Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

A tea party is arranged for 16 people along two sides of a long table with eight chairs on each side. Four particular men wish to sit on one particular side and two particular men on the other side. The number of ways they can be seated is A. 24 × 8! × 8! B. (8!)3 C. 24 × 8! × 8! D. 16!

Answer»

Correct option C. 24 × 8! × 8!   

Explanation:

Four people can be arranged on 8 chairs in 8P4 ways, similarly two people can be arranged on 8 chairs on other side in 8P2 ways. Remaining 10 can be arranged in 10! Ways. 

Therefore no. of ways people can be seated 

= (8! × 8! × 10!)/(4! × 6!) 

= 210 × 8! × 8! 

52.

Three sides of a trapezium be the angle between a pair of adjacent sides.If the area of the trapezium is maximum, what is the length of the fourth side? a. 8 cm b. 9 cm c. 10 cm d. 12 cm

Answer»

Correct option d. 12 cm

Explanation:

Fourth side = 6 + 6 = 12 

53.

Three sides of a trapezium be the angle between a pair of adjacent sides.What is the maximum area of the trapezium? a. 36√3 cm2 b. 30√3 cm2 c. 27√3 cm2d. 24√3 cm2

Answer»

Correct option c. 27√3 cm2   

Explanation:

Maximum area = 9 x 33 = 27√3 

54.

Consider the following statements: Statement I : x > sinx for all x > 0 Statement II: f(x) = x −sinx is an increasing function for all x > 0 Which one of the following is correct in respect of the above statements? A. Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I B. Both Statement I and Statement II are true and Statement II is not the correct explanation of Statement I C. Statement I is true but Statement II is false D. Statement I is false but Statement II is true

Answer»

Correct option A. Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I

Explanation:

Both statements are correct but 2 is not the correct explanation of 1. 

55.

Suppose f(x) is such a quadrant expression that it is positive for all real x. If g(x) = f(x) + f’(x) + f’’(x), then for any real x. Then for any real x. a. g(x) < 0 b. g(x) > 0 c. g(x) = 0 d. g(x) ≥ 0

Answer»

Correct option b. g(x) > 0

Explanation:

Let f(x) = ax2 + bx + c, a > 0, b2 < 4ac

(∵  f(x) > 0)

Now, g(x) = ax2 + bx + c + 2ax + b + 2a

= ax2 + (b + 2a)x + 2a + b + c

Now, (b + 2a)2 - 4a(2a + b + c)

= b2 + 4ab + 4a2 - 8a2 - 4ab - 4ac

= b2 - 4ac - 8a2 < 0 ⇒ g(x) > 0

56.

Suppose f : R → R is defined by f(x) = x2/(1 + x2). What is the range of the function?a. [0, 1) b. [0, 1] c. (0, 1] d. (0, 1) 

Answer»

Correct option a. [0, 1)

Explanation:

y = f(x) = x2/(1 + x2)

Cleary y  0, Again x2 < 1 + x2

So Range is [0, 1)  

57.

If f : R→ S defined by f(x) = 4 sin x –3 cos x + 1 is onto, then what is S equal to?a. [–5, 5] b. (–5, 5) c. (–4, 6) d. [–4, 6]

Answer»

Correct option  d. [–4, 6]

Explanation:

 f(x) = 4 sec x – 3 cosx + 1

Minimum f = - √(42 + (-3)2 + 1 = - 4

Maximum f = √(42 + (-3)2 + 1 = 6

S = Range of f 

= [Minimum f, maximum f] = [–4, 6]

58.

In which one of the following intervals is the function f(x) = x2 – 5x + 6 decreasing? a. (- ∞, 2] b. [3, ∞]  c. (- ∞, ∞) d. (2, 3)

Answer»

Correct option a. (- ∞, 2]

Explanation:

f(x) = x2 - 5x + 6

⇒ f'(x) = 2x - 5

⇒ f'(x) < 0

⇒ 2x - 5 < 0

⇒ x < 5/2

59.

If x, 3/2, z are in AP; x, 3, z are in GP; then which one of the following will be in HP?a. x, 6, z b. x, 4, z c. z, 2, z d. x, 1, z 

Answer»

Correct option a. x, 6, z

Explanation:

x + z = 3, xz = 9

2xz/(x + z) = 18/3 = 6 ⇒ x, 6, z ∈ H.P

60.

