\) (2λ + 1) |
|
Answer» (a) \(\frac{1}{2}\) (2λ + 1) log49(28) = log72 (7 x 22) = log72 7 + log72 22 = \(\frac{1}{2}\) log7 7 + \(\frac{2}{2}\) log7 2 \(\bigg[\)Using logan \(x\) = \(\frac{1}{n}\) loga x, logan (xm) = \(\frac{m}{n}\) loga x\(\bigg]\) = \(\frac{1}{2}\) + λ = \(\frac{1}{2}\)(2λ + 1). |
|
| 57. |
\(\text{log}_{\sqrt3}\) \(\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}} =\)(a) \(\frac{31}{32}\)(b) \(\frac{15}{16}\)(c) \(\frac{7}{16}\)(d) \(\frac{15}{8}\) |
|
Answer» (d) \(\frac{15}{8}\) Given expression = \(\text{log}_{\sqrt3}\,3^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}\) = \(\text{log}_3{^{\frac{1}{2}}}\) \(3^{\frac{15}{16}}\) = \(\frac{15}{16}\) x 2 log3 3 = \(\frac{15}{8}\). |
|
| 58. |
If log√3 5 = a and log√3 2 = b , then log√3 300 is equal to(a) a + b + 1 (b) 2(a + b + 1) (c) 2(a + b + 2) (d) (a + b + 4) |
|
Answer» (b) 2(a + b + 1) Hint. log√3 300 = log√3 \(\big[\)(√3)2.102\(\big]\) = 2 log√3 √3 + 2 log√3 10 = 2 + 2 log√3 (2 x 5) |
|
| 59. |
The value of `log_(x^(n))y^(m)` isA. `m/n`B. mnC. `m^(n)`D. `n^(m)` |
|
Answer» Correct Answer - A Apply laws of logarithm. |
|
| 60. |
`log_(y)x = 2` then `alog_(a) (log_(x)y)`= ______A. -2B. 4C. `1/2`D. `(-1)/4` |
|
Answer» Correct Answer - C Apply laws of logarithm. |
|
| 61. |
If `3^x = 4^(x-1)` then x can not be equal toA. `(2"log"_(3)2)/(2"log"_(3)2-1)`B. `(2)/(2-"log"_(2)3)`C. `(1)/(1-"log"_(4)3)`D. `(2"log"_(2)3)/(2"log"_(2) 3-1)` |
|
Answer» Correct Answer - D We have, `3^(x) = 4^(x-1)` `rArr x "log"_(10) 3 = (x-1)"log"_(10)4` `rArr x = (x-1) "log"_(3)4` `rArr x = 2(x-1) "log"_(3)2` `rArr x (2"log"_(3) 2-1) = 2"log"_(3)2` `rArr x = (2"log"_(3)2)/(2"log"_(3) 2-1)` Now, `x = (2"log"_(3)2)/(2"log"_(3) 2-1)` `rArr x = (2)/(2-(1)/("log"_(3)2)) = (2)/(2-"log"_(2)3)` `rArr x = (1)/(1-(1)/(2) "log"_(2)3) = (1)/(1-"log"_(2^(2))3) = (1)/(1-"log"_(4)3)` Hence, option (a), (b) and (c) are correct and option (d) is not correct. |
|
| 62. |
Simplify: i. \(\bar{3}\) .5472 - \(\bar{2}\) .8371 + 1.4581ii. 1.2489 - \(\bar{1}\) .0891 + \(\bar{2}\) .8897. |
|
Answer» i. \(\bar{3}\) .5472 - \(\bar{2}\) .8371 + 1.4581 =(\(\bar{3}\).5472 + 1.4581)- \(\bar{2}\) .8371 = \(\bar1\).0053 - \(\bar2\) .8371 = 0.1682 ii. 1.2489 - \(\bar1\).0891 + \(\bar2\) .8897 = (1.2489 + \(\bar2\) .8897) - \(\bar1\).0891 = 0.1386 - \(\bar1\).0891 = 1.0495 |
|
| 63. |
`log (a+b) + log (a-b) - log (a^(2) -b^(2))=______ |
|
Answer» Correct Answer - A (i) Use the identity log m + log n - log n= log p = log mn/p (ii) Use logx+ logy = log xy and log p - log q= log (p/q) |
