Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

8601.

Find the points at which the function f given by f(x)=(x-2)^(4)(x+1)^(3) haspoint of inflexion.

Answer»


ANSWER :`x=-1`
8602.

Statement I Pi_(r=1)^(n) (1+sec 2^(r)theta)=tan 2^(n)theta cot theta Statement II Pi_(r=1)^(n) cos (2^(r-1)theta)=(sin(2^(n)theta))/(2^(n)sin theta)

Answer»

A
B
C
D

Answer :A
8603.

Integrate the following functions: (cosx-sinx)/(1+sin(2x)

Answer»

SOLUTION :`(cosx-sinx)/(1+sin2x) = (cosx-sinx)/(cosx+sinx)^2`
`int(cosx-sinx)/(1+sin2x) DX`
= `int (cosx-sinx)/9cosx+sinx)^2 dx`
LET t = cosx+sinx.
Then `dt = (-sinx+cosx)dx`
therefore` int(cosx-sinx)/(1+sin2x) dx`
=`int dt/t^2 = -1/t+c`
= `-1/(cosx+sinx)+c`
8604.

Evalute the following integrals int sqrt(x^(2) + 4)dx

Answer»

`(X)/(2) sqrt(x^(2) + 4) + 2 sinh^(-1) ((x)/(2)) + C`
`(x)/(4) sqrt(x^(2) + 4) + 2 sinh^(-1) ((x)/(4)) + c`
`(x)/(2) sqrt(x^(2) + 4) - 2 sinh^(-1) ((x)/(2)) + c`
`(x)/(2) sqrt(x^(2) + 4) + 2 sinh^(-1) ((x)/(4)) + c`

ANSWER :A
8605.

There are 10 different objects 1, 2, 3,…..…10 arranged at random in 10 places marked 1, 2, 3,…….…10. The probability that exactly five of these objects occupy places corresponding to their number is k/3600, thenk is_____.

Answer»


ANSWER :`(11)`
8606.

A and B six digits numbertotal numbers of ways of forming A and B so that (i) These numbes can be added without carrying at any stage, (ii) n_(2) can be subtracted form n_(1) without borrowing at any stage, is equal to.

Answer»


ANSWER :`=45X(55)^(5)`.
8607.

Find all values of x that satisfy the determinant equation |{:(2x , 1), (x , x):}| = 3

Answer»

`-1`
`-1` or 1.5
1.5
`-1.5`

SOLUTION :Evaluate the 2 by 2 determinant to get `2x^(2) - X = 3` . Then factor `2x^(2) - x - 3 ` into `(2x- 3) ( x + 1)` and SET each factor to ZERO to get `x = (3)/(2)` or x = - 1 .
8608.

If int_(0)^(infty) f(x)dx=(pi)/(2) andf(x) is an even function, then int _(0)^(infty)f(x-(1)/(x)) dx is equal to

Answer»

`(PI)/(4)`
`(pi)/(2)`
`pi`
None of these

Answer :B
8609.

If(1+1/(1!)+(1)/(2!)+......oo)(1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

Answer»

1
`E^(-2)`
`-e^(-2)`
0

Answer :A
8610.

Solvetheequationgiventhat ithas multipleroot x^4 +2x^3 -3x^2 -4x +4=0

Answer»


ANSWER :`1,1,-2.-2`
8611.

If a,b,c are three non-coplanar vectors then match the items of List -I with those of List -II. The correct answer is

Answer»

`{:(""A,B,C,D),((a)" "III,IV,V,II):}`
`{:(""A,B,C,D),((a)" "IV,V,II,III):}`
`{:(""A,B,C,D),((a)" "I,IV,V,III):}`
`{:(""A,B,C,D),((a)" "I,IV,II,III):}`

Answer :D
8612.

If a, b, c are three non-coplanar vectors and p, q, r are defined by the relations p=(b xx c)/([(a, b, c)]), q=(c xx a)/([(a, b, c)]) and r=(b xx a)/([a,b,c]), then a. p+b.q+c.r is equal to

Answer»

0
1
2
3

Solution :`a*p+B*q+C*R=(a*bxxc)/(["ABC"])+(b*cxxa)/(["abc"])+(c*BXXA)/(["abc"])`
`=1+1-1=1`
8613.

