Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

40651.

I don\'t like to do maths. Wht we do ?

Answer» m also there, can u suggest some link
My friend, Try to connect the equations to our daily life. like going to market etc. Try watching some videos which are avail able in Youtube. The pictorical representation will help you catch the topic well.
40652.

If theta =30 find the value of sin theta +cos theta

Answer» First of all put the value of theta in sin theta and cos theta
That\'s, sin 30+cos301/2+root3/21+root3/2
1+√3______ 2
40653.

Find the area of the major segment of a circle whose radius is 14cm and its central angle is 60°.

Answer» First of all find the area of minor segment
523.05
40654.

a² +b²/ab = a+c/b

Answer»
40655.

What formula segment

Answer» R^2(π x theta/360° - sin theta/2 x cos theta/2).
What segment ???
40656.

HCF of two numbers is 113, their LCM is 56952. If one number is 904, then other number

Answer» Given ,HCF = 113LCM = 56952a = 904b = ?\xa0HCF ×LCM = a × b (Product of two numbers)113 × 56952 = 904 × b6435576 = 904 ×bTherefore, b = 6435576 / 904b = 7119
40657.

Prove that if x and y are odd positive integer then x^2+y^2 is even which is not divisible by 4

Answer» Let the two odd positive numbers be x = 2k + 1 a nd y = 2p + 1Hence x2\xa0+ y2\xa0= (2k + 1)2\xa0+ (2p + 1)2 = 4k2\xa0+ 4k + 1 + 4p2\xa0+ 4p + 1 = 4k2\xa0+ 4p2\xa0+ 4k + 4p + 2 = 4(k2\xa0+ p2\xa0+ k + p) + 2Clearly notice that the sum of square is even the number is not divisible by 4\xa0
40658.

What is the probabilty of number between 1 to 100 divisible bye 8

Answer» But if we take it as between 1 and 100 then 1 and 100 will be removed from it ,it will remain total outcomes 98
If I say from 1 to 100, we know that 1 and 100 (and everything in between) are possible.That’s 100 numbers, of which 12 (8, 16, …, 96) are divisible by 8.So the probability that a number divisible by 8 = 12/100 = 3/25
12/100
40659.

Prove that Sin A minus 2 Sin cube A upon 2 cos cube A minus Cos A is equal to 10

Answer»
40660.

Tan360° value

Answer» tan 360 = sin 360 / cos 360 = 0/1= 0tan 360 = 0
40661.

sina-2sin3a/2cos3a-cosa=tana

Answer» c
LHS=sinA(1-2sin2A) / cos A (2cos2A-1)=\xa0sinA(sin2A + cos2A-2sin2A) / cos A (2cos2A-(sin2A + cos2A))=sinA( cos2A-sin2A) / cosA ( cos2A-sin2A)=sinA / cosA = tanA=RHS
40662.

If 5tan =4 then find 5sin-3cos/5sin+2cos

Answer» say 5tanX=4 then tan X=4/5now(5 sinX-3cosX) / 5 sinX - 2cosXdevide up and diwn with cos x= 5 sinX/cos X-3/5 sinX/cosX-2=(5tanX-3 ) / ( 5tanX-2)=(4-3) / (4-2)=1 / 2
40663.

3×5==

Answer» 94
15
40664.

Proove that (6+√5) is irrational

Answer» Let 6+√5 is a rational number So 6+√5= p÷ q √5=p÷q-6 √5=p-6q÷ q We know that √5 is an irrational number so p-6q÷q but we know that p-6q÷q is an rational number So that it contracdict our form that 6+√5 is an irrational number
This shows that 6+√5 is irrational
Let 6+√5 be rational6+√5=a/b (a & b are co-primes)√5=a/b -6LCM√5=a-6b/bIrrational not = rational
40665.

Find the value of cos 1.cos2.cos3.......cos180

Answer»
40666.

In ∆ABC, right angled at B, AB=24cm, BC=7cm. DetermineSinA, cosA

Answer» In right angle traingle ABCAngle B= 90°By PGT(paytha goras theorem) in ∆ABCAB=24cm , BC=7cm So, AC×AC=BC×BC+AB×AB= Ac×Ac= 24×24+7×7=Ac×Ac=576+49=Ac×Ac=625=Ac=√625=Ac=25 Now, sinA= p/h=7/25CosA= B/H=4/25
40667.

Give me the all chapters formula

Answer» You can get it from your book and make thier short note. You have to work yourself then ,you will get success.
Ok
search at net u Will get easily. Here no one is there to give u the formula of all ch
40668.

