Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

36101.

1245+7890

Answer» 9135
9135
Kgp
9135
36102.

If 1-tan^2theta =30degree then write the value of sintheta + cos^2theta

Answer» Ans = 5/4
36103.

AD=4 cm bc=12 cm Bd=3 cm and find cot , sec, and cosec angle c =thetha

Answer»
36104.

a3 =15,s10=125, find d and a10

Answer» Here, a3 = 15S10 = 125We know thatan = a + (n - 1)d{tex} \\Rightarrow {/tex}\xa0a3 = a + (3 - 1)d{tex} \\Rightarrow {/tex}\xa0a3 = a + 2d{tex} \\Rightarrow {/tex}\xa015 = a + 2d{tex} \\Rightarrow {/tex}\xa0a + 2d = 15 ...... (1)Again, we know that{tex}{S_n} = \\frac{n}{2}\\left[ {2a + (n - 1)d} \\right]{/tex}{tex} \\Rightarrow {S_{10}} = \\frac{{10}}{2}\\left[ {2a + (10 - 1)d} \\right]{/tex}{tex} \\Rightarrow {/tex}\xa0S10 = 5(2a + 9d){tex} \\Rightarrow {/tex}\xa0125 = 5(2a + 9d){tex} \\Rightarrow {/tex}\xa025 = 2a + 9d{tex} \\Rightarrow {/tex}\xa02a + 9d = 25 ....... (2)Solving equation (1) and equation (2), we geta = 17d = -1Now an = a + (n - 1)d{tex} \\Rightarrow {/tex}\xa0a10 = a + (10 - 1)d{tex} \\Rightarrow {/tex}\xa0a10 = a + 9d{tex} \\Rightarrow {/tex}\xa0a10 = 17 + 9(-1){tex} \\Rightarrow {/tex}\xa0a10 = 17 - 9{tex} \\Rightarrow {/tex}\xa0a10 = 8
36105.

Can you proove 5=7

Answer» How is it possible
36106.

Html code forCa(OH)2 + CO2 - CaCO3 + H2O

Answer»
36107.

How to solve a ap

Answer» By hand
36108.

X +y=78X+y×y=144

Answer»
36109.

Supposé the altitudes of à triangle are 10,12,and 15. What is its semi-perimeter.

Answer» 18.5
36110.

ax2+bx+c=0

Answer» It us a general form of quadratic equation
36111.

What is blue print of class 10cbse

Answer» Blue print bhi hota h human being me... Really I don\'t know
DNA is blue print in humqn body
36112.

If tan = 1, find 2sin cos

Answer» A simple and quick methos------------------Tan 45°=1Therefore theta = 45°Therefore 2sin.cos= sin(2theta)= sin (2×45)°=sin 90°=【1】
It will be equal to 1 as tan45=1and 2sincos also =1
2
36113.

Prove that. tan/1-cot+cot/1-tan=(1+sec cosec)

Answer» LHS =\xa0{tex}\\frac { \\tan \\theta } { 1 - \\cot \\theta } + \\frac { \\cot \\theta } { 1 - \\tan \\theta }{/tex}{tex}= \\frac { \\frac { \\sin \\theta } { \\cos \\theta } } { 1 - \\frac { \\cos \\theta } { \\sin \\theta } } + \\frac { \\frac { \\cos \\theta } { \\sin \\theta } } { 1 - \\frac { \\sin \\theta } { \\cos \\theta } }{/tex}\xa0{tex}\\left[ \\because \\tan \\theta = \\frac { \\sin \\theta } { \\cos \\theta } , \\cot \\theta = \\frac { \\cos \\theta } { \\sin \\theta } \\right]{/tex}{tex}= \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta ( \\sin \\theta - \\cos \\theta ) } + \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta ( \\cos \\theta - \\sin \\theta ) }{/tex}{tex}= \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta ( \\sin \\theta - \\cos \\theta ) } - \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta ( \\sin \\theta - \\cos \\theta ) }{/tex}{tex}= \\frac { \\sin ^ { 3 } \\theta - \\cos ^ { 3 } \\theta } { \\sin \\theta \\cos \\theta ( \\sin \\theta - \\cos \\theta ) }{/tex}\xa0{tex}= \\frac { ( \\sin \\theta - \\cos \\theta ) \\left( \\sin ^ { 2 } \\theta + \\cos ^ { 2 } \\theta + \\sin \\theta \\cos \\theta \\right) } { ( \\sin \\theta - \\cos \\theta ) \\sin \\theta \\cos \\theta }{/tex}\xa0[ a3\xa0- b3\xa0= (a - b)(a2\xa0+ ab + b2) ]{tex}= \\frac { 1 + \\sin \\theta \\cos \\theta } { \\sin \\theta \\cos \\theta }{/tex}{tex}= \\frac { 1 } { \\sin \\theta \\cos \\theta } + 1 = 1 + \\sec \\theta cosec \\theta{/tex}\xa0= RHStherefore, RHS = LHS
36114.

