InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 2951. |
Agar Kisi ka Kal maths ka paper hai to wo Kya Kare Koi reply karna please |
| Answer» Yaha bas suggestions milenge ki kya krna but fullow tumhe hi krna hoga .So close everything and start studying till u complete.Millions excuses milenge abhi nahi padhne ka lekin koi ek reason dhundh lo ki pdhna hai aur jao kal sara question banakar aana jeetkar !! ????????? | |
| 2952. |
Both of you good night friends |
| Answer» | |
| 2953. |
Righant kabhi question samajh nahy ata |
| Answer» | |
| 2954. |
Maths mein 9 , and 10 ch.ki preparation kaise karoon Kal Mera maths ka paper hai |
|
Answer» RS agrawal ka question solve krti ho toh main pic send kr skta hoon pura See concept and try to solve I can help u if u want then |
|
| 2955. |
Math lmp. Questions pata hai |
| Answer» | |
| 2956. |
Find the value of a, b&c such that the no is a, 7 b, 23 & care in AP |
| Answer» What is answer | |
| 2957. |
If sec 2A = cosec (A-42), where 2A is an acute angle, find the value of A. |
|
Answer» Sec2A=cosec(A-42°)or, cosec(90°-2A)=cosec(A-42°) [∵, cosec(90°-θ)=secθ]or, 90°-2A=A-42°or, -2A-A=-42°-90°or, -3A=-132°or, A=132°/3or, A=44° Sec2A=cosec(A-42) then, Sec2A=cosec(90-2A) ,cosec(90-2A)=cosec(A-42) ,90-2A=A-42,3A=132,A=44 Cosec(90-2A) =cosec(A-42)90-2A = A-4290+42 = A+2A132 = 3AA= 44. |
|
| 2958. |
If A+B =90. Prove that:√tanA.tanB+tanA.cotB/secB.sinA-sinsq.B/cossq.B=tanA |
| Answer» A + B = 90°\xa0{tex}\\Rightarrow{/tex}\xa0B = 90° - ANow, LHS =\xa0{tex}\\sqrt { \\frac { \\tan A \\cdot \\tan B + \\tan A \\cdot \\cot B } { \\sin A \\cdot \\sec B } - \\frac { \\sin ^ { 2 } B } { \\cos ^ { 2 } A } }{/tex}{tex}= \\sqrt { \\frac { \\tan A \\cdot \\tan \\left( 90 ^ { \\circ } - A \\right) + \\tan A \\cdot \\cot \\left( 90 ^ { \\circ } - A \\right) } { \\sin A \\cdot \\sec \\left( 90 ^ { \\circ } - A \\right) } - \\frac { \\sin ^ { 2 } \\left( 90 ^ { \\circ } - A \\right) } { \\cos ^ { 2 } A } }{/tex}{tex}= \\sqrt { \\frac { \\tan A \\cdot \\cot A + \\tan A \\cdot \\tan A } { \\sin A \\cdot \\ cosec A } - \\frac { \\cos ^ { 2 } A } { \\cos ^ { 2 } A } }{/tex}{tex}= \\sqrt { \\frac { 1 + \\tan ^ { 2 } A } { 1 } - 1 }{/tex}{tex}= \\sqrt { \\tan ^ { 2 } A }{/tex}= tan A = RHS | |
| 2959. |
2x²+kx+3=0 |
| Answer» | |
| 2960. |
How can we write the corresponding side of similar triangle very easily ? |
| Answer» | |
| 2961. |
Sin 60 sin 30 + cos 45 cos 30 |
| Answer» Root 3+root6/4 | |
| 2962. |
Boycott is what |
| Answer» Discarding any object in protest of something | |
| 2963. |
Xjdjdjdjdaedk |
| Answer» | |
| 2964. |
The 11th term of. Ap exeeds its 4th term by 14. Find d. |
|
Answer» a+10d-a+3d=14,7d=14,d=14/7,d=2 D=2 a+10d = a+3d+1410d = 3d+1410d-3d = 147d = 14d = 14÷7d = 2hence d is, 2 14/13 |
|
| 2965. |
Give All the math lab practical experiments with proper solution . Please |
| Answer» | |
| 2966. |
I need class 10 exam date sheet. |
| Answer» | |
| 2967. |
What is 3.14 value |
| Answer» It is π{ pi } mostly used in surface area problems | |
| 2968. |
Solve for x. 1/2a+b+2x=1/2a+1/b+1/2x. Where xis not equal to 0 |