Prove that the points (4,5),(7,6),(6,3)and(3,2)are the vertices of a parallelogram.is it a rectangle

Answer» Let A(4, 5), B(7, 6), C(6, 3) and D(3, 2) be the given points.And, P the point of intersection of AC and BD.Coordinates of the mid-point of Ac are\xa0{tex}\\left( \\frac { 4 + 6 } { 2 } , \\frac { 5 + 3 } { 2 } \\right) = ( 5,4 ){/tex}Coordinates of the mid-point of BD are\xa0{tex}\\left( \\frac { 7 + 3 } { 2 } , \\frac { 6 + 2 } { 2 } \\right) = ( 5,4 ){/tex}Thus, AC and BD have the same mid-point.Hence, ABCD is a parallelogram.Now we shall see whether ABCD is a rectangle.We have,{tex}A C = \\sqrt { ( 6 - 4 ) ^ { 2 } + ( 3 - 5 ) ^ { 2 } }{/tex}{tex}\\Rightarrow \\quad A C = \\sqrt { 4 + 4 }{/tex}{tex}\\Rightarrow \\quad A C = \\sqrt { 8 }{/tex}And,\xa0{tex}B D = \\sqrt { ( 7 - 3 ) ^ { 2 } + ( 6 - 2 ) ^ { 2 } }{/tex}{tex}\\Rightarrow \\quad B D = \\sqrt { 16 + 16 }{/tex}{tex}\\Rightarrow \\quad B D = \\sqrt { 32 }{/tex}Since, AC\xa0{tex}\\neq{/tex}\xa0BDSo, ABCD is not a rectangle.
40669.

Can we draw perpendicular on a line through a point

Answer» We draw a straight line and cut of by the perpendicular bisector.
Yes
Yes
40670.

If -5 is a root of the quadratic equation 2x

Answer» Given that -5 is the root of\xa0{tex}2 x^{2}+p x-15=0{/tex}Put x = -5 in\xa0{tex}2 x^{2}+p x-15=0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}2(-5)^{2}+p(-5)-15=0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}50-5 p-15=0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}35 - 5p = 0\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}5p = 35\xa0{/tex}{tex}\\therefore{/tex}\xa0{tex}p = 7{/tex}Hence the quadratic equation p {tex}(x^2 + x) + k = 0{/tex} becomes,\xa0{tex}7\\left(x^{2}+x\\right)+k=0{/tex}{tex}7 x^{2}+7 x+k=0{/tex}\xa0Here {tex}a = 7,\\ b = 7\\ and\\ c = k{/tex} Given that this quadratic equation has equal roots\xa0{tex}\\therefore{/tex}\xa0{tex}b^{2}-4 a c=0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}7^{2}-4(7)(\\mathrm{k})=0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}49 - 28k = 0\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}49 = 28k\xa0{/tex}{tex}\\therefore{/tex}\xa0k = {tex}\\frac{49} {28}{/tex}\xa0=\xa0{tex}\\frac{7} {4}{/tex}
40671.

Find the 0s of the polynomial 5√5x^2+30x+8√5

Answer» {tex}5{/tex}{tex}\\sqrt{5}{/tex}{tex}x^2\xa0+ 30x + 8{/tex}{tex}\\sqrt{5}{/tex}\xa0{tex}= 5{/tex}{tex}\\sqrt{5}{/tex}{tex}x^2\xa0+ 20x + 10x + 8{/tex}{tex}\\sqrt{5}{/tex}= {tex}5x ({/tex}{tex}\\sqrt{5} x{/tex}\xa0{tex}+ 4) + 2{/tex}\xa0{tex}\\sqrt{5}{/tex}{tex}\xa0({/tex}{tex}\\sqrt{5}{/tex}{tex}x + 4){/tex}= ({tex}\\sqrt{5} x{/tex}\xa0+ 4)(5x + 2{tex}\\sqrt{5}{/tex})=\xa0{tex}\\sqrt{5}{/tex}\xa0({tex}\\sqrt{5}{/tex}x + 2)({tex}\\sqrt{5}{/tex}x + 4)
40672.

1plus tan squaretheta is equal

Answer» Sec^2theta
Sec square theta
40673.

1 cos =

Answer»
40674.

(1+sin/1-sin)^1/2 +(1-sin/1+sin)^1/2 =2sec

Answer» (1+sinA)1/2\xa0/ (1-sinA)1/2\xa0\xa0+ (1-sinA)1/2\xa0/ (1+sinA)1/2multiply up and down by (1+sinA)1/2\xa0* (1-sinA)1/2 we get(1 + sinA +1 -sinA)/\xa0(1+sinA)1/2\xa0*(1-sinA)1/2=2 / (1-sin2A)1/2=2/cosA=2secA =Rhs
40675.

Using properties find 78×82

Answer» 78 × 82= (80 - 2) (80 + 2)= (80)2 - (2)2 [∵ a2 - b2 = (a - b) (a + b)]= 6400 - 4= 6396
40676.

2018-2019 syllabus of maths

Answer» Nooooo rider sunil Exam me full syllabus aaegaMeans ch 1 to 15
But it shows half of book lessons will appear in exam board priya ji
Please kindly check the app mycbseapp you are using..
40677.