|
| 64. |
`log_(2)log_(2)log_(5) 125 `= _______A. 4B. 8C. 0.664D. 1 |
|
Answer» Answer is (C) 0.664 log2 log2 log5 125 = log2 log2 log5 53 = log2 log2 3 log5 5 (∵ logb an = n logb a) = log2 log2 3 (∵ log5 5 = 1) = log2 (log 3/log 2) (∵ loga b = log b/log a) = \(\frac{log(\frac{log\,3}{log\,2})}{log\,2}\) \(\simeq\) 0.66444870....... Correct Answer - CApply laws of logarithm. |
|
| 65. |
`log_(y(x)) xx log_(x)y` =________.A. `log_(a)y`B. `log_(x)a`C. `log_(y)a`D. `log_(a)x` |
|
Answer» Correct Answer - B Apply laws of logarithm. |
|
| 66. |
If ` log_(x)y= (log_(a)y)/(P) ` then the value of P isA. `log_(y)x`B. `log_(x)a`C. `log_(a)x`D. `log_(a)y` |
|
Answer» Correct Answer - C (i) Recall the laws of logarithm. (ii) p = `(log a^(y))/(log x^(y))` , Use `log p^(q) = q log p`. |
|
| 67. |
if `x^(3) +y^(3)=-3xy (x+y).` the `log(x+y)^(3)` = _______ |
|
Answer» Correct Answer - D Find `(x +y)^(3)` |
|
| 68. |
`log(a^(3) +b^(3)) -log(a+b)-log (a^(2) -ab + b^(2))` =_______A. `a^(3) -b^(3)`B. 0C. log 1D. Both (b) and © |
|
Answer» Correct Answer - D (i) logx - log y - logz = log `(x/(yx))` (ii) log M - log N= `log(M/N)and long M + log N = log MN`. |
|
| 69. |
`log[(root3(x^(2))xxy)/(root5(z^(2)))]`=_______A. `logx^(2//3) - log z^(2//5) + log y`B. `log x^(3//2)-logy - log z^(5//2)`C. `log x^(2//3)-log y + log z^(2//5)`D. None of these |
|
Answer» Correct Answer - A (i) Use the identities log mn= log m + log n , `log m/n ` = log m - log n and `log x^(n) = n log x`. `((root3(x^(2)).y)/(root5(z^(2))))log(((x^(2//3).y)/(z^(2//5))))` (iii) Use `log (a/b) = log a - log b and log ab = log a + 10 log b ` simplify. |
|
| 70. |
Find the value of log 6 + 2 log 5 + log 4 – log 3 – log 2. |
|
Answer» log 6 + 2 log 5 + log 4 – log 3 – log 2 = (log 6 + log 52 + log 4) – (log 3 + log 2) = log (6 x 52 x 4) – log 3 x 2 = log((6 x 52 x 4)/(3x 2)) = log (52 x 4) = log (25 x 4) = log 100 = 2 Hence, log 6 + 2 log 5 + log 4 – log 3 – log 2 = 2 |
|
| 71. |
Prove that: log10 tan 1°. log10 tan 2°……. log10 tan 89° = 0 |
|
Answer» L.H.S. = log10 tan 1°. log10 tan 2°…. log10 tan 45° log10 tan 89° = log10 tan 1°. log10 tan 2°…. log10 (1)…. log10 tan 89° = log10tan 1°- log10 tan 2°…. x 0 x…. log10 tan 89° = 0 = R.H.S. Hence Proved. |
|
| 72. |
Number log27 is :(A) Integer(B) Rational(C) Irrational(D) Prime |
|
Answer» Answer is (C) Irrational log2 7 = x 7 = 2x Taking log on both sides, log 7 = log 2x ⇒ x = log7/log2 = (0.8451)/(0.3010) = 2.8076 = irrational number |
|
| 73. |