| Answer» {tex}\\frac{1}{2a + b + 2x}{/tex}\xa0=\xa0{tex}\\frac{1}{2a}{/tex}\xa0+\xa0{tex}\\frac{1}{b}{/tex}\xa0+\xa0{tex}\\frac{1}{2x}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{1}{2a + b + 2x}{/tex}\xa0-\xa0{tex}\\frac{1}{2x}{/tex}\xa0=\xa0{tex}\\frac{1}{2a}{/tex}\xa0+\xa0{tex}\\frac{1}{b}{/tex}\xa0{tex}\\Rightarrow{/tex}{tex}\\frac { 2 x - 2 a - b - 2 x } { ( 2 a + b + 2 x ) ( 2 x ) }{/tex}\xa0=\xa0{tex}\\frac{b + 2a}{2a \\times b}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { - ( 2 a + b ) } { ( 2 a + b + 2 x ) 2 x }{/tex}\xa0=\xa0{tex}\\frac{b + 2a}{2ab}{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { - 1 } { 4 a x + 2 b x + 4 x ^ { 2 } }{/tex}\xa0=\xa0{tex}\\frac{1}{2ab}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}4x^2 + 2bx + 4ax = -2ab{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}4x^2 + 2bx + 4ax + 2ab = 0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}2x(2x + b) + 2a(2x + b) = 0{/tex}{tex}\\Rightarrow{/tex}\xa0(2x + b)(2x + 2a) = 0{tex}\\Rightarrow{/tex}\xa0x = -{tex}\\frac{b}{2}{/tex} or x = -a | |
| 2969. |
Find the probability of getting 53 Sundays in a non leap year |
|
Answer» It\'s 1/7 in non leap year 2/7 |
|
| 2970. |
In triangle Abc, |
| Answer» | |
| 2971. |
Eva hii |
| Answer» | |
| 2972. |
Define trignomatery |
|
Answer» Tri means three.... gon means sides.... and metron means polygon It is a branch of mathematics that deals with angles of a triangle. The role of valves in blood flow is that they help blood to Tri + gono + metry !! Tri means three , gono means sides and metry means study !! So the branch of mathematics which deaks with the sides of a traingle along with role play of angkes , is knowm as trigonometry . mainly of right angles triange |
|
| 2973. |
Prove that root 2+root 5 is irrational no. |
| Answer» Let us assume on the contrary that {tex}\\sqrt { 2 } + \\sqrt { 5 }{/tex} is a rational number.Then, there exist co-prime positive integers a and b such that{tex}\\sqrt { 2 } + \\sqrt { 5 } = \\frac { a } { b }{/tex}{tex}\\Rightarrow \\quad \\frac { a } { b } - \\sqrt { 2 } = \\sqrt { 5 }{/tex}{tex}\\Rightarrow \\quad \\left( \\frac { a } { b } - \\sqrt { 2 } \\right) ^ { 2 } = ( \\sqrt { 5 } ) ^ { 2 }{/tex}\xa0[Squaring both sides]{tex}\\Rightarrow \\quad \\frac { a ^ { 2 } } { b ^ { 2 } } - \\frac { 2 a } { b } \\sqrt { 2 } + 2 = 5{/tex}{tex}\\Rightarrow \\quad \\frac { a ^ { 2 } } { b ^ { 2 } } - 3 = \\frac { 2 a } { b } \\sqrt { 2 }{/tex}{tex}\\Rightarrow \\quad \\frac { a ^ { 2 } - 3 b ^ { 2 } } { 2 a b } = \\sqrt { 2 }{/tex}{tex}\\Rightarrow \\sqrt { 2 }{/tex}\xa0is a rational number .∵ a, b are integers .\xa0∴ {tex}\\frac { a ^ { 2 } - 3 b ^ { 2 } } { 2 a b }{/tex} is a rational numberThis contradicts the fact that\xa0{tex}\\sqrt{2}{/tex} is irrational.So, our assumption is wrong.Hence,\xa0{tex}\\sqrt { 2 } + \\sqrt { 5 }{/tex}\xa0is irrational. | |
| 2974. |
Solve by cross multiplication method. X + 2y =2. x - 3y =7 |
| Answer» X+2y-2=0X-3y-7=0X/(-14-6) =y/(-2+7)=1/(-3-2)X/(-20)=y/5=1/(-5)X/(-20)=1/(-5). Y/5=1/(-5)X= -20/-5. Y=5/-5X=4. Y=-1 | |
| 2975. |
Koi h yha....??? |
| Answer» | |
| 2976. |
find the discriminant of the quadratic equation 6xsquare-7x+2=0 |
