InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
If `log_(10) 11 = p`, then `log_(10)((1)/(110))` = ______.A. `(1 + p)^(-1)`B. `.^(-)(1+p)`C. 1-pD. `(1)/(10p)` |
|
Answer» Correct Answer - B `log.(1)/(4) = log a^(-1)`, log mn = log m + log n and `log_(a) a = 1`. |
|
| 202. |
The solution set of the equation log (x + 6) - log 8 = log 9 - log (x + 7) is ______.A. {-15, 2}B. {2}C. {-15, 0, 2}D. {0, 2} |
|
Answer» Correct Answer - B `log a - log b = log ((a)/(b))`. |
|
| 203. |
The value of `"log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2`, isA. 2B. 3C. 5D. 7 |
| Answer» Correct Answer - C | |
| 204. |
If x= `log_(5)3 and y = log_(5)8 ` then ` log_(5)24` in terms of x,y is equal to _______ |
| Answer» Correct Answer - x+y | |
| 205. |
If `p inR` and `q = log_(x) (p+sqrt(p^(2)+1))`, then find the value of p in terms of x and q.A. `(x^(q)+x^(-q))/(2)`B. `(x^(q)-x^(-q))/(2)`C. `x^(q) + x^(-q)`D. `x^(q) - x^(-q)` |
|
Answer» Given, `p inR` and `q = log_(x) (p+sqrt(p^(2)+1))x^(q)` `=p+sqrt(p^(2)+1)` `implies x^(-q) = (1)/(x^(q)) = (1)/(p+sqrt(p^(2)+1))` `=(p-sqrt(p^(2)+1))/((p+sqrt(p^(2)+1))(p-sqrt(p^(2)+1)))` `=(p-sqrt(p^(2)+1))/(p^(2)-(p^(2)+1))=-p+sqrt(p^(2)+1)` `thereforex^(q)-x^(-q)=p+sqrt(p^(2)+1)-(sqrt(p^(2)+1)-p)` `x^(q) - x^(-q) = 2p` `(x^(q) - x^(-q))/(2) = p`. |
|
| 206. |
If `log_(40) 4 = x` and `log_(40) 5 = y`, then express `log_(40)32` in terms of x and y.A. 5(1 + x + y)B. 5(1 - x + y)C. 5(1 - x - y)D. 5(1 + x - y) |
|
Answer» Correct Answer - C Express `log_(40) 32` in terms of x and y. |
|
| 207. |
Without using tables, find the value of `4log_(10)5+5log_(10)2-(1)/(2)log_(10)4`. |
| Answer» Correct Answer - 4 | |
| 208. |
Solve: `x^(log_(4)3)+3^(log_(4)x)=18`. |
| Answer» Correct Answer - 16 | |
| 209. |
Simplify `(1)/(log_(2)log_(2)log_(2)256)`. |
| Answer» Correct Answer - `log_(3)2` | |
| 210. |
If `log_(9)m = 3.5` and `log_(2) n = 7`, then the value of m in terms of n is ______.A. `nsqrt(n)`B. 2nC. `n^(2)`D. `root(3)(n)` |
|
Answer» Correct Answer - A Given, `log+(8) m = 3.5 log_(2) n = 7` `implies m = 8^(3.5) " (1)"` `"and "n = 2^(7) " (2)"` `m = 8^(35//10)` `m = (2^(3))^(7//2)` `=(2^(7))^(3//2)` `=n^(3//2)" " (because " from Eq. (1))"` `implies m = nsqrt(n)`. |
|
| 211. |
If `(1)/(log_(x)10)=(3)/(log_(p)10)-3`, then x = ______.A. `100p^(2)`B. `(p^(2))/(100)`C. `1000p^(3)`D. `(p^(3))/(1000)` |
|
Answer» Correct Answer - D Given, `(1)/(log_(x)10) = (3)/(log_(p)10) - 3` `log_(10)x = 3 log_(10) p - 3 (therefore log_(b) a = (1)/(log_(a)b))` `log_(10)x = 3(log_(10) p - 1) = 3 (log_(10) p - log_(10) 10)` `log_(10) x = log_(10) ((p)/(10))^(3)` `x = ((p)/(10))^(3) = (p^(3))/(1000)`. |