From where does sums come of cbse maths exam

Answer» Lagbhag ncert se hote h
From NCERT
40678.

Solve this sum 0.686868............ +0.717171..............

Answer» 1.404039i.e,1.404040...
40679.

Prove that the points A(-3,0), B(1,-3) and C(4,1) are the vertices of an isosceles right triangle

Answer» Let A (-3, 0), B (1, -3) and C (4, 1) be the given points. Then,AB =\xa0{tex}\\sqrt { ( 1 - ( - 3 ) ) ^ { 2 } + ( - 3 - 0 ) ^ { 2 } } = \\sqrt { 4 ^ { 2 } + ( - 3 ) ^ { 2 } } = \\sqrt { 16 + 9 }{/tex}= 5BC =\xa0{tex}\\sqrt { ( 4 - 1 ) ^ { 2 } + ( 1 + 3 ) ^ { 2 } } = \\sqrt { 9 + 16 }{/tex}= 5 unitsand, CA =\xa0{tex}\\sqrt { ( 4 + 3 ) ^ { 2 } + ( 1 - 0 ) ^ { 2 } } = \\sqrt { 49 + 1 } = 5 \\sqrt { 2 }{/tex}unitsClearly, AB = BC. Therefore, {tex}\\triangle{/tex}ABC is isosceles.Also, AB2 + BC2 = 25 + 25 = (5{tex}\\sqrt2{/tex})2 = CA2{tex}\\therefore{/tex}{tex}\\triangle{/tex}ABC is right-angled at B.Thus, {tex}\\triangle{/tex}ABC is a right-angled isosceles triangle.
40680.

What is the formula of curved surface area of cone

Answer» πrl ,
Pie*radius*slant height
πr2h
Pie × radius ×slant height (l)
40681.

(a+b) ^3

Answer» a^3 +b^3 +3ab (a+b)
3a+3b
40682.

2+2 2crore rupees price mony

Answer» 2+2 = 4
40683.

Chapter triangle exercise 6.3 questions no 14? With solution

Answer» Get NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
40684.

If (1+cosA)(1-cosA)=3÷4 find the value of secA

Answer» Or secA=30degree
SecA=2÷root3
40685.

Find all the zeroes of 2x⁴-3x³-3x³+6x-2,if you know thar two of it zeroes are √2 and -√2.

Answer» It is there in NCERT book ch-2 ex. 9 pg. No. 35
40686.

What is real number define

Answer» A collection of rational numbers and irrational numbers make up the set of real number. A real number can be expressed on the number line and has some specific properties. They satisfy:\tThe commutative law of addition. That is, when a and b are two real numbers then a + b = b + a. For example 1 + 3 = 3 + 1 = 4\tThe commutative law of multiplication. That is, when a and b are two real numbers then a x b = b x a. For example 1 x 3 = 3 x 1 = 3\tThe associative law of addition. That is, when a, b and c are three real numbers then a + (b + c) = (a + b) + c. For example 1 + (3 + 4) = (1 + 3) + 4 = 8\tThe associative law of multiplication. That is, when a, b and c are three real numbers then a x (b x c) = (a x b) x c. For example, 1 x (3 x 4) = (1 x 3) x 4 = 12\tThe law of distribution. That is, when a, b, c are three real numbers then a x (b +c) = (a x b) + (a x c). For example 1 x (3 + 4) = (1 x 3) + (1 x 4) = 7
40687.

Xsquare

Answer»
40688.

5 number find to lcm

Answer»
40689.

Is it true that in 2019 examination of math conpect is from NCERT but question are not from NCERT

Answer» Yes you must have clear all concept of N.C.E.R.T
40690.

Give questions

Answer»
40691.

Find the coordinates of the point on y-axis which is nearest to the point (2,-5)

Answer» Plzzz, anyone tell the answer
40692.

Draw an angel AOB equal to 60 through point A draw a parallel line to OB

Answer»
40693.

I if sin theta is equals to cos theta then find the value of 2 tan theta + cos square theta

Answer»
40694.

What is blueprint of board of maths

Answer»
40695.

In triangle abc angle b=90°

Answer» It is only in right angle triangle
40696.

Find the area of the largest triangle that can be inscribed in a semicircle of radius 7cm

Answer» It is equal to the square of radius. R^2. Answer=49
40697.

how many irrational numbers are there between 1 and 2

Answer» Infinitely many
40698.

Solve this sum step by step 0.686868.............+ 0.717171....….......

Answer» Just solve it as usual by puting bar over the digits
Calculator hoga tmhare phone me solve kar po
40699.

√√3+√3+√3

Answer» mma ki chu
40700.

find the sum of of first 15 multiples of 8

Answer» a=8 ,d=8, l=120 Sn=n/2(a+l)= 15/2(8+120) =15/2×128 15×64 =960