log√2x = 4 then value of x will be :(A) 4√2(B) 1/4(C) 4(D) 4 x √2 |
|
Answer» Answer is (C) 4 ∵ loga n = x ∴ ax = n Given log√2x= 4 Then (√2)4 = x ⇒ x = (√2)4 = (21/2 )4 = 22 = 4 |
|
| 74. |
logx 243 = 2.5, then value of x will be :(A) 9(B) 3(C) 1(D) 81 |
|
Answer» Answer is (A) 9 ∵ logan = x ⇒ ax = n Similarly logx 243 = 2.5 ⇒ 243 = x2.5 ⇒ x5/2 = 243 = (3)5 Squaring on both sides, (x5/2)2 = {(3)5}2 ⇒ x5/2 = (32)2 On comparing, x = 32 = 9 |
|
| 75. |
The value of log (1 + 2 x 3):(A) 2 log 3(B) log 1.log 2.log 3(C) log1 + log2 + log3(D) log 7 |
|
Answer» Answer is (D) log 7 log (1 + 2 x 3) = log (1 + 6) = log 7 |
|
| 76. |
If a < 0 then value of loga0 is :(A) – ∞(B) ∞(C) 0(D) 1 |
|
Answer» Answer is (B) ∞ log 0 = ∞ If a < 0 |
|
| 77. |
The value of log (m + n) is :(A) log m + log n(B) log mn(C) log m x log n(D) none of these |
|
Answer» Answer is (D) none of these log m + log n = log mn ≠ log (m + n) log mn = log m + log n ≠ log (m + n) log m x log n ≠ log (m + n) |
|
| 78. |
If a > 1 then value of loga 0 is :(A) – ∞(B) ∞(C) 0(D) 1 |
|
Answer» Answer is (A) – ∞ loga0 = – ∞ If a > 1 |
|
| 79. |
If `log(x-3)+log(x+2)=log(x^(2)+x-6)`, then the real value of x, which satisfies the above equation isA. is any value of xB. is any value of x except x = 0C. is any values of x except x = 3D. Does not exist. |
|
Answer» Correct Answer - D log a + log b = log ab . |
|
| 80. |
If `log_((sqrt(bsqrt(bsqrt(bsqrt(b)))))(sqrt(asqrt(asqrt(asqrt(asqrt(a))))))=x log_(b) a`, then x =A. `(32)/(16)`B. `(31)/(15)`C. `(31)/(30)`D. `(1)/(2)` |
|
Answer» Correct Answer - C (i) Use, `sqrt(asqrt(asqrt(a...n " terms"))) = a^((2^(n-1//2^(n)))` and then `log_(b^(n))a^(m) = (m)/(n) log_(b)a` and simplify LHS. (ii) Compare LHS and RHS and find the value of x. |
|
| 81. |
find the value of `log_(sqrt8)16` |
| Answer» Correct Answer - `8/3` | |
| 82. |
Find the value of 7 ` log(16/15) + 5 log (25/24) + 3 log (81/80)`.A. `"log"2`B. `"log"3`C. `"log"5`D. none of these |
| Answer» Correct Answer - A | |
| 83. |
Log√x y :- |
|
Answer» \(\text{log}_{\sqrt{x}}y = \frac{log\,y}{log\,\sqrt{x}}\) \(=\frac{log\,y}{\frac{1}{2}^{\text{log x}}}\) \(=\frac{2\,log\,y}{log\,x}\) |
|
| 84. |
If `log_(10)4+log_(10)m = 2`, then m = ______. |
| Answer» Correct Answer - 25 | |
| 85. |
If `log_(xyz)x + log_(xyz)y + log_(xyz)z= log_(10)p`, then p = ______. |
| Answer» Correct Answer - 10 | |
| 86. |
If a, b, c are positive real numbers, then `a^("log"b-"log"c) xx b^("log"c-"log"a) xx c^("log"a - "log"b)` |
|