|
| 212. |
If x = logb a, y = logc b, z = loga c, then xyz is(a) 0 (b) 1 (c) abc (d) a + b + c |
|
Answer» (b) 1 Hint. x = logba ⇒ x = \(\frac{log_e\,a}{log_e\,b}\), y = logc b ⇒ y = \(\frac{log_e\,b}{log_e\,c}\), z = logac ⇒ z = \(\frac{log_e\,c}{log_e\,a}\). |
|
| 213. |
If log32, log3 (2x – 5) and log3 (2x – \(\frac{7}{2}\)) are in A.P., then what is the value of x ? |
|
Answer» Given, log32, log3(2x – 5) and log3(2x – \(\frac{7}{2}\)) are in A.P. ⇒ 2[log3(2x-5)] = log3 2 + log3 \(\big(2^x-\frac{7}{2}\big)\) ⇒ log3 (2x – 5)2 = log3 [2 × \(\big(2^x-\frac{7}{2}\big)\)] ⇒ (2x – 5)2 = (2x + 1 – 7) ⇒ 22x – 10.2x + 25 = 2.2x – 7 ⇒ 22x – 12.2x + 32 = 0 ⇒ y2 – 12y + 32 = 0 [Let y = 2x ] ⇒ (y – 8) (y – 4) = 0 ⇒ y = 8 or 4 ⇒ 2x = 8 or 2x = 4 ⇒ x = 3 or 2 |
|
| 214. |
`loga/(y-z)=logb/(z-x)=logc/(x-y)` then value of `abc=`A. `a^(x)b^(y)c^(z)`B. `a^(y+z)b^(z+x)c^(x+y)`C. 1D. All of these |
|
Answer» Correct Answer - D (i) Equate the given ratios to k and get the values of loga, logb and logc. (ii) Add log a, log b and log c and solve for abc. |
|
| 215. |
If (x4 – 2x2y2 + y2)a –1 = (x – y)2a (x + y)–2, then the value of a is(a) x2 – y2 (b) log (xy) (c) \(\frac{log(x-y)}{log(x+y)}\)(d) log (x – y) |
|
Answer» (c) \(\frac{log(x-y)}{log(x+y)}\) Given, (x4 – 2x2y2 + y2)a –1 = (x – y)2a (x + y)–2 ⇒ [(x2 – y2)2]a –1 = (x – y)2a (x + y)–2 ⇒ (x – y)2(a – 1) (x + y)2(a –1) = (x – y)2a (x + y)–2 ⇒ \(\frac{(x-y)^{2(a-1)}}{(x-y)^{2a}}\) . \(\frac{(x+y)^{2(a-1)}}{(x+y)^{-2}}\) = 1 ⇒ (x-y)-2 (x+y)2a = 1 ⇒ log [(x – y)–2 (x + y)2a] = log 1 ⇒ –2 log (x – y) + 2a log(x + y) = log 1 ⇒ 2a log (x + y) = 2 log (x – y) ⇒ a = \(\frac{log(x-y)}{log(x+y)}\). [Since log 1 = 0] |
|
| 216. |
Given, loga\(x\) = \(\frac{1}{α}\), logb\(x\) = \(\frac{1}{β}\), logc\(x\) = \(\frac{1}{γ}\), then logabc\(x\) equals :(a) αβγ (b) \(\frac{1}{αβγ}\)(c) α + β + γ(d) \(\frac{1}{α + β+γ}\) |
|
Answer» (d) \(\frac{1}{α + β+γ}\) α = \(\frac{1}{log_ax}\), β = \(\frac{1}{log_bx}\), γ = \(\frac{1}{log_cx}\) ⇒ α = logxa, β = logxb, γ = logxc ⇒ α + β + γ = logxa + logxb + logxc = logx(abc) ⇒ \(\frac{1}{α + β+γ}\) = \(\frac{1}{log_x(abc)}\) = logabcx. |
|
| 217. |
If a, b, c be the pth, qth, rth terms of a GP, then the value of (q – r) log a + (r – p) log b + (p – q) log c is : (a) 0 (b) 1 (c) –1 (d) pqr |
|
Answer» (a) 0 Let h be the first term and k be the common ratio of a GP, then a = hkp – 1, b = hkq – 1, c = hkr – 1 ∴ (q – r) log a + (r – p) log b + (p – q) log c = log [hkp –1]q – r + log [hkq –1]r – p + log[hkr –1]p – q = log(hq – r + r – p + p – q) (kp – 1)q – r (kq –1)r – p (kr –1)p – q = log(ho ko) = log 1 = 0. |