| Answer» | |
| 2977. |
Any types |
| Answer» | |
| 2978. |
5 pl+9p-34pl(67p+56p)×45p |
| Answer» | |
| 2979. |
Find the value of k, if the point P (2,1) is equidistant from points Q (k,7) and R (-3,k). |
| Answer» | |
| 2980. |
Are you know when we donate eye so which part of eye is needed ? |
|
Answer» Only cornea can be needed a blind man has a eye ball with some defects. Only cornea can be transplanted ...and nothing beacause all r connect with nerve and brain and till now no any scientists have dared to diturb brain Cornea Yes cornea Cornea |
|
| 2981. |
Surface area and volume |
| Answer» | |
| 2982. |
x^2+x+1=0 find x |
| Answer» | |
| 2983. |
Find the sum of all multiple of 7 laying between 500 and 800 |
| Answer» 28093 | |
| 2984. |
Sum of all exterior angle of a hexagon is 360 degree |
| Answer» We know, the sum of all exterior angles of a pentagon is 360°Therefore, (m + 5)° + (2m + 3)° + (3m + 2)° + (4m + 1)° + (5m + 4)° = 360°⇒ m + 5 + 2m + 3 + 3m + 2 + 4m + 1 + 5m + 4 = 360°⇒ 15m + 15 = 360°⇒ 15m = 360° - 15°⇒ 15m = 345°⇒ m = 345°/15°⇒ m = 23°Therefore, the first angle = m + 5°= 23° + 5°= 28°Second angle = 2m + 3°= 2° × 23° + 3°= 46° + 3°= 49°Third angle = 3m + 2= 3° × 23° + 2°= 69° + 2°= 71°Fourth angle = 4m + 1= 4° × 23° + 1°= 92° +1°= 93°Fifth angle = 5m + 4°= 5° × 23° + 4°= 115° + 4°= 119° | |
| 2985. |
Determine K so that 4K + 8 , 2ksquare +3k+6 and 3ksquare +4k +4 |
| Answer» We know that if a, b, c are three consecutive terms of an A.P., thenb - a = c - b i.e. 2b = a + c Thus, if k2 + 4k + 8, 2k2 + 3k + 6 and 3k2 + 4k + 4 are three consecutive terms of an A.P., thena = k2 + 4k + 8, b = 2k2 + 3k + 6, c = 3k2 + 4k + 4\xa02b = a + c2 (2k2 +3k + 6) = (k2 + 4k + 8) + (3k2 + 4k + 4)\xa0⇒ 4k2 + 6k + 12 = k2 + 4k + 8 + 3k2 + 4k + 4\xa0⇒ 4k2 + 6k + 12 = 4k2 + 8k + 12\xa0⇒ 2k = 0 \xa0⇒\xa0k = 0. | |
| 2986. |
Find the value of k for which 9xsquare +3kx +4=0 has real and equal roots |
|
Answer» D= 9k square -4*4*9 =9ksq -144 For real and eql roots D=09k sq - 144=09ksq =144k sq= 16k= 4 K=4 |
|
| 2987. |
2add2 |
|
Answer» 4 4 |
|
| 2988. |
Feeling bechara...?? |
| Answer» | |
| 2989. |
Hi is boring for me |
| Answer» | |
| 2990. |
What happen if a student failed in pre board examination |
| Answer» | |
| 2991. |
Who discover the maths |
| Answer» | |
| 2992. |
If A+B=90 √tanAtanB+tanAcotB÷sinAsecB-sinB×sinB÷cosA×cosA=tanA |
| Answer» | |
| 2993. |
Where r u my frnd |
| Answer» | |
| 2994. |
3 x square minus square root 3 X + 4 find the value of k which has equal root |
| Answer» | |
| 2995. |
Hmm bolo sahil ji |
| Answer» Ye to common h ?? | |
| 2996. |
Sahil an kya hua kaha ho |
| Answer» | |
| 2997. |
Sahil choro kuch or bolo |
| Answer» | |
| 2998. |
How many multiples of 4 lie between 10 and 250 |
|
Answer» I know man.... Its so simple 60 60.. 60 |
|
| 2999. |
If cos A = 2 ,find the value of 4+ 4 tan sq A 5 |
| Answer» 11 | |
| 3000. |
Find the coordinates of the point on yaxis which is nearest to the point (-2,5) |
|
Answer» Agar hame x axsis hota to 5 ki jga zero aa jata Idhar hame nearest coordinate puche hai y axsis pae to x ki value 0 hoge Without using graphical method O,5 |
|