Answer» Correct Answer - B We have, `"log" {a^("log"b-"log"c) xx b^("log"c - "log" a) xx c^("log"a-"log"b)}` `= ("log" b-"log"c)"log" a + ("log"c-"log"a)"log"b + ("log"a-"log"b)"log"c ` = 0 `a^("log"b-"log"c) xx b^("log"c - "log" a) xx c^("log"a-"log"b)=1` |
|
| 87. |
If a and b are positive real numbers other than unity, then the least value of `|"log"_(b) a + "log"_(a) b|`, is |
|
Answer» Correct Answer - C We have, `|"log"_(b) a + "log"_(a)b|` `=|"log"_(b)a +(1)/("log"_(b)a)| = |x + (1)/(x)|, "where " x = "log"_(b)a,` We know that `x+ (1)/(x) ge 2 " for all" x gt 0 " and ", x + (1)/(x) le -2 " for all" x lt 0` `therefore |x + (1)/(x)| ge 2 " for all" x ne0` `therefore |"log"_(b)a + "log"_(a)b| ge 2` Hence, the least value of `|"log"_(b)a + "log"_(a)b|` is 2. |
|
| 88. |
If a, b, c are positive real numbers then `(1)/("log"_(a)bc_(+1)) + (1)/("log"_(b)ca_(+1)) +(1)/("log"_(c)ab_(+1))=` |
|
Answer» Correct Answer - B We have, `(1)/("log"_(a)bc_(+1)) + (1)/("log"_(b)ca_(+1)) +(1)/("log"_(c)ab_(+1))` `=(1)/("log"_(a)bc + "log"_(a)a) + (1)/("log"_(b)ca + "log"_(b)b) + (1)/("log"_(c)ab + "log"_(c)c)` `=(1)/("log"_(a)abc) +(1)/("log"_(b)abc) + (1)/("log"_(c)abc)` ` = "log"_(abc) a + "log"_(abc) b + "log"_(abc) c = "log"_(abc)abc = 1` |
|
| 89. |
If `a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4)` then x=A. `(4b)/(c+a-b)`B. `(4c)/(a+b-c)`C. `(4b)/(c-a-b)`D. `(4a)/(a+b-c)` |
|
Answer» Correct Answer - B We have, `6^(x) = 7^(x+4)` `rArr x "log" 6 = (x+4)"log" 7` `rArr x = (4"log"7)/("log"6-"log"7) = (4"log"7)/("log"2 + "log"3-"log"7) = (4c)/(a+b-c)` |
|
| 90. |
If`y=a^(1/(1-(log)_a x))a n dz=a^(1/(1-(log)_a y)),t h e np rov et h a tx=a^(1/(1-(log)_a z))`A. `(1)/(a^(1-"log"az))`B. `(1)/(1-"log"_(a)z)`C. `(1)/(1+"log"_(z)a)`D. `(1)/(1-"log"_(z)a)` |
|
Answer» Correct Answer - B We have, `y= a^((1)/(1-"log"_(a)z)) " and " z= a^((1)/(1-"log"_(a)y))` `rArr "log"_(a)y= (1)/(1-"log"_(a)x) " and log"_(a) z = (1)/(1-"log"_(a)y)` `rArr "log"_(a)x= ("log"_(a)y-1)/("log"_(a)y) " and "1-"log"_(a)z = ("log"_(a)y)/("log"_(a)y-1)` `rArr "log"_(a)x= (1)/(1-"log"_(a)z)` `rArr k = (1)/(1-"log"_(a)z) " " [because x = a^(k) therefore "log"_(a)x = k]` |
|
| 91. |
If x =`log_3(5)` and y =`log_17( 25)`, which one of the following is correct?A. ` x lt y`B. `x = y`C. `x gt y`D. none of these |
| Answer» Correct Answer - C | |
| 92. |
If pqr = 1 then find the value of `log_(rq)p+log_(rp)q+log_(pq)r`. |
|
Answer» Correct Answer - C (i) Use `log_(a) a = 1`. (ii) Replace `rq = p^(-1), rp = q^(-1)` and `pq = r^(-1)` in the given expression. (iii) Simplify and eliminate logarithms. |