The differential equation of the family of curves y = p cos (ax) + q sin (ax), where p, q are arbitrary constants, isa. d2y/dx2 - a2y = 0b. d2y/dx2 - ay = 0c. d2y/dx2 + ay = 0d. d2y/dx2 + a2y = 0

Answer»

Correct option d. d2y/dx2 + a2y = 0

Explanation:

y = p cos ax + q sin ax

⇒ dy/dx = – p a sin ax + qa cos ax

⇒ d2y/dx2 = – p a2 cos ax – qa2 sin ax = –a2y

⇒ d2y/dx2 + a2y = 0 

61.

If two dice are thrown and at least one of the dice shows 5, then the probability that the sum is 10 or more isa. 1/6b. 4/11c. 3/11d. 2/11

Answer»

Correct option c. 3/11

Explanation:

n(S) = 36 

A = {(1,5,) , (2,5), (3,5) (4,5) (5,5), (6,5), (5,1), (5,2), (5,3), (5,4), (5,6)} 

B = {(5,5), (6,4), (4,6) , (6,5), (5,6), (6,6)} 

A ∩ B = {5,6,), (6,5), (5,6)}

P(B/A) = 3/11

62.

A survey was conducted among 300 students. If was found that 125 students like to play cricket, 145 students like to play football and 90 students like to play tennis. 32 students like to play exactly two games out of the three games.How many students like to play exactly only one game? a. 196 b. 228 c. 254 d. 268

Answer»

Correct option c. 254

Explanation:

Exactly One = |A| + |B| + |C| - 2[|A ∩ B| + |B ∩ C| + |A ∩ C|] + 3|A ∩ B ∩ C|

= 125 + 145 + 90 – 2[32 + 3 × 14] + 3 × 14

= 360 – 106 = 254

63.

The smallest positive integer n for which (1 + i/1− i)n = 1, is A. 1 B. 4 C. 8 D. 16

Answer»

Correct option   B. 4

Explanation:

((1 + i)/(1 - i))n = ((1 + i)/(1 - i) x (1 - i)/(1 - i))n = (i)n = > n = 4

64.

Let the sample space consist of non negative integers up to 50, x denote the numbers which are multiples of 3 and y denote the odd numbers. Which of the following is/are correct?1. P(X) = 8/25 2. P(Y) = 1/2 Select the correct answer using the code given below. A. 1 only B. 2 only C. Both 1 and 2 D. Neither 1 nor 2

Answer»

Correct option D. Neither 1 nor 2  

Explanation:

X = 3,6,9…….48} = 16 

Y = 1,3,5,…...49} = 25 

Total integers = 51 (0 is also included) 

∴ P(X) = 16/51, P(Y) = 25/51 

65.

A person is to count 4500 notes. Let an denote the number of notes he counts in the nth minute. If a1 = a2 = a3 = ⋯ = a10 = 150, and a10, a11, a12, … are in AP with the common difference -2, then the time taken by him to count all the notes is A. 24 minutes B. 34 minutes C. 125 minutes D. 135 minutes

Answer»

Correct option B. 34 minutes

Explanation:

Total notes counted in first 10 minutes

= 150 × 10 = 1500

Remaining notes = 3000

Further counting of notes form an A. P

series with a = 150 , d = -2 

Sn = 3000 = n/2[2a + (n - 1)d]

⇒ n = 34

66.

A cylindrical jar without a lid has to be constructed using a given surface area of a metal sheet. If the capacity of the jar is to be maximum, then the diameter of the jar must be k times the height of the jar. The value of k is A. 1 B. 2 C. 3 D. 4

Answer»

Correct option  B. 2

Explanation:

For any open cylinder of surface area, when it has maximum volume, the height and radius of the base are equal. 

Therefore diameter of cylinder = Twice of its height So k will be equal to 2

67.

If f(x) = x(√x − √(x + 1)), then f(x) is A. continuous but not differentiable at x = 0 B. differentiable at x = 0 C. not continuous at x = 0 D. None of the above

Answer»

Correct option B. differentiable at x = 0   

Explanation:

f(x) is continuous and differentiable also

[As L.H.L = R.H.L = f(0) = 0 and L.H.D = R.H.D] 

68.

The set of all points, where the function f(x) = √1− e − x2 is differentiable, is A. (0, ∞)B. (-∞, ∞)C. (-∞, ∞) ∪(0, ∞) D. (-1, ∞)

Answer»

Correct option B. (-∞, ∞)  

Explanation:

f'(x) = (xe-x2)/(1 - e-x2)

which is defined for all x∈ R

69.