Introduction of trigonometry

Answer» Relationship between angles and side of a right angle triangle
36115.

A table-top measures 2m 25cm by 1m 50 cm what is the perimiter of the table-top

Answer» 7m 50cm
750
36116.

one arkmeans

Answer»
36117.

If tanA=cotB,prove that A+B=90

Answer» Tan a = cot bTan (90-a)=cot bCot( 90-A)= cot B90-A=B90=B+ANow; A+B=90 Hence proved
Tan a=cot bCot (90-a) = cot b90-a=b90=a+b A+b=90 It is ask in1-2 no. In exam
36118.

if a cosec A = p and b cotA = q prove that p square /a square -q square / b square=1

Answer»
36119.

Cos A - sin A +1 /cos A +sin A -1 = cosec A+cotA, using the identity cosec square A= 1+cot square A

Answer»
36120.

Prove that √7is a irrational number

Answer»
36121.

2+2 is 4-1 that\'s 3 Quick maffs!

Answer»
36122.

10\\x+y+2/x_y

Answer»
36123.

Way to learn trigonometry

Answer» Learn only sin cos and tan for sin = opposite side by hypotensecos = adjecent side by hypotensetan = sinby cosAnd other three by reversing the aboves
36124.

can i get evergeeen solution here

Answer» Why u get evergreen solution here
36125.

Solve the quadratic equation:-16/x -1=15/x+1

Answer» We have {tex}\\frac{{16}}{x} - 1 = \\frac{{15}}{{x + 1}}{/tex}{tex} \\Rightarrow \\frac { 16 - x } { x } = \\frac { 15 } { x + 1 }{/tex}Cross multiply,{tex}\\Rightarrow{/tex}\xa0{tex}(16-x)(x+1)=15x{/tex}{tex} \\Rightarrow{/tex}\xa0{tex}16x+16-x^2-x=15x{/tex}{tex} \\Rightarrow{/tex} 15x - 16x - 16 + x2 + x = 0{tex} \\Rightarrow{/tex} x2 - 16 = 0{tex} \\Rightarrow{/tex} x2 = 16{tex} \\therefore{/tex} x = {tex} \\pm{/tex}4
36126.

How can I make my ap ch5 strong

Answer» My ligin\' ma balls!
Solving all question freely and shared your doubt to all of them and do numericals by s.chand and r.s aggrawal
36127.

Find the value of "a" so that the point (3, a) lie on the Represented by 2x - 3y = 5

Answer» Since the point (3, a) lies on the line 2x - 3y = 5, we have2\xa0{tex}\\times{/tex}\xa03 - 3\xa0{tex}\\times{/tex}\xa0a = 5{tex}\\Rightarrow{/tex}\xa06 - 3a = 5{tex}\\Rightarrow{/tex}\xa03a = 1{tex}\\Rightarrow{/tex}\xa0{tex}a = \\frac { 1 } { 3 }{/tex}
36128.

For what value of p, are 2p-1, 7 and 3p three consecutive term of A.P?

Answer»
36129.

Is it required to for class 10 board exams from rd sharma?Ncert is sufficient for class 10

Answer» It is sufficient if do everything perfectly and theory perfectly as it gives us an idea to solve every question
36130.

Class 10 math

Answer» Its theorm :)
Tum kya puchna chahte ho maths se?? koi ques.,koi therom........... ..?
36131.

trignometry of table kase banate h

Answer»
36132.

State and prove pythagorous theorem

Answer» a²+b²=c²
36133.

Show that one and only one of n;n+4;n+2 is divisible by 3

Answer» Take n =3qSo first n is divisible by 3Both n+4;n+2is also divided by 3 but it leaves reminder and n does not leave any reminder so n is divisible by 3
N
36134.

{1+an²A\\1+cot²A}= {1- tanA\\cotA}²= tan ²A prove following identities

Answer» {tex}= \\frac { 1 + \\tan ^ { 2 } A } { 1 + \\cot ^ { 2 } A } = \\frac { 1 + \\tan ^ { 2 } A } { 1 + \\frac { 1 } { \\tan ^ { 2 } A } } \\cdot \\because \\cot A = \\frac { 1 } { \\tan A }{/tex}{tex}= \\frac { 1 + \\tan ^ { 2 } A } { \\frac { \\tan ^ { 2 } A + 1 } { \\tan ^ { 2 } A } } = \\tan ^ { 2 } A \\ldots \\ldots ( 1 ){/tex}{tex}\\left( \\frac { 1 - \\tan A } { 1 - \\cot A } \\right) ^ { 2 } = \\left( \\frac { 1 - \\tan A } { 1 - \\frac { 1 } { \\tan A } } \\right) ^ { 2 }{/tex}{tex}= \\left\\{ \\frac { 1 - \\tan A } { \\left( \\frac { \\tan A - 1 } { \\tan A } \\right) } \\right\\} ^ { 2 } = ( - \\tan A ) ^ { 2 } = \\tan ^ { 2 } A{/tex} ....... (2)(1) and (2) taken together given the result.
36135.

