Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

36151.

Prove that:(1/4-3)³= 4 raised to the power 9

Answer»
36152.

Cos2A/1-tanA + Sin3A/sinA - cosA = 1 + sinAcosA

Answer» Bhai question wrong h .
36153.

Alpha + beta equal to dash

Answer» -Cofficient of x / cofficient of xsquare
-b/a
36154.

Formula of sum of AP

Answer» Sn=n/2[2a+(n-1)d]
Sn= n/2(2a+(n -1)d)
Sn = n/2(a+l)
If the last term is given we should use sn=n/2(2a+(n-1)d)
Sn =n/2(2a+(n-1))d
36155.

Find the greatest number of six digits exactly divisible by 18,24 and 36

Answer» LCM of 18,24 and 3618 = 2 {tex}\\times{/tex}\xa03224 = 23{tex}\\times{/tex}\xa0336 = 22{tex}\\times{/tex}\xa032LCM (18,24,36) = 23\xa0{tex}\\times{/tex}\xa032 = 72Hence if any number is divisible by 72 that will be divisible by 18,24 and 36 also.Now the largest 6 digit number is 999999On dividing 999999 by 72 we get{tex}\\;999999=13888\\times72+\\;63=999936+63{/tex}Hence 999936 is the greatest 6 digit number divisible by 18,24 and 36.
36156.

How to draw 6tracks of 200mtrs and place the staggers

Answer»
36157.

In coordinate geometry ex 7.2 2ndOne how the answer will come 39 ans

Answer»
36158.

if x = asec + btan and y = atono + bsec Prove that x2 -y2 = a2-b2

Answer» We\xa0have,x = asec{tex}\\theta{/tex}\xa0+ btan{tex}\\theta{/tex}\xa0and y = atan{tex}\\theta{/tex}\xa0+ bsec{tex}\\theta{/tex}LHS = (x2\xa0- y2) = (asec{tex}\\theta{/tex}\xa0+ btan{tex}\\theta{/tex})2\xa0- (atan{tex}\\theta{/tex}\xa0+ bsec{tex}\\theta{/tex})2= (a2sec2{tex}\\theta{/tex}\xa0+ b2tan2{tex}\\theta{/tex}\xa0+ 2absec{tex}\\theta{/tex}tan{tex}\\theta{/tex}) -\xa0(a2tan2{tex}\\theta{/tex}\xa0+ b2sec2{tex}\\theta{/tex}\xa0+ 2absec{tex}\\theta{/tex}tan{tex}\\theta{/tex})= a2(sec2{tex}\\theta{/tex}\xa0- tan2{tex}\\theta{/tex}) - b2(sec2{tex}\\theta{/tex}\xa0- tan2{tex}\\theta{/tex})= a2\xa0- b2\xa0= RHSTherefore, LHS = RHS
36159.

3+11---------803

Answer» ??
AP find karna hai easy hai ye Dekho (a) diya hua hai 3 aur (d) ho jaiye ga 11-3 = 8 Aur Tn = 803 hai bas formula pe rakhoo Tn = a + (n-1)d803 = 3 + (n-1)8
36160.

What is the formula of a square + b square

Answer» (a+b) ka hole square-2ab
(a+b)ka hole square
(a+b)(a+b)
36161.

D is a point on the side BC of a triangle ABC suct that angle ADC=angle BAC. Show that CA2=CB.CD

Answer» ∆ADC and ∆BACAngle ADC=angle BACAngle C =angle CHence ∆ADC~∆BACCA/CD=CB/CAHence CA2=CB.CDProved
36162.

What is the value of sin45

Answer» 1/√2
1/√2
1/√2
1/√2
36163.

Prove that √3 is an irrational number

Answer» Find it by assuming it to be rational in the form p/q. Prove that the assumption is wrong by substituting and equating wherever necessary! Simple!!!☺️
36164.

What is the value of infinity

Answer» Or bhi aage khud dhund le
1000009o00098990000000000000000000000000000000000000000
Not defined
Infinite
36165.