Ifvec(a),vec(b), vec(c)be threenon - zerovectors satisfyingthe condition vec(a) xx vec(b) = vec(c) and vec(b) xx vec(c) = vec(a) , then .

Answer»

`vec(a), vec(b),vec(C)` are ORTHOGONAL is PAIRS
`[vec(a),vec(b),vec(c)] = [vec(a)]^(2)`
`[vec(a) vec(b) vec(c)] =[vec(c)]`
`|vec(b)| = |vec(c)|`

Answer :A::B::C
8614.

Let f: R to R is defined by f(x)= {{:(,alpha+(sin [x])/(x),if x gt 0),(,2,if x =0),(,beta+[(sin x-x)/(x^(3))], if x lt 0):}where [y] denotes the integral part of y. If f is continuous at x=0, then beta-alpha=

Answer»

`-1`
1
0
2

Answer :B
8615.

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1+ tan x) dx

Answer»


ANSWER :`pi/8log2`
8616.

Statement-1 : In a double decker bus consisting of 5 seats on the ground floor and 5 on the first floor, the chance that two old person will take the ground floor and three children will take first floor while the five youth may take any floor is (""^5C_2xx2!xx""^5C_3xx3!xx5!)/(10!) Statement-2 Two person each make a single throw with a pair of dice. The chance that the throws are equal is coefficient of x^10 " in " (((1-x^6)/(1-x))^4)/((36)^2). Statement-3 : Given that x+y=2a, where a is constant and that all values of x between 0 and 2a are equally likely, then the chance that xy gt 3/4a^2 " is " 1/2.

Answer»

TTT
FTT
FFT
FTF

Answer :A
8617.

Statement - 1: consider an ellipse with foci at A(z_1) and B(z_2) in the argand plane if eccentricity of ellipse bee and it is known that origin is an interior point of the ellipse thene in (0, (|z_1 + z_2|)/(|z_1| + |z_2|)) and Statement - 2:If z_0 is the point interior to curve |z- z_1| + |z-z_2| = lambda rArr |z_0 - z_1| + |z_0 - z_2| lt lambda.

Answer»

STATEMENT -1 is TRUE,Statement -2 is a correct explanation for Statement -1
Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -1
Statement -1 is True, Statement -2 is False.
Statement -1 is False, Statement -2 is True.

Answer :D
8618.

int (x^(6) - 1)/(x^(2) +1)dx =

Answer»

`(X^(5))/(5) - (x^(3))/(3)` + x + c
`(x^(5))/(5) - (x^(3))/(3) + tan^(-1) ` x + c
`(x^(5))/(5) -(x^(3))/(3) + x + tan^(-1)`x +C
`(x^(5))/(5) -(x^(3))/(3) + x - 2TAN^(-1)`x +C

Answer :D
8619.

Find the centre and radius of the circle 2x^2 + 2y^2 - x = 0.

Answer»


ANSWER :`1/4`
8620.

int(dx)/(x^(4)-x^(2))=(1)/(x)+log|f(x)|+C then f(x) is given by

Answer»

`(x+1)/(x-1)`
`(x-1)/(x+1)`
`((x-1)/(x+1))^(1//2)`
`((x-1)/(x+1))^(2)`

ANSWER :C
8621.

If |vecaxxvecb|^2+|veca.vecb|^2=144and |veca|=4, then the value of |vecb| is

Answer»

1
2
3
4

Answer :C
8622.

If the three points (0, 1), (0, -1) and (x, 0) are vertices of an equilateral triangle, then the values of x are

Answer»

`SQRT3, SQRT2`
`sqrt3, -sqrt3`
`-SQRT5, sqrt3`
`sqrt2, -sqrt2`

ANSWER :B
8623.

PQ is a vertical tower and A, B, C are three points on a horizontal line through Q, the foot of the tower and on the same side of the tower. If the angles of elevation of the top of the tower from A, B and C are alpha, beta, gamma respectively, then AB/BC =

Answer»

`(COT alpha-cot GAMMA)/(cot beta - cot gamma)`
`(cot alpha - cot beta)/(cot beta - cot gamma)`
`(cot alpha - cot beta)/(cot alpha - cot gamma)`
`(cot alpha - cot gamma)/(cot alpha - cot beta)`

ANSWER :B
8624.

Determine all real values of the parameter 'a' for which the equation 16x^4 - ax^3 + (2a + 17) x^2 - ax + 16 = 0 has exactly four distinct real roots that form a geometric progression.

Answer»


ANSWER :170
8625.

IF the angle between a pair of tangents drawn from a point P on the circle x^2+y^2+4x-6y+9 sin^2 a+13 cos^2a=0 us 2a, then the equation of the locus of P is

Answer»

`x^2+y^2+4x-6y+4=0`
`x^2+y^2+4x-6y-9=0`
`x^2+y^2-4x+6y-4=0`
`x^2+y^2+4x-6y+9=0`

ANSWER :D
8626.

If Z in C and area enclosed by the curves |Z + bar(Z)| + |Z - bar(Z)| ge 4 and |Z| le 2 is equal to (a pi - b) where a, b in N then the value of is

Answer»


Solution :`|Z + BAR(Z)|+|Z - bar(Z)| ge 4`
Let `Z = x + iy`

`|x|+|y| ge 2`
`|z| le 2` represent INTERIOR part of CIRCLE
WHOSE radius is 2 and centre at origin
Required area = `pi (2)^(2) - 4.1/2.2 = 4pi - 8`
`a = 4, b = 8` then `b/(4a) = 8/16 = 0.5`.
8627.

Refers to question 7, maximum value of Z+minimum value of Z is equal to

Answer»

12
1
`-13`
`-17`

Solution :Refers to solution 27, MAXIMUM value of Z+minimum value of Z =15-32=-17
8628.

underset(-1)overset1inte^|x|dx=_______

Answer»

SOLUTION :`UNDERSET(-1)overset(.1.)inte^|x|dx=2underset0overset1inte^|x|dx[becausee^|x|` is an even function] `=2underset0overset1inte^xdx=2[e^x]_0^1=2(e-1)`
8629.

If r= hati +hatj+t (2hati-hatj+hatk) and r= 2hati+hatj-hatk+s (3 hati-5 hatj +2hatk) are the vector equations of two lines L_1 andL_2 then the shortest distance between them is

Answer»

`9/(sqrt(59))`
`(10)/(sqrt(59))`
`(11) /(sqrt(59))`
0

Answer :B
8630.

The probability that a non leap year will have 53 Wednesdays is

Answer»

`(1)/(7)`
`(2)/(7)`
`(5)/(7)`
`(6)/(7)`

ANSWER :A
8631.

Let p, q and r be three statements, then [ p rarr ( q rarr r ) ] harr [ ( p ^^ q) rarr r ],is a

Answer»

tautology
contradiction
fallacy
none of these

Answer :A
8632.

A point is moving along the curve y^(3)=27 x. The interval in which the abscissa changes at slower rate then the ordinate is ………..

Answer»

`(-3,3)`
`(-OO,oo)`
`(-1,1)`
`(-oo,-3)UU(3,oo)`

ANSWER :C
8633.

Write two different vectors having same magnitude.

Answer»


ANSWER :An INFINITE of POSSIBLE ANSWERS.
8634.

Find the equation of the ellipse whose vertices are (-4, 1) (6, 1) and one of the focal chord is x - 2 y - 2 = 0

Answer»


ANSWER :`((x-1)^(2))/(25)+((y-1)^(2))/(16)=1`
8635.

(i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0.(ii) If y=acos(log_(e)x)+bsin(log_(e)x), then prove that x^2*y_2^2+x*y_(1)+y=0.

Answer»
8636.

I xx (a xx i) + j xx (a xx j) + k xx (a xx k)=

Answer»

3a
2a
a
0

Answer :B
8637.

"^(74)C_(37)-2 is divisibl by

Answer»

`37^(2)`
`38`
`36`
none of these

Solution :`(a)` `'^(74)C_(37)-2`
`=^(37)C_(0)^(2)+^(37)C_(1)^(2)+^(37)C_(2)^(2)+....^(37)C_(37)^(2)-2`
`='^(37)C_(1)^(2)+^(37)C_(2)^(2)+....^(37)C_(36)^(2)`
is DIVISIBLE by `37^(2)`
(as each `'^(37)C_(1)`, `'^(37)C_(2)`, `'^(37)C_(3)`, ….`'^(37)C_(36)` are divisible by `37`)
8638.

(i) If (1,2),(3,-4),(5,-6) and (c,8) are concyclic, then find c. If (2,0),(0,1),(4,5) and (0,c) are concyclic then find c.

Answer»


ANSWER :(i) 19 or 3 (II) `14/3`
8639.

Evaluate the following :[[x,1,-1],[2,y,1],[3,-1,z]]

Answer»

SOLUTION :`[[X,1,-1],[2,y,1],[3,-1,z]]=[[x,0,-1],[2,y+1,1],[3,z-1,z]]`
(`C_2=C_2+C_3`)
`x[[y+1,1],[z-1,z]]-1[[2,y+1],[3,z-1]]`
=x(yz+z-z+1)-(2z-2-3y-3)
xyz+x-2z+3y+5
xyz+x+3y-2z+5
8640.

If x=a+b, y=a omega+b omega^2,z=a omega^2+bomega show that x^2+y^2+z^2=6ab

Answer»

SOLUTION :`L.H.S.=x^2+y^2+z^2`
`=(a+b)^2+(aomega+bomega^2)^2(aomega^2+bomega)^2`
`=a^2+b^2+2ab+a^2omega^2+b^2omega^4+2abomega^3+a^2omega^4+b^2omega^2+2abomega^3`
`=a^2+a^2omega^2+a^2omega+b^2+b^2omega+b^2omega^2+2ab+2ab+2ab`
`=a^2(1+omega^2+omega)+b^2(1+omega+omega^2)+6AB`
`=0+0+6ab=6ab=R.H.S."(PROVED)"`
8641.

I= int (dx)/( 1+ e^( x) )

Answer»


ANSWER :`I= "In" ( e^X)/( 1+ e^x) + C = x - "In" (1+ e^x) + C`.
8642.

Find the coefficient of x^(3) in the expansion of (2-x+5x^(2))^(6).

Answer»


SOLUTION :N/A
8643.

The value of "log"_2(7+sqrt(2+sqrt(2+sqrt(2+.....))))/(sqrt(18sqrt(18sqrt(18.....))) is : -

Answer»

`1/2`
-1
-2
2

8644.

Relation "perpendicular" in the straight lines in a plane is :

Answer»

reflexive
symmetric
transitive
equivalence

Answer :B
8645.

State with reason whether the following functions have inverse g : {5, 6, 7, 8} rarr {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}

Answer»

Solution :5 and 7 have the same IMAGE 4, so G is not one-one and hense no inverse
8646.

Evaluateint[cos^-1((1-tan^2x)/(1+tan^2x))+sin^-1((2tanx)/(1+tan^2x))]dx.

Answer»

SOLUTION :`INT[cos^-1((1-tan^2x)/(1+tan^2x))+sin^-1((2tanx)/(1+tan^2x))]dx.=int[cos^-1cos2x+sin^-1sin2x]2x=int(2x+2x)dx=int4xdx=4x^2/2+C=2x^2+C`
8647.

Statement I Ifalpha , betaare roots of 6x^(2) + 11x + 3 = 0 ", then " cos^(-1) alphaexists but notcot^(-1) beta ( alpha gt beta). Statement II Domain ofcos^(-1) x" is " [-1, 1].

Answer»


ANSWER :a
8648.

It is given that at x = 1, the function x^4-62x^2+ax+9 attains its maximum value, on the interval [0,2]. Find the value of a ?

Answer»

SOLUTION :`f(X)=x^4-62x^2+ax+9,[0,2]f(x)=4x^3-124x+a` SINCE, f(x) attains MAXIMUM at x =1, f(x) = 0 at x =1 `thereforef(x)=0rArr4-124+a=0` a=120
8649.

Integrate the following int(sinx)/(cos^3x)dx

Answer»

Solution :`INT(SINX)/(cos^3x) DX`
[PUT cosx=t then sinx dx=-dt]
`int((-dt)/t^3)=-int-t^3 dt`
`-t^(-2)/-2+C=(1/2t^2)+C.
8650.

If bar(mu)=bar(a)-bar(b),bar(v)=bar(a)+bar(b),|bar(a)|=|bar(b)|=2 then |bar(mu)xx bar(v)|=……..

Answer»

`2sqrt(16-(bar(a).bar(b))^(2))`
`2sqrt(4(bar(a).bar(b))^(2))`
`sqrt(16-(bar(a).bar(b))^(2))`
`sqrt(4-(bar(a).bar(b))^(2))`

Answer :A