What is sin105° + cos105° equal to ? a. sin 50° b. cos 50° c. 1/√2 d. 0

Answer»

Correct option c. 1/√2

Explanation:

sin (90° + 15°) + cos105° = cos15° + cos105°

= 2cos 60°.cos 45°

= 2 x 1/2 x 1/2 = 1/2

70.

What is the value of the sum∑(in + in + 1), for n ∈ [n = 2, 11] where i = √(-1)?a. i b. 2i c. –2i d. 1 + i

Answer»

Correct option c. - 2i

Explanation:

Sum = i2 + 2i3 + 2i4 + ..... + 2i10 + 2i11 + i12

= 2i11 = 2i3 = –2i  

71.

What is (sin5x - sin3x)/(cos5x + cos3x) equal to? a. sin x b. cos x c. tan x d. cot x 

Answer»

Correct option  c. tan x

Explanation:

(sin5x - sin3x)/(cos5x + cos3x) = (2cos4x.sinx)/(2cos4x.cosx) = tanx

72.

If sin x = 1/√5 , sin y = 1/√10 , where 0 &lt; x &lt; π/2, 0 &lt; y &lt; π/2, then what is (x + y) equal to? a. π b. π/2 c. π/4 d. 0

Answer»

Correct option c. π/4    

Explanation:

sinx = 1/√5, siny = 1/√10

sin (x + y) = sinx . cosy + cosx siny

cosx = √(1 - 1/5) = 2/√5, cosy = √(1 - 1/10) = √(9/10) = 3/√10

sin(x +y) = 1/√5 x 3/√10 + 2/√5 x 1/√10 = 5/√50 = 1/√2

⇒ x + y = 45°

73.

Let a die be loaded in such a way that even faces are twice likely to occur as the odd faces. What is the probability that a prime number will show up when the die is tossed? A. 1/3 B. 2/3 C. 4/9 D. 5/9

Answer»

Correct option   C. 4/9

Explanation:

Prime numbers are 2,3 and 5. 

P(prime no.) = P(even no.) P(prime no.) + P(odd no.) P(prime no.)

= 2/3 x 1/3 + 1/3 x 2/3 = 4/9

74.

What is the equation to the sphere whose centre is at (–2, 3, 4) and radius is 6 units? a. x2 + y2 + z2 + 4x –6y –8z = 7  b. x2 + y2 + z2 + 6x –4y –8z = 7  c. x2 + y2 + z2 + 4x –6y –8z = 4  d. x2 + y2 + z2 + 4x + 6y + 8z = 4 

Answer»

Correct option a. x2 + y2 + z2 + 4x –6y –8z = 7

Explanation:

(x + 2)2 + (y – 3)2 + (z – 4)2 = 62 

⇒ x2 + y2 + z2 + 4x – 6y – 8z = 62 – 22 – 32 – 4

⇒ x2 + y2 + z2 + 4x – 6y – 8z = 7

75.

What is (vector a - vector b) x (vector a + vector b) equal to?a. vector 0b. vector a x vector bc. 2(vector a x vector b)d. |vector a|2 - |vector b|2

Answer»

Correct option c. 2(vector a x vector b)

Explanation:

(vector a - vector b) x (vector a + vector b)

vector a x vector a + vector a x vector b - vector b x vector a + vector b - vector b

= 0 + vector a x vector b + vector a x vector b + 0

= 2(vector a x vector b)

76.

If the vectors k and vector A are parallel to each other, then what is k vector k x vector A equal to? a. k2 vector A b. vector 0 c. - k2 vector A d.vector A

Answer»

Correct option b. vector 0

Explanation:

Cross product of parallel vectors = vector 0 

77.

Let vector a, vector b and vector c be three mutually perpendicular vectors each of unit magnitude. If vector = vector a + vector b + vector c, vector B = vector a - vector b +  vector c and vector C = vector a - vector b - vector c, then which one of the following is correct? a. |vector A| &gt; |vector B| &gt; |vector C|b.|vector A| = |vector B| ≠ |vector C|c. |vector A| = |vector B| = |vector C|d. |vector A| ≠ |vector B| ≠ |vector C|

Answer»

Correct option c. |vector A| = |vector B| = |vector C|   

Explanation:

for simplicity let us take  vector a, vector b, vector c as i, j, k.

Now magnitude of vector A, vector B and vector C will be √3.

78.

If a and b are two unit vectors, then the vector (a + b) × (a × b) is parallel to A. (a − b) B. (a + b) C. (2a − b) D. (2a + b)

Answer»

Correct option   A. (a - b)

Explanation:

(a + b)× (a × b) = a ×(a × b) + a×(a × b) (a . b)a – (a .a)b + (b . b)a – (b.a)b a - b + a - b [a and b are unit vectors]

= 2 (a - b)

i.e., parallel to (a - b)

79.