Can two numbers have 15 as their HCF and175 as their LCM? Give reason

Answer» {tex}\\frac{175}{15}=11.667{/tex}Hence 175 is not divisible by 15But LCM of two numbers should be divisible by their HCF.{tex}\\therefore{/tex}\xa0Two numbers cannot have their HCF as 15 and LCM as 175.
36166.

A number when divided by 53 gives 33 as quotient and 19 as ramainder. find the number

Answer» 1768
First of all we must know thatDivisior×Quotent+Remainder=A53×33+19=1768
1768
36167.

2x+9x=244x_6x=25

Answer»
36168.

Prove that *√(sec theta -1/sec theta +1) +√(sec theta -1/sec theta +1) = 2cosec theta *

Answer» LHS ={tex}\\sqrt { \\frac { \\sec \\theta - 1 } { \\sec \\theta + 1 } } + \\sqrt { \\frac { \\sec \\theta + 1 } { \\sec \\theta - 1 } }{/tex}\xa0Rationalise the denominator and we get,\xa0{tex}= \\sqrt{\\frac{(sec\\theta-1)^2}{sec^2\\theta-1}}+ \\sqrt{\\frac{(sec\\theta+1)^2}{sec^2\\theta-1}}{/tex}=\xa0{tex}\\frac { ( \\sec \\theta - 1 ) + ( \\sec \\theta + 1 ) } { \\sqrt { ( \\sec \\theta + 1 ) ( \\sec \\theta - 1 ) } }{/tex}=\xa0{tex}\\frac { 2 \\sec \\theta } { \\sqrt { \\sec ^ { 2 } \\theta -1 } } = \\frac { 2 \\sec \\theta } { \\sqrt { \\tan ^ { 2 } \\theta } } = \\frac { 2 \\sec \\theta } { \\tan \\theta }{/tex}=\xa0{tex}2 \\times \\frac { 1 } { \\cos \\theta } \\times \\frac { \\cos \\theta } { \\sin \\theta }{/tex}=\xa0{tex}2 \\times \\frac { 1 } { \\sin \\theta }{/tex}= 2 cosec{tex}\\theta{/tex}= RHSHence Proved
36169.

cos0-sin0

Answer» -1
36170.

If CosecA+cotA=mShow that - M square - 1 / 1 + m square =cosA

Answer» Given: cosec A + cot A = m{tex}\\Rightarrow{/tex}\xa0(cosec A + cot A)2 = (m)2 \xa0[squaring both sides ]{tex}\\Rightarrow{/tex}\xa0cosec2A + cot2A + 2 cosec A cot A = m2\xa0\xa0.......(1)Now, LHS\xa0{tex}=\\frac{m^{2}-1}{m^{2}+1}{/tex}{tex}=\\frac{\\ cosec ^{2} A+\\cot ^{2} A+2 \\ cosec A \\cot A-1}{\\ cosec ^{2} A+\\cot ^{2} A+2 \\ cosce A \\cdot \\cot A+1}{/tex}. [ From (1) ]{tex}=\\frac{\\cot ^{2} A+\\cot ^{2} A+2 \\ cosec A \\cdot \\cot A}{\\ cosec ^{2} A+\\ cosec ^{2} A+2 \\ cosec A \\cdot \\cot A}{/tex} [Since, Cosec2A - Cot2A = 1]{tex}=\\frac{2 \\cot ^{2} A+2 \\ cosec A \\cot A}{2 \\ cosec ^{2} A+2 \\ cosec A \\cot A}{/tex}{tex}=\\frac{2 \\cot A(\\cot A+\\ cosec A)}{2 \\ cosec A(\\ cosec A+\\cot A)}{/tex}{tex}=\\frac{\\cot A}{cosec A}{/tex}{tex}=\\frac{\\frac{\\cos A}{\\sin A}}{\\frac{1}{\\sin A}}{/tex}{tex}=\\frac{\\cos A}{\\sin A} \\times \\frac{\\sin A}{1}{/tex}= cos A = RHSHence, Proved.
36171.

What is tha percentag of 250 out of 180

Answer» ye kaisa question h
60%
72%
There can be no prcentage.....if u want,then, the percentage would be 138.8
36172.

What is the percentag 100 out of 38

Answer» 38%
36173.