|
| 218. |
If logxa, ax/2 and logbx are in GP, then x is(a) loga (logba) (b) loga (loge a) + loga(loge b) (c) – loga (logab) (d) loga (loge b) – loga (loge a) |
|
Answer» (a) loga (logba) If logx a, ax/2 and logbx are in GP, then (ax/2)2 = (logbx) × (logx a) ⇒ ax = logba ⇒ log ax = log (logba) ⇒ x log a = log (logba) ⇒ x loga a = loga (logba) ⇒ x = loga (logba). |
|
| 219. |
If p, q, r are in GP and `a^(p) = b^(q) = c^(y)`, then which of the following is true?A. `log_(c )b = log_(a)c`B. `log_(c )b = log_(b)a`C. `log_(c )a = log_(b)c`D. None of these |
|
Answer» Correct Answer - B Let ap = bq = cr = k Then `p = log_(a) k, q = log_(b) k and r = log_(c) k` ltbr. Also given `q^(2) = pr` `(log_(b) k)^(2) = (log_(a) k) (log_(c) k)` `(log_(b) k) (log_(b) k)= (log_(a) k) (log_(c) k)` `(log_(b) k)/(log_(a) k) = (log_(c )k)/(log_(b) k)` `log_(b) a = log_(c ) b`. |
|
| 220. |
If 1/logax + 1/logcx = 2/logbx, then find relation among a,b and c. |
|
Answer» According to question, ⇒ 1/logax + 1/logcx = 2/logbx ⇒ logxa + logxc= 2 logxb ⇒ logx(ac) = logx(b)2 On comparing, ac = b2 or b2 = ac Hence, a, b, c are in G.P. and G.M. between a and c is b. |
|
| 221. |
If `a^(x), b^(x)` and `c^(x)` are in GP, then which of the following is/are true? (A) a, b, c are in GP (B) log a, log b, log c are in GP (C ) log a, log b, loc c are in AP (D) a, b, c are in APA. A and BB. A and CC. B and DD. Only A |
|
Answer» Correct Answer - B (i) Verify from options. (ii) Use if a, b and c are in GP, then `b^(2) = ac`. (iii) Substitute `a^(x), b^(x)` and `c^(x)` in the above equation and simplify. (iv) Apply logarithm for the above result and proceed. |
|
| 222. |
If logxa, \(a^{\frac{x}{2}}\) and logbx are in GP, then x is equal to :(a) loga (logba) (b) loga (loge a) – loga (loge b) (c) –loga (logab) (d) both (a) and (b) |
|
Answer» (b) loga (loge a) – loga (loge b) logxa, \(a^{\frac{x}{2}}\), logbx are in GP ⇒ \(\big[a^{\frac{x}{2}}\big]^2\) = logxa . logbx ⇒ ax = \(\frac{\text{log}\,a}{\text{log}\,x}.\frac{\text{log}\,x}{\text{log}\,b}\) ⇒ ax = \(\frac{\text{log}\,a}{\text{log}\,b} = \text{log}_b\,a\) ⇒ x = loga (logba) = log a = \(\frac{\text{log}_e\,a}{\text{log}_e\,b}\) = loga (loge a) – loga (loge b) |
|
| 223. |
If `log((a+b)/(6))=(1)/(2)(loga+logb)`, then `(a)/(b) + (b)/(a) `= ______.A. 30B. 31C. 32D. 34 |
|