|
| 93. |
If `(logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2),` then `x^(a-b)*y^(b-c)*z^(c-a)=` |
| Answer» Correct Answer - C | |
| 94. |
Statement-1: `0 lt x lt y rArr "log"_(a) x gt "log"_(a) y,` where ` a gt 1` Statement-2: `"When" a gt 1, "log"_(a) x` is an increasing function.A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
|
Answer» Correct Answer - D When `a gt 1, "log"_(a)x` is an increasing function. `therefore x lt y rArr "log"_(a) x lt "log"_(a)y` |
|
| 95. |
Statement -1: `0 lt x lt y rArr "log"_(a) x gt "log"_(a) y,"where" 0 lt a lt 1` Statement-2: `"log"_(a) x` is a decreasing function when `0 lt a lt 1.`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
|
Answer» Correct Answer - A As `"log"_(a) x` is a decreasing function for all` a in (0, 1).` `therefore x lt y rArr "log"_(a) x gt "log"_(a) y` |
|
| 96. |
Statement-1: `"log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x` Statement-2: `x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
|
Answer» Correct Answer - B When `x gt 1`, we have `"log"_(x) 10 gt "log"_(x) pi gt "log"_(x) e gt "log"_(x) 2 " " [because gt pi gt e gt 2]` `rArr (1)/("log"_(10)x) gt (1)/("log"_(pi) x) gt (1)/("log"_(e) x) gt (1)/("log"_(2)x)` `rArr "log"_(10) x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x` |
|
| 97. |
Find the value of logxx + logxx3 + logxx5 + ........ + logxx(2n-1). |
|
Answer» logxx + logxx3 + logxx5 + logxx5 + ........... + logxx2n-1 = logx x + 3 logx x + ..........+ (2n - 1 ) logx x = 1 + 3 + 5 + .......... + (2n - 1) = \(\frac{n}{2}\) [1+(2n - 1)] = n2 [ Using logx x = 1 and for A.P.Sn = \(\frac{n}{2}\) (a+l)] |
|
| 98. |
If `x_1,x_2,x_3,...` are positive numbers in G.P then `logx_n, logx_(n+1), logx_(n+2)` are inA. A.PB. G.PC. H.PD. none of these |
|
Answer» Correct Answer - A We have, `x_(n), x_(n+1), x_(n+2)` in G.P. `rArr x_(n+1)^(2) = x_(n)x_(n+2)` `rArr 2"log"x_(n+1) = "log"x_(n) + "log"x_(n+2)` `rArr "log"x_(n), "log"x_(n+1), "log"x_(n+2)` are in A.P. |
|
| 99. |
If `log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x`, then find the value of a + b.A. 6B. -6C. 0D. -3 |
|
Answer» Correct Answer - C Use log a - log b = `log.(a)/(b)` and log a + log b = log ab. |
|
| 100. |
If `log_(9)[(log_(8)x)]lt0`, then x belongs to ______.A. (1, 8)B. `(-oo, 8)`C. `(8, oo)`D. (8, 1) |
|
Answer» Correct Answer - A Given, `log_(9)(log_(8) x) lt 0` `log_(8) x lt 9^(@)` `log_(7) x lt 1` `x lt 7^(1)` There force `x in` (1, 7). |
|