If 3sin0+5cos0=5 prove that 5sin0-3cos0=+3 and -3

Answer» R.s.agarwal ka page no.213
36136.

xSin π/6.〖Cos〗^2 π/4=(Tan π/4.Sec π/3.〖Cos〗^2 π/6)/(〖Cosec〗^(2 ) π/4.Sec π/6)find X

Answer» Pls provide for above question
36137.

Measurements of weight

Answer» 1 pound (lb) = 16 ounces (oz) = 0.454 kilogram (kg)
36138.

Solve by competing square method. (5x)5x+11x+9=0

Answer» Ncert question or rd sharma
36139.

4x^2+x-4

Answer»
36140.

Write all the other trigonometric ratio of Angle A in the terms of sec a

Answer» Cos A=1/sec ASin A=√1-cos sq. A=√1-1/sec sq.A=√sec sq.A-1/sec sq.ATan A=√sec sq.A-1Cot A=1/tan A=1/√sec sq.A-1Cosec A=1/sin A=1/√sec sq.A-1/sec A
36141.

introduction for triangles

Answer» Introduction
36142.

SinX +Sin3X +Sin5X+Sin7X=?

Answer»
36143.

Prove that 0+0=1

Answer» (0+0)never be 1
36144.

the sum of n positive integer

Answer» n/2×(a+l) and n/2×(2a+(n-1)×d)
36145.

Solve for x- 1/a+b+x= 1/a+1/b+1/X

Answer» Given,{tex}\\frac { 1 } { ( a + b + x ) } = \\frac { 1 } { a } + \\frac { 1 } { b } + \\frac { 1 } { x }{/tex}{tex}\\Rightarrow \\quad \\frac { 1 } { ( a + b + x ) } - \\frac { 1 } { x } = \\frac { 1 } { a } + \\frac { 1 } { b } \\Rightarrow \\frac { x - ( a + b + x ) } { x ( a + b + x ) } = \\frac { b + a } { a b }{/tex}{tex}\\Rightarrow \\quad \\frac { - ( a + b ) } { x ( a + b + x ) } = \\frac { ( a + b ) } { a b }{/tex}On dividing both sides by (a+b){tex}\\Rightarrow \\quad \\frac { - 1 } { x ( a + b + x ) } = \\frac { 1 } { a b }{/tex}Now cross multiply{tex}\\Rightarrow{/tex}\xa0x(a + b + x) = -ab\xa0{tex}\\Rightarrow{/tex}\xa0x2 + ax + bx + ab = 0{tex}\\Rightarrow{/tex}\xa0x(x +a) + b(x +a) = 0{tex}\\Rightarrow{/tex}\xa0(x\xa0+ a) (x + b) = 0{tex}\\Rightarrow{/tex}\xa0x + a = 0 or x + b = 0{tex}\\Rightarrow{/tex}\xa0x = -a or x = -b.Therefore, -a and -b\xa0are the roots of the equation.
36146.

If two vertices of equaliteral triangle are (0,0) and(3,root3). Find the third vertices

Answer» Thanx
First of all let us assume that the cordinates of third side is (x,y) and we know that all sides of triangle are equal so , we use distance formula and find the distance of one side from the two coordinates and then find the distance of another two sides in terms of x and y and then corelate the equation
36147.

Can anyone will teach me trigonometry plz?

Answer» Pakistan bhukha pyasa, pbp. Hindustan Hara bhara
PBP-Papa Bear Piyoge ;HHB- Ha Ha Beta
PBP Pandit Badri Prsad1)--------= ------------------------------- HHB Har Har Bhole2)sinA=P/H CosA=B/H tanA=P/B Cosec=H/P Cot=H/B Sec=B/P
Yes
36148.

Prove that root 6 is an irrational numbers

Answer» First assume that √6 is arational no. Then , √6= p by q form ,where p & q are integers ,q is not equals to zero and p&q are co-primes .Squaring both the sides 6= p sq. by q sq. = p sq.= 6q sq. -[1]i.e. p sq. is divisible by 6. So, p is also divisible by 6.Then , we can write p= 6rsquaring both the sides p sq.=12r sq.2 q sq= 4r sq. -[from equ. (1)]q sq. =4r sq. by 2 => q sq. =2r sq. -(2)i.e. q sq. Is divisible by 2So, q is also divisible by 6. Since, we can find p&q have a common factor between them (i.e. 2)In our contradicts & assumption √3 is not a rational number. It is an irrational no.
36149.

2÷10=2Prove it

Answer» When 2 is divided by 10 then it gives us quotient 0.2
totally wrong ques????
The ques. is wrong bread....
36150.

The product of two numbers is 396 x 576 and their LCM is 6336.Find their HCF

Answer» Such a easy question
36