If vector F = i + 3j+ 2k acts on a particle to displace it from the point A(i + 2j− 3k) to the point B(3i − j + 5k). The work done by the force will be A. 5 units B. 7 units C. 9 units D. 10 units

Answer»

Correct option C. 9 units

Explanation:

The line joining the points vector A(i + 2j – 3k) and vector B(3i – j + 5k) is i.e., vector AB = 2i – 3j +8k Work done = vector (F.AB) = 1×2 + 3×(-3) + 2 × 8 = 9

80.

If vector a and vector b are vectors such that |vector a| = 2, = |vector b| = 7 and vector(a x b) = 3i + 2j + 6k, then what is the acute angle between vector a and vector b ? a. 30° b. 45° c. 60°  d. 90°

Answer»

Correct option a. 30°

Explanation:

sinθ = vector(|a x b|)/(|vector a||vector b|)

= 7/2 x 7

= 1/2

⇒ θ = 30° 

81.

If A + B + C = 180°, then what is sin 2A – sin 2B – sin 2C equal to? a. –4 sin A sin B sin C b. –4 cos A sin B cos C c. –4 cos A cos B sin C d. –4 sin A cos B cos C

Answer»

Correct option d. –4 sin A cos B cos C

Explanation:

sin 2A - sin 2B - sin 2C

= 2cos (A + B) sin (A - B) sin( 2A + 2B)

= 2cos(A + B) sin(A - B) + 2sin (A + B) cos(A + B) 

= 2cos(A + B ) [sin(A - B) sin (A + B)] 

= - 2cosC[ 2sin A cosB]

= - 4 sin A cosBcosC

82.

The sum of all real roots of the equation |x − 3|2 + |x −3| − 2 = 0 A. 2 B. 3 C. 4 D. 6

Answer»

Correct option  D. 6

Explanation:

This is quadratic equation in the form of |x - 3|.

Let |x - 3| = t

Therefore equation becomes ‘t2 + t - 2= 0’

Solving the equation, we get t = 1 (-ve value is neglected as t is +ve)

∴ x = 4, 2

Sum of roots = 6

83.

What is the moment about the point i + 2j - k of a force represented by 3i + k acting through the point 2i - j + 3k?a. - 3i + 11j + 9k b. 3i + 2j + 9k c. 3i + 4j + 9k d. i + j + k 

Answer»

Correct option a. - 3i + 11j + 9k

Explanation:

vector r = (2i - j + 3k) - (i + 2j - k)

= i - 3j + 4k

vector τ = r x F = (i- 3j + 4k) x (3i + k)

= - 3i + 11j + 9k 

84.

How many different permutations can be made out of the letters of the word ‘PERMUTATION’? A. 19958400 B. 19954800 C. 19952400 D. 39916800

Answer»

Correct option A. 19958400  

Explanation:

There are 11 letters in the word ‘PERMUTATION’ and ‘T’ is repeated two times. 

∴ Number of permutations = 11!/2! = 19958400

85.

What is C(n, r) + 2C(n, r – 1) + C(n, r) equal to? a. C(n + 1, r) b. C(n –1, r + 1) c. C(n, r + 1) d. C(n + 2, r) 

Answer»

Correct option d. C(n + 2, r)

Explanation:

nrC + n(r - 1)C + n(r - 2)C

= (n + 1)rC + (n + 1)(r - 1)C = (n + 2)rC

86.

If A and B are two invertible square matrices of same order, then what is (AB)–1 equal to? a. B–1A–1 b. A–1B–1 c. B–1A d. A–1B

Answer»

Correct option a. B–1A–1  

Explanation:

(AB)-1 = B-1A-1

87.

If A is a 2 × 3 matrix and AB is a 2 × 5 matrix, then B must be a a. 3 × 5 matrix b. 5 × 3 matrix c. 3 × 2 matrix d. 5 × 2 matrix

Answer»

Correct option a. 3 × 5 matrix

Explanation:

(A)(2 x 3) x (B)(3 x 5) = (AB)2 x 5

∴ B must be 3 x 5 matrix

88.

What is the value of ((-1 + i√3)/2)3n + ((-1 + i√3)/2)3n where i = √(-1)?a. 3 b. 2 c. 1 d. 0

Answer»

Correct option b. 2  

Explanation:

(w)3n + (w2)3n

(w3)n + (w3)2n

= 1 + 1 = 2

89.

What is the number of triangles that can be formed by choosing the vertices from a set of 12 points in a plane, seven of which lie on the same straight line? a. 185 b. 175 c. 115 d. 105

Answer»

Correct option a. 185  

Explanation:

No. of triangle =  12C3 - 7C3 = 220 – 35 = 185

90.

If (0.2)x = 2 and log10 2 = 0.3010, then what is the value of x to the nearest tenth? a. –10.0 b. –0.5 c. –0.4 d. –0.2

Answer»

Correct option c. – 0.4

Explanation:

(0.2)X = 2 

x log102/10 = log10

x[log102 – log10 10] = log10

x[0.3010 –1] = 0.3010

x = - (0. 3010)/(0.6990) ≈ - 0.43

91.

Let matrix B be the adjoint of a square matrix A, l be the identity matrix of same order as A. If k( ≠ 0)  is the determinant of the matrix A, then what is AB equal to? a. l b. kl c. k2l d. (1/k)l

Answer»

Correct option b. kl

Explanation:

B = adj A, l = Identity matrix, |A| = k

AB = A(adj A) = |A|l = kl

92.

For a square matrix A, which of the following properties hold? 1. (A-1) -1A2. det(A-1) = 1/detA3. (λA)-1 λA-1 where λ is a scalarSelect the correct answer using the code given below: a. 1 and 2 only b. 2 and 3 only c. 1 and 3 only d. 1, 2 and 3 

Answer»

Correct option a. 1 and 2 only  

Explanation:

Statement 1 and 2 are correct. 

Statement 3 is incorrect because

(λA)-1 = 1/λA-1, λ ≠ 0 

93.

A square matrix A is called orthogonal if a. A = A2 b. A’ = A–1 c. A = A–1 d. A = A’ Where A’ is the transpose of A

Answer»

Correct option a. A = A2   

Explanation:

If A–1 = AT, then A is orthogonal matrix.

94.

If A, B and C are subsets of a Universal set, then which one of the following is not correct? a. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)b. A' ∪ (A ∪ B) = (B' ∩ A)' ∪ A c. A' ∪ (B ∪ C) = (C' ∩ B)' ∩ A d. (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) Where A’ is the complement of A

Answer»

Correct option c. A' ∪ (B ∪ C) = (C' ∩ B)' ∩ A

Explanation:

Checking through option ‘C” is incorrect.

95.

What is the sum of all three-digit numbers that can be formed using all the digits 3, 4 and 5, when repetition of digits is not allowed? a. 2664 b. 3882 c. 4044 d. 4444

Answer»

Correct option a. 2664

Explanation:

543 + 534 + 453 + 435 + 354 + 345 = 2664

96.

Let x be the number of integers lying between 2999 and 8001 which have at least two digits equal. Then x is equal to a. 2480 b. 2481 c. 2482 d. 2483

Answer»

Correct option b. 2481

Explanation:

The no. with all distinct digits = 5 × 9 × 8 × 7 = 2520 

∴ x = 5001 – 2520 = 2481

97.

Consider the following statements: 1. If 10 is added to each entry on a list then the average increase by 10. 2. If 10 is added to each entry on a list, then the standard deviation increase by 10. 3. If each entry on a list is doubled, then the average doubles. Which of the above statement are correct? a. 1, 2 and 3 b. 1 and 2 only c. 1 and 3 only d. 2 and 3 only

Answer»

Correct option c. 1 and 3 only

98.

The variance of 25 observations is 4. If 2 is added to each observation, then the new variance of the resulting observations is a. 2 b. 4 c. 6 d. 8

Answer»

Correct option b. 4

Explanation:

Variance will not change by adding or subtracting a fixed value to all the elements. 

99.

Five sticks of length 1, 3, 5, 7 and 9 feet are given. Three of these sticks are selected at random. What is the probability that the selected sticks can form a triangle? A. 0.5 B. 0.4 C. 0.3 D. 0

Answer»

Correct option C. 0.3

Explanation:

Condition for triangle: a + b > c

Case 1: 3, 5, 7

Case 2: 5, 7, 9

Case 3: 3, 7, 9

∴ Required probability = 3/10 = 0.3 

100.

Consider the following statements: 1. Variance is unaffected by change of origin and change of scale. 2. Coefficient of variance is independent of the unit of observations. Which of the statements given above is/are correct? A. 1 only B. 2 only C. Both 1 and 2 D. Neither 1 nor 2

Answer»

Correct option B. 2 only

Explanation:

Variance does not depend upon change of origin and unit of observations but it depends upon scale.