If (tan theta+sin theta)=m and (tan theta -sin theta )=n.prove that (m^2-n^2)^2=16mn

Answer» Theta is angle
Tan +theta
Plzzz solve this ques
36174.

What is the value of x for X + 4 is equals to 10 and minus 4 is equal to 5

Answer»
36175.

1root of the equstion 2x square - 8x - m is5/2 find the other root s the value of m

Answer» {tex}2x^2 - 8x - m = 0{/tex}{tex}\\because{/tex}{tex}\\frac{5}{2}{/tex}\xa0is one root2({tex}\\frac{5}{2}{/tex})2 - 8{tex}\\times{/tex}\xa0{tex}\\frac{5}{2}{/tex}\xa0{tex}- m = 0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{2 \\times 25}{4}{/tex}\xa0{tex}- 20 - m = 0{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac{25 - 40}{2}{/tex}\xa0{tex}- m = 0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{-15}{2}{/tex}\xa0= m\xa0{tex}\\Rightarrow{/tex}m =\xa0{tex}\\frac{-15}{2}{/tex}.Also, sum of roots =\xa0-{tex}\\frac{b}{a}{/tex}\xa0=\xa0{tex}\\frac{-(-8)}{2}{/tex}\xa0= 4One root =\xa0{tex}\\frac{5}{2}{/tex}\xa0[given]{tex}\\therefore{/tex}\xa0Other root = 4 -\xa0{tex}\\frac{5}{2}{/tex}\xa0=\xa0{tex}\\frac{3}{2}{/tex}
36176.

Example 7 of chapter 4 page no 80

Answer»
36177.

tan2A + cot2A = sec2A cosec2A - 2 prove it.

Answer»
36178.

2.2 quation no.2

Answer» 2.(i) 1/4,1According to master(suhail) FormulaX2-(Some Of zeroes)X + (Product of Zeroes)Note=X2 where 2 is power of X X2-(1/4)x + (-1)Now LCM 4X2-X-4ansNote X is a Veriableand 2 is his Power
36179.

Please solve for x where x≠-1,-2,-4[1/x+1]+[2/x+2]=4/x+4

Answer» After The lots of TrialYour Answer Is2x2+4x+10-3xyNot->x is a veriable And 2x2 means 2x(2 is power of x)
36180.

A(5,1);B(1,5)andC(-3,-1)are the vetices of ∆ABC.find the length of median AD.

Answer» √1
36181.

What is an

Answer» Last term of ap
36182.

Find a cubic polynomial whose zeroes are 3,1/2and-1

Answer» Let\xa0{tex}\\alpha{/tex} = 3, {tex}\\beta{/tex}\xa0=\xa0{tex}\\frac{1}{2}{/tex} and {tex}\\gamma{/tex}\xa0= -1. Then,{tex}( \\alpha + \\beta + \\gamma ) = \\left( 3 + \\frac { 1 } { 2 } - 1 \\right) = \\frac { 5 } { 2 }{/tex},{tex}( \\alpha \\beta + \\beta \\gamma + \\gamma \\alpha ) = \\left( \\frac { 3 } { 2 } - \\frac { 1 } { 2 } - 3 \\right) = \\frac { - 4 } { 2 }{/tex}\xa0= -2and\xa0{tex}\\alpha \\beta y = \\left\\{ 3 \\times \\frac { 1 } { 2 } \\times ( - 1 ) \\right\\} = \\frac { - 3 } { 2 }{/tex}The polynomial with zeros α,β and\xa0{tex}\\gamma{/tex} is:{tex}\\mathrm x^3-(\\mathrm\\alpha+\\mathrm\\beta+\\mathrm\\gamma)\\mathrm x^2+(\\mathrm{αβ}+\\mathrm{βγ}+\\mathrm{γα})\\mathrm x-\\mathrm{αβγ}{/tex}{tex}=\\mathrm x^3-\\frac52\\mathrm x^2-2\\mathrm x+\\frac32{/tex}Thus,\xa02x3- 5x2- 4x + 3 is the desired polynomial.
36183.

solve :- sin 63° + cos 27°cos17°+ sin 73°

Answer» 2
36184.

Hi Everyone,Koi aisa hai Jo mujhey Math Padha sakey ?

Answer» Yes I am
Ye app
36185.

20+20

Answer» 20+20. 40
20+20=40
36186.

2-3=?

Answer» —1
-1
-1
36187.

2 x = -5y

Answer» X-0 ;y-0
36188.

2x/x-3 + 1/2x+3 + 3x+9/(x-3)(2x+3)

Answer» Given, {tex}\\frac{2x}{x-3}+\\frac{1}{2x+3}+\\frac{3x+9}{(x-3)(2x+3)}=0{/tex}{tex}\\Rightarrow\\frac{{2x(2x + 3) + x - 3 + 3x + 9}}{{(x - 3)(2x + 3)}} = 0{/tex}{tex} \\Rightarrow \\frac{{4{x^2} + 6x + x - 3 + 3x + 9}}{{2{x^2} + 3x - 6x - 9}} = 0{/tex}{tex} \\Rightarrow \\frac{4{x^2} + 10x +6 }{{2{x^2} - 3x - 9}} = 0{/tex}Cross multiplying equation , we get ,{tex} \\Rightarrow 4{x^2} + 10x +6 = 0{/tex}{tex} \\Rightarrow 4{x^2} + 6x+4x +6 = 0{/tex}{tex} \\Rightarrow x(4{x} + 6)+1(4x +6) = 0{/tex}{tex}\\Rightarrow(x+1)=0{/tex} or {tex} (4x+6)=0{/tex}{tex}\\Rightarrow x=-1{/tex}{tex}\\Rightarrow x=-\\frac{3}{2}{/tex}Hence , the roots of the given quadratic equation are -1 and {tex}-\\frac{3}{2}{/tex}
36189.

If x=rsinAcosB,y=rsinAsinB andz=rcosA, then prove that r sq=x sq+y sq+z sq

Answer» Since, x2 = r2sin2Acos2By 2 = r2sin2A sin2Band z2 = r2cos2AL.H.S. = x2 + y2 + z2{tex}=r^2sin^2Acos^2B+r^2sin^2Asin^2B+r^2cos^2A{/tex}=\xa0{tex}r^2sin^2A(cos^2B+sin^2B)+r^2cos^2A{/tex}= r2sin2 A + r2cos2A= r2(sin2 A + cos2A)= r2.= R.H.SHence Proved.
36190.

Solve x+1/x=3 by completing square method

Answer»
36191.

(2x+3y)-(2x-3y)=4

Answer» 2x+3y-2x+3y=4 3y+3y=46y=4Y=2/3Now, put value of y in this eq 2x+3y=02x+3x2/3=02x=-2X=-1
36192.

If m = cosecA-sinA and n= secA -tanA prove that (m^2 n)^2/3+(mn^3)^2/3=1

Answer» We have,cosec{tex}\\theta{/tex}\xa0- sin{tex}\\theta{/tex}\xa0= m and sec{tex}\\theta{/tex}\xa0- cos{tex}\\theta{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { 1 } { \\sin \\theta } - \\sin \\theta = m \\text { and } \\frac { 1 } { \\cos \\theta } - \\cos \\theta{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { 1 - \\sin ^ { 2 } \\theta } { \\sin \\theta } = m \\text { and } \\frac { 1 - \\cos ^ { 2 } \\theta } { \\cos \\theta }{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta } = m \\text { and } \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta }{/tex}\xa0= n{tex}\\therefore \\quad \\left( m ^ { 2 } n \\right) ^ { 2 / 3 } + \\left( m n ^ { 2 } \\right) ^ { 2 / 3 } = \\left( \\frac { \\cos ^ { 4 } \\theta } { \\sin ^ { 2 } \\theta } \\times \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta } \\right) ^ { 2 / 3 } + \\left( \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta } \\times \\frac { \\sin ^ { 4 } \\theta } { \\cos ^ { 2 } \\theta } \\right) ^ { 2 / 3 }{/tex}= (cos3{tex}\\theta{/tex})2/3\xa0+ (sin3{tex}\\theta{/tex})2/3\xa0= cos2{tex}\\theta{/tex}\xa0+ sin2{tex}\\theta{/tex}\xa0= 1Hence, (m2n)2/3 + (mn2)2/3 = 1
36193.

X/a+y/b=a+bX/a²+y/b²=ab

Answer»
36194.

Nnxnnd

Answer» What do you want?
36195.

Prove that,(secA_cosecA)(1+tanA+cotA)=tanA×secA_cotA×cosecA

Answer»
36196.

What is curved surface of cone

Answer» C.S.A of cone is πrl, here π is 22/7 or 3.142 and r is radius of cone and l is slant height of cone.
36197.

In triangle ABC DE parallel to BC, BE and CD intersect at F, AD:BD = 5:4, find Ar(def)/ar(cfb)

Answer» Let AD = 5x cm and DB = 4x cm. Then AB = AD + DB = (5x + 4x) cm = 9x cm.In\xa0{tex}\\triangle ADE{/tex}\xa0and\xa0{tex}\\triangle ABC{/tex}, we have{tex}\\angle A D E = \\angle A B C{/tex}\xa0[corresponding angles]{tex}\\angle A E D = \\angle A C B{/tex}\xa0[corresponding angles]{tex}\\angle A = \\angle A {/tex}\xa0[common in both triangles]\xa0{tex}\\therefore \\quad \\triangle A D E \\sim \\triangle A B C{/tex}\xa0[By AAA - Similarity Criteria ]{tex}\\Rightarrow \\frac { D E } { B C } = \\frac { A D } { A B }{/tex}[ As corresponding sides of similar triangles are proportionate to each other]\xa0{tex}= \\frac { 5 x } { 9 x } = \\frac { 5 } { 9 }{/tex}In\xa0{tex}\\triangle DFE{/tex}\xa0and\xa0{tex}\\triangle CFB{/tex}\xa0, we have{tex}\\angle E D F = \\angle B C F{/tex}\xa0[alternate interior angles as DE|| BC ]and\xa0{tex}\\angle D E F = \\angle C B F{/tex}\xa0[alternate interior angles as DE || BC].\xa0{tex}\\therefore \\quad \\triangle D F E \\sim \\triangle C F B{/tex}\xa0( By AA similarity Criteria)\xa0{tex}\\Rightarrow \\quad \\frac { \\operatorname { ar } ( \\Delta D F E ) } { \\operatorname { ar } ( \\Delta C F B ) } = \\frac { D E ^ { 2 } } { C B ^ { 2 } } = \\frac { D E ^ { 2 } } { B C ^ { 2 } }{/tex}{tex}= \\left( \\frac { D E } { B C } \\right) ^ { 2 }{/tex}{tex}= \\left( \\frac { 5 } { 9 } \\right) ^ { 2 } = \\frac { 25 } { 81 }{/tex}{tex}\\Rightarrow \\quad \\operatorname { ar } ( \\triangle D F E ) : \\operatorname { ar } ( \\triangle C F B ){/tex}= 25 : 81.
36198.

If sin(2x+3y)=1and cos(2x-3y)=root 3÷2..find the value of x and y

Answer» 2x+3y=90. (Sin 90°=1). (1)2x-3y=√3/2 (cos 30°=√3/2). (2) Solving both the equation, we get 2x+3y=902x-3y=30= 4x=120= x=120/4= x= 30Now, Putting the value of x=30 in (1)2×30+3y=9060+3y=903y=30Y=10Therefore, the value of x=30 and y=10.
36199.

X+y=5and 2x-3y=4

Answer» X+y=5. (1)2x-3y=4. (2) Multiplying (1) by (2) 2(x+y)=2×5 2x+2y=10. (3) Subtracting (3) from (2) 2x+2y=10 2x-3y=4 = -5y=-6 = y=6/5Putting y=6/5 in (1) X+6/5=5 5x+6=25 5x=25-6 X= 19/5Therefore, the value of x is 19/5 and y is 6/5.
36200.

In figure l || m ,angle OAC=80° ,angle ODB =70° . Is ∆ OCA SIMILAR ∆ODB

Answer»