Answer» Correct Answer - D (i) Use, log a + log b = log ab. Remove the logarithms on both sides and evaluate `(a + b)^(2)`. (ii) Use m (log a + log b) = log `(ab)^(m)`. (iii) Eliminate logarithms on both sides and obtain equations in terms of a and b. (iv) Divide both sides of the equation with ab and obtain the required answer. |
|
| 224. |
The equation \(x^{\frac{3}{4}(\text{log}_2\,x)^2+(\text{log}_2\,x)-\frac{5}{4}}\) = √2 has(a) at least one real solution (b) exactly one irrational solution (c) exactly three real solutions (d) all of the above. |
|
Answer» (c) exactly three real solutions Given, \(x^{\frac{3}{4}(\text{log}_2\,x)^2}\) \(+\text{log}_2\,x-\frac{5}{4}\) = √2 Taking log to the base 2 of both the sides, we have \(\bigg[\frac{3}{4}^{(\text{log}_2\,x)^2+(\text{log}_2)-\frac{5}{4}}\bigg]\) log2 x = log2 √2 = log2 \(2^{\frac{1}{2}}\) = \(\frac{1}{2}\)log2 2 = \(\frac{1}{2}\) Let us assume log2x = a. Then, \(\bigg(\frac{3}{4}a^2+a-\frac{5}{4}\bigg)a\) = \(\frac{1}{2}\) ⇒ 3a3 + 4a2 - 5a = 2 ⇒ 3a3 + 4a2 – 5a – 2 = 0. Using hit and trial method check for a = 1. f(a) = 3a3 + 4a2 – 5a – 2 ⇒ f(1) = 3.13 + 4.12 – 5.1 – 2 = 0 ∴ (a – 1) is a factor of 3a3 + 4a2 – 5a – 2 ∴ Now by dividing 3a3 + 4a2 – 5a – 2 by (a – 1), we get 3a3 + 4a2 – 5a – 2 = (a – 1) (3a + 1) (a + 2) = 0 ⇒ a = 1 or a = \(-\frac{1}{3}\) or a = - 2 ⇒ log2x = 1 or log2x = \(-\frac{1}{3}\) or log2x = - 2 ⇒ x = 21 = 2 or x = 2-1/3 or x = 2-2 = \(\frac{1}{4}\) ∴ The given equation has exactly three real solutions, wherein x = 2–1/3 is irrational. |
|
| 225. |
If `log_(5)x-log_(5)y = log_(5)4 + log_(5)2 and x - y = 7`, then = ______ .A. 1B. 8C. 7D. 6 |
|
Answer» Correct Answer - B Apply laws of logarithm. |
|
| 226. |
If `log_(2)[-1+sqrt(x^(2)-14x+49)]=4`, then x= ______A. 24B. -10C. 24,-10D. 10 |
|
Answer» Correct Answer - C ` log_(a)x = b Rightarrow a^(b) =x` (ii) Write ` sqrt( x^(2) - 14x + 49)= 16 + 1` = 17 and solve for x. (iii) Then verify for what values of x, logf(x) is defined. |
|
| 227. |
if ` log_(49)3 xx log_(9)7 xx log_(2)8 = x` then find the value of ` (4x)/3`A. 3B. 7C. 8D. 1 |
|
Answer» Correct Answer - D `log_(49)3 xx log_(9)7 xx log_(2)8 =x` `(log3)/( 2 log 7) xx (log 7)/(2log 3) xx ( 3 log 2)/ (log 2) =x` `3/4 = x Rightarrow (4x)/3 = 4/3 xx 3/4 =1 ` |
|
| 228. |
`if `logx - logy = 1 and x+y = 11 ` then x = ______A. 10B. 1C. 11D. 2 |
|
Answer» Correct Answer - A Apply laws of logarithm. And solve for x. |
|
| 229. |
If `3^(logx) +x^(log^(3) = 54` find log x.A. 3B. 2C. 4D. Cannot be determined |
|
Answer» Correct Answer - A (i) `a^(logb) = b^(log a) ` (ii) ` x^(m) = x^(n) Rightarrow m-n` |
|
| 230. |
If logam = x, then log1/a (\(\frac{1}{m}\)) equals(a) \(\frac{1}{x}\)(b) –x (c) – \(\frac{1}{x}\)(d) x |
|
Answer» (d) x logam = x ⇒ ax = m log1/a \(\frac{1}{m}\) = y ⇒ (\(\frac{1}{a}\))y = \(\frac{1}{m}\) ⇒ m = ay ⇒ ay = ax ⇒ y = x |
|
| 231. |
Find the value of x if the base is 10 :5logx – 3log x –1 = 3log x + 1 – 5log x –1(a) 1 (b) 0 (c) 100 (d) 10 |
|
Answer» (c) 100 5log x – 3log x –1 = 3log x + 1 – 5log x –1 ⇒ 5log x – 3log x x 3–1 = 3log x . 3 – 5log x . 5–1 ⇒ 5log x – \(\frac{1}{3}\)3log x = 3 x 3log x - \(\frac{1}{5}\) x 5log x ⇒ \(\bigg(3+\frac{1}{3}\bigg)\)3log x = \(\bigg(5+\frac{1}{5}\bigg)\)5log x ⇒ \(\frac{10}{3}\) x 3log x = \(\frac{6}{5}\)x 5log x ⇒ \(\frac{3^{log\,x}}{5^{log\,x}}\) = \(\frac{6}{5}\) x \(\frac{3}{10}\) = \(\frac{9}{25}\) ⇒ \(\big(\frac{3}{5}\big)^{log\,x}\) = \(\big(\frac{3}{5}\big)^2\) ⇒ log10 x = 2 ⇒ x = 102 = 100 |
|
| 232. |
If a, b, c do not belong to the set {0, 1, 2, 3 .... 9}, then log10 \(\bigg(\frac{a+10b+10^2c}{10^{-4}a+10^{-3}b+10^{-2}c}\bigg)\) is equal to(a) 1 (b) 2 (c) 3 (d) 4 |
|
Answer» (d) 4 Hint. Given exp. = log10 \(\bigg\{10^4\bigg(\frac{a+10b+10^2c}{a+10b+10^2c}\bigg)\bigg\}\) |
|
| 233. |
Assuming that the base is 10, the value of the expression log 6 + 2 log 5 + log 4 – log 3 – log 2 is(a) 0 (b) 1 (c) 2 (d) 3 |
|
Answer» (c) 2 Given exp. = log 6 + 2 log5 + log 4 – log 3 – log 2 = log 6 + log (5)2 + log 4 – log 3 – log 2 = log 6 + log 25 + log 4 – (log 3 + log 2) = log (6 × 25 × 4) – log (3 × 2) = log \(\bigg(\frac{6\times25\times4}{3\times2}\bigg)\) = log10 100 = log10 102 = 2 log10 10 = 2 x 1 = 2. |
|
| 234. |
log\(\frac{a^2}{bc}\) + log\(\frac{b^2}{ac}\) + log\(\frac{c^2}{ab}\) equals(a) –1 (b) abc (c) 3 (d) 0 |
|
Answer» (d) 0 log\(\frac{a^2}{bc}\) + log\(\frac{b^2}{ac}\) + log\(\frac{c^2}{ab}\) = log\(\bigg(\)\(\frac{a^2}{bc}\) x \(\frac{b^2}{ac}\) x \(\frac{c^2}{ab}\) \(\bigg)\) = log \(\bigg(\frac{a^2b^2c^2}{a^2b^2c^2}\bigg)\) log 1 = 0. |
|
| 235. |
If logr 6 = m and logr 3 = n, then what is logr (\(\frac{r}{2}\)) equal to ?(a) m – n + 1 (b) m + n – 1 (c) 1 – m – n (d) 1 – m + n |
|
Answer» (d) 1 - m + n. Given, logr 6 = m and logr 3 = n Since, logr 6 = logr (2 × 3) = logr 2 + logr 3 ⇒ logr 2 + logr 3 = m ⇒ logr 2 + n = m ⇒ logr 2 = m – n Now, logr (\(\frac{r}{2}\)) = logr r – logr 2 = 1 – (m – n) = 1 – m + n. |
|
| 236. |
if log x= 123.242 , then the characteristic of log x isA. 0.242B. 122C. 123D. 124 |
|
Answer» Correct Answer - C Recall the definiton of characteristic. |
|
| 237. |
if log 198.9 = 2.2987 , then the characteristic of log 198.9= and mantissa of log 198.9 = _______ |
| Answer» Correct Answer - `2; 0.2987` | |