Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

यदि `sin^(-1)""(1)/(2)=tan^(-1)x,` तो x का मान ज्ञात कीजिए ।

Answer» दिया है - `sin^(-1)""(1)/(2)=tan^(-1)x `
` implies tan^(-1)x=sin^(-1)""(1)/(2)=(pi)/(6)impliesx=tan""(pi)/(6)=(1)/(sqrt(3))`
`:. x =(1)/(sqrt(3))`
52.

मान ज्ञात कीजिए - `cot^(-1)(-sqrt(3))`

Answer» मान `cot^(-1)(-sqrt(3))=theta , pi//2 lt theta lt pi`
`implies cot theta=-sqrt(3)=cot""(5pi)/(6)implies theta =(5pi)/(6)`
` :. cot^(-1)(-sqrt(3)) "का मुख्य मान "=(5pi)/(6)`
53.

मान ज्ञात कीजिए - `cos^(-1)""((1)/(2))`

Answer» मान `cos^(-1)""(1)/(2)=theta , 0 le theta le (pi)/(2)`
` implies cos theta =(1)/(2)=cos""(pi)/(3)implies theta=(pi)/(3)`
`:. cos^(-1)""(1)/(2) "का मुख्य मान "=(pi)/(3)`
54.

मान ज्ञात कीजिए - `sin^(-1)""((1)/(sqrt(2)))`

Answer» मान `sin^(-1)((1)/(sqrt(2)))=theta , -(pi)/(2) le theta le(pi)/(2) `
`implies sin theta =(1)/(sqrt(2))=sin""(pi)/(2)implies theta =(pi)/(4)`
`:. sin^(-1)((1)/(sqrt(2))) "का मुख्य मान "=(pi)/(4)`
55.

मान ज्ञात कीजिए - `cot^(-1)(-1)`

Answer» मान `cot^(-1)(-1)=theta , 0 lt theta lt pi`
` implies cot theta=-1=cot""(3pi)/(4)implies theta=(3pi)/(4)`
`:. cot^(-1)(-1) "का मुख्य मान "=(3pi)/(4)`
56.

मान ज्ञात कीजिए - `sin^(-1)(-1)`

Answer» मान `sin^(-1)(-1)=theta, -pi//2 le theta le pi//2`
`implies sintheta =-1 =sin(-(pi)/(2))implies theta =-(pi)/(2)`
` :. sin^(-1)(-1) "का मुख्य मान "=-(pi)/(2)`
57.

`tan^(-1)sqrt(3)+cot^(-1)sqrt(3)` का मुख्य मान ज्ञात कीजिए ।

Answer» Correct Answer - `(pi)/(2)`
58.

`tan^(-1)(sqrt(3))-cot^(-1)(-sqrt(3))` का मानA. `pi` हैB. `-(pi)/(2)` हैC. `0` हैD. `2sqrt(3)`

Answer» Correct Answer - B
59.

मान ज्ञात कीजिए - ` "cosec"^(-1)(-2)`

Answer» मान `"cosec"^(-1)(-2)=theta , -pi//2 le theta lt 0 (theta lt 0)`
`implies "cosec"theta =-2 implies "cosec" theta="cosec"(-(pi)/(6))`
`implies theta=-(pi)/(6)`
`:. "cosec"^(-1)(-2) "का मुख्य मान "=-(pi)/(6)`
60.

मान ज्ञात कीजिए - ` cot^(-1)(sqrt(3))`

Answer» मान `cot^(-1)(sqrt(3))=theta, 0 lt theta lt pi`
`implies cot theta =sqrt(3)=cot""(pi)/(6)implies theta =(pi)/(6)`
` :. cot^(-1)(sqrt(3)) "का मुख्य मान "=(pi)/(6)`
61.

मान ज्ञात कीजिए - ` sin^(-1)""(1)/(2)`

Answer» मान ` sin^(-1)""(1)/(2)=theta , -pi //2 le theta le pi//2`
`implies sin theta =(1)/(2)=sin""(pi)/(6)implies theta=(pi)/(6)`
`:. sin^(-1)""(1)/(2) "का मुख्य मान "=(pi)/(6)`
62.

मान ज्ञात कीजिए - `sin[cos^(-1)""((3)/(5))]`

Answer» Correct Answer - `(4)/(5)`
63.

मान ज्ञात कीजिए - `cos[tan^(-1)""(3)/(4)]`

Answer» Correct Answer - `(4)/(5)`
64.

निम्नलिखित व्यंजकों के मान ज्ञात कीजिए - `tan^(-1)(tan.(pi)/(4))`.

Answer» `tan^(-1)(tan.(pi)/(4))=(pi)/(4)," "[because (pi)/(4) in (-(pi)/(2),(pi)/(2))]`
65.

मान निकालें : `sin^(-1) (sin ""(3pi)/(5))`

Answer» Correct Answer - `(2pi)/(5)`
66.

मान ज्ञात कीजिए - `tan^(-1)[tan""(3pi)/(4)]`

Answer» Correct Answer - `-(pi)/(4)`
67.

निम्नलिखित व्यंजकों के मान ज्ञात कीजिए - `sin^(-1)(sin.(3pi)/(5))`

Answer» चूँकि `sin^(-1)` की मुख्य शाखा का परिसर `[-(pi)/(2),(pi)/(2)]` होता है।
`therefore" "sin^(-1)(sin.(3pi)/(5))ne (3pi)/(5)," "[because (3pi)/(5) cancel(in)[-(pi)/(2),(pi)/(2)]]`
अब , `sin^(-1)(sin.(3pi)/(5))`
`=sin^(-1)[sin(pi-(2pi)/(5))]," "[because (3pi)/(5)=pi-(25)/(5)]`
`=sin^(-1)(sin.(2pi)/(5))," "[because sin(pi-theta)=sin theta]`
`=(2pi)/(5)in[-(pi)/(2),(pi)/(3)]," "[because sin^(-1)(sin theta)=theta]`
`therefore" "sin^(-1)(sin.(3pi)/(5))=(2pi)/(5).`
68.

प्रश्न संख्या 16 से 18में दिए प्रत्येक व्यंजन का मान ज्ञात कीजिए : `tan^(-1)(tan""(3pi)/(4))`

Answer» Correct Answer - `(-pi)/(4)`
69.

मान निकालें : `tan^(-1) (tan""(3pi)/(4))`

Answer» Correct Answer - `-(pi)/(4)`
70.

` sin^(-1)(sin""(pi)/(3))` का मान ज्ञात कीजिए ।

Answer» Correct Answer - `(pi)/(3)`
71.

मान ज्ञात कीजिए - `cos^(-1)[cos""((4pi)/(3))]`

Answer» Correct Answer - `(2pi)/(3)`
72.

`2 sin^(-1)""(1)/(2)+cos^(-1)""(-(1)/(2))` का मान ज्ञात कीजिए ।

Answer» Correct Answer - `pi`
73.

`tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)-(1)/(2)cos^(-1)x,-(1)/(sqrt2)lexle1`

Answer» माना `x=costhetaimpliestheta=cos^(-1)x`
`L.H.S.=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))`
`=tan^(-1)((sqrt(1+costheta)-sqrt(1-costheta))/(sqrt1+costheta+sqrt(1-costheta)))`
`=tan^(-1)""(sqrt(2cos^(2)""(theta)/2)-sqrt(2sin^(2)""(theta)/(2)))/(sqrt(2cos^(2)""(theta)/(2))+sqrt(2sin^(2)""(theta)/(2)))`
`=tan^(-1)((cos""(theta)/(2)-sin""(theta)/(2))/(cos""(theta)/(2)+sin""(theta)/(2)))`
`=tan^(-1)((1-tan""(theta)/(2))/(1+tan""(theta)/(2)))`
`=tan^(-1)tan((pi)/(4)-(theta)/(2))=(pi)/(4)-(theta)/(2)`
`=(pi)/(4)-(1)/(2)cos^(-1)x=R.H.S.`
74.

`sin^(-1)(sin""(3pi)/(5))` का मान ज्ञात कीजिए ।

Answer» Correct Answer - `(3pi)/(5)`
75.

मान ज्ञात कीजिए - `cos^(-1)""(-(1)/(2))`

Answer» Correct Answer - `(2pi)/(3)`
76.

मान ज्ञात कीजिए - `sec^(-1)""(-(2)/(sqrt(3)))`

Answer» Correct Answer - `(5pi)/(6)`
77.

मान ज्ञात कीजिए - `cos^(-1)""((1)/(sqrt(2)))`

Answer» Correct Answer - `(pi)/(4)`
78.

मान ज्ञात कीजिए - `sin^(-1)""(-(sqrt(3))/(2))`

Answer» Correct Answer - `-(pi)/(3)`
माना `sin^(-1)""(-(sqrt(3))/(2))=x `
`implies sinx=-(sqrt(3))/(2)=-sin""(pi)/(3)=sin(-(pi)/(3))implies x=-(pi)/(3)`
79.

मान ज्ञात कीजिए - `tan^(-1)""(-(1)/(sqrt(3)))`

Answer» Correct Answer - `-(pi)/(6)`
80.

`cot(tan^(-1)a+cot^(-1)a)`

Answer» `cot(tan^(-1)a+cot^(-1)a)=cot""(pi)/(2)=0`
81.

यदि `sin(sin^(-1)""(1)/(5)+cos^(-1)x)=1` तो x का मान ज्ञात कीजिए।

Answer» `sin(sin^(-1)""(1)/(5)+cos^(-1)x)=1`
`impliessin(sin^(-1)""(1)/(5)+cos^(-1)x)=sin""(pi)/(2)`
`impliessin^(-1)""(1)/(5)+cos^(-1)x+(pi)/(2)`
`impliessin^(-1)""(1)/(5)=(pi)/(2)-cos^(-1)x`
`impliessin^(-1)""(1)/(5)=sin^(-1)ximpliesx=(1)/(5)`
82.

`cot(tan^(-1)3)` का मान ज्ञात कीजिए।

Answer» माना `tan^(-1)3=x`
`impliestanx=3" implies "cotx=(1)/(3)`
`impliescot(tan^(-1)3)=(1)/(3)`
83.

यदि `sin^(-1)x=(pi)/(4)" तो "cos^(-1)x` का मान ज्ञात कीजिए।

Answer» `sin^(-1)x=(pi)/(4)`
`impliesx=sin"(pi)/(4)=(1)/(sqrt2)`
`:.cos^(-1)x=cos^(-1)""(1)/(sqrt2)`
`=cos^(-1)(cos""(pi)/(4))=(pi)/(4)`
84.

निम्नलिखित समीकरण को हल कीजिए - `sec^(-1)((x)/(a))-sec^(-1)((x)/(b))=sec^(-1)(b)-sec^(-1)(a).`

Answer» दिया गया समीकरण है -
`sec^(-1)((x)/(a))-sec^(-1)((x)/(b))=sec^(-1)(b)-sec^(-1)(a)`
`rArr cos^(-1)((a)/(x))-cos^(-1)((b)/(x))=cos^(-1)((1)/(b))-cos^(-1)((1)/(a))," "[because sec^(-1)x=cos^(-1)((1)/(x))]`
`rArr cos^(-1)((a)/(x))+cos^(-1)((1)/(a))=cos^(-1)((1)/(b))+cos^(-1)((b)/(x))`
`rArr cos^(-1)[(a)/(x).(1)/(a)-sqrt(1-(a^(2))/(x^(2)))sqrt(1-(1)/(a^(2)))]`
`" "=cos^(-1)[(1)/(b).(b)/(x)-sqrt(1-(1)/(b^(2)))sqrt(1-(b^(2))/(x^(2)))]`
`rArr cos^(-1)[(1)/(x)-sqrt((x^(2)-a^(2))/(x^(2)))sqrt((a^(2)-1)/(a^(2)))]`
`=cos^(-1)[(1)/(x)-sqrt((b^(2)-1)/(b^(2)))sqrt((x^(2)-b^(2))/(x^(2)))]`
`rArr (1)/(x)-sqrt((x^(2)-a^(2))/(x^(2)))sqrt((a^(2)-1)/(a^(2)))`
`rArr sqrt((x^(2)-a^(2))/(x^(2)))sqrt((a^(2)-1)/(a^(2)))=sqrt((b^(2)-1)/(b^(2)))sqrt((x^(2)-b^(2))/(b^(2)))`
`rArr ((x^(2)-a^(2))(a^(2)-1))/(a^(2)x^(2))=((x^(2)-b^(2))(b^(2)-1))/(b^(2)x^(2)),`
85.

समीकरण `tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2)` का एक हल है-

Answer» Correct Answer - A
86.

निम्नलिखित समीकरण को हल कीजिए - `tan^(-1)(cotx)+cot^(-1)(tanx)=(pi)/(4)`

Answer» दिया गया समीकरण है -
`tan^(-1)(cotx)+cot^(-1)(tanx)=(pi)/(4)`
`tan^(-1)[tan((pi)/(2)-x)]+cot^(-1)[cot((pi)/(2)-x)]=(pi)/(4),`
`[because tan((pi)/(2)-x)=cotx , cot((pi)/(2)-x)=tanx]`
`(pi)/(2)-x+(pi)/(2)-x=(pi)/(4)`
`=(pi)/(2)+(pi)/(2)-(pi)/(4)=2x`
`(pi)/(2)+(pi)/(2)-(pi)/(4)=2x`
`2x=(3pi)/(4) rArr x =(3pi)/(8).`
87.

निम्नलिखित समीकरण को हल कीजिए - `tan^(-1).(1-x)/(1+x)=sin^(-1).(2x)/(1+x^(2)).`

Answer» दिया गया समीकरण है -
`tan^(-1).(1-x)/(1+x)=sin^(-1).(2x)/(1+x^(2))`
`tan^(-1)1-tan^(-1)x=2tan^(-1)x`
`(pi)/(2)=2tan^(-1)x+tan^(-1)x`
`rArr" "3tan^(-1)x=(pi)/(4)`
`rArr" "3tan^(-1)x=(pi)/(4)`
`rArr" "tan^(-1)=(pi)/(12)`
`rArr" "x=tan.(pi)/(12)=tan.(180^(@))/(12)`
`rArr" "x=tan15^(@)=tan(45^(@)-30^(@))`
`rArr" "x=(tan45^(@)-tan30^(@))/(1+tan45^(@)tan30^(@))`
`rArr" "x=(1-(1)/(sqrt3))/(1+(1)/(sqrt3))=((sqrt3-1)/(sqrt3))/((sqrt3+1)/(sqrt3))`
`rArr" "x=(sqrt3-1)/(sqrt3+1)=((sqrt3-1)(sqrt3-1))/((sqrt3+1)(sqrt3-1))`
`rArr" "x=((sqrt3-1)^(2))/((sqrt3)^(2)-(1)^(2))=((sqrt3)^(2)+1-2sqrt3)/(3-1)`
`rArr" "x=(3+1-2sqrt3)/(3-1)=(4-2sqrt3)/(2)`
`rArr" "x=2-sqrt3.`
88.

`tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))),agt0,(-a)/(sqrt3)ltxlt(a)/(sqrt3)`

Answer» `tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))`
`=tan^(-1)((3a^(2).atantheta-a^(3)tan^(3)theta)/(a^(3)-3a.a^(2)tan^(2)theta))`
`=tan^(-1)((3tantheta-tan^(3)theta)/(1-3tan^(2)theta))" "" माना "{:(x=atantheta),(implies(x)/(a)=tantheta):}`
`=tan^(-1)(tan3theta)=3theta" "theta=tan^(-1)((x)/(a))`
`=3tan^(-1)""(x)/(a)`
89.

`tan^(-1)sqrt((1-cosx)/(1+cosx))*0 le x ltpi` को सरलतम रूप में लिखे |

Answer» `tan^(-1) sqrt((1-cosx)/(1+cosx)) = tan^(-1) ""sqrt((2sin^(2) ""(x)/(2))/(2 cos^(2)""(x)/(2)))=tan^(-1)|tan ""(x)/(2)|`
` = tan^(-1)(tan""(x)/(2)) = (x)/(2) " "[because 0 le x ltpi therefore 0 le(x)/(2)lt(pi)/(2)]`
90.

सरलतम रूप में लिखिए - `tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))), a gt 0 :(-a)/(sqrt3) le x le (a)/(sqrt3).`

Answer» माना `x=a tan theta`
`rArr" "tan theta=(x)/(a)`
`rArr" "theta=tan^(-1)((x)/(a))`
चूँकि`" "-(a)/(sqrt3) lt x lt (a)/(sqrt3)`
`rArr" "-(a)/(sqrt3) lt a tan theta lt (a)/(sqrt3)`
`rArr" "-(1)/(sqrt3) lt tan theta lt (1)/(sqrt3)`
अब, `tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))]`
`=tan^(-1)[(3a^(2).a tan theta-a^(3) tan^(3)theta)/(a^(3)-3a.a^(2)tan^(2)theta)]`
`=tan^(-1)[(a^(3)(3tan theta-tan^(3)theta))/(a^(3)(1-3tan^(2)theta))]`
`=tan^(-1)[(3tan theta-tan^(3)theta)/(1-3tan^(2)theta)]`
`=tan^(-1)(tan3 theta)`
`=3theta`
`=3tan^(-1).(x)/(a)` जो कि अभीष्ट सरलतम रूप है।
91.

`tan^(-1)""((x)/(y))-tan^(-1)""(x-y)/(x+y) ` का मान है :A. `(pi)/(2) `हैB. `(pi)/(3) ` हैC. `(pi)/(4)` हैD. `(3pi)/(4)`

Answer» Correct Answer - C
92.

हल कीजिए : `tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)""(2)/(x^(2))`.

Answer» Correct Answer - 0, 3, `-(2)/(3)`
93.

`3cos^(-1)x=cos^(-1)(4x^(3)-3x),x""in[(1)/(2),1]`

Answer» माना `cos^(-1)x=theta`
`impliesx=costheta`
`R.H.S=cos^(-1)(4x^(3)-3x)`
`=cos^(-1)(4cos^(3)theta-3costheta)`
`=cos^(-1)(cos3theta)`
`=3theta=3cos^(-1)x=L.H.S`
94.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए - `cos^(-1)(-(1)/(sqrt2))`

Answer» माना `cos^(-1)(-(1)/(sqrt2))=theta`
`rArr" "cos theta=-(1)/(sqrt2)," "theta in [0,pi]`
`rArr" "cos theta=-cos.(pi)/(4)`
`rArr" "cos theta=cos(pi-(pi)/(4))`
`" "[because cos (pi-theta)=-cos theta]`
`rArr" "cos theta = cos.(3pi)/(4)`
`rArr" "theta=(3pi)/(4)`
अतः `cos^(-1)(-(1)/(sqrt2))` का मुख्य मान `(3pi)/(4)` है।
95.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए : `cos^(-1)(-(1)/(sqrt2))`

Answer» `cos^(-1)(-(1)/(sqrt2))=pi-cos^(-1)((1)/(sqrt2))`
`=pi-cos^(-1)(cos""(pi)/(4))`
`=pi-(pi)/(4)=(3pi)/(4)`
96.

`sin^(-1)(-(1)/(2))` का मुख्य मान निकालें

Answer» Correct Answer - `(pi)/(6)`
97.

`tan^(-1) 1 + cos^(-1)""(-(1)/(2))+sin^(-1)""((1)/(2))` का मुख्य मान ज्ञात कीजिए ।

Answer» Correct Answer - `(3pi)/(4) `
98.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए - `sin^(-1)((1)/(sqrt2))`

Answer» हम जानते हैं कि `sin^(-1)` की मुख्य शाखा का परिसर `[-(pi)/(2),(pi)/(2)]` होता है।
माना `sin^(-1)((1)/(sqrt2))=theta`
`rArr" "sin theta=(1)/(sqrt2), theta in [-(pi)/(2),(pi)/(2)]`
`rArr" "sin theta= sin.(pi)/(4)`
`rArr" "theta=(pi)/(4)`
अतः `sin^(-1)((1)/(sqrt2))` का मुख्य मान `(pi)/(4)` है।
99.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए - `"cosec"^(1)(2)`

Answer» हम जानते हैं कि `"cosec"^(-1)` की मुख्य शाखा का परिसर `[-(pi)/(2),(pi)/(2)]-{0}.` होता है।
माना `"cosec"^(-1)(2=0`
`rArr" cosec"theta2," "theta in [-(pi)/(2),(pi)/(2)]-{0}`
`rArr" cosec"theta="cosec"(pi)/(6)`
`rArr" "theta=(pi)/(6).`
अतः `"cosec"^(-1)(2)` का मुख्य मान `(pi)/(6)` है।
100.

`cos^(-1)(-(1)/(2))` का मुख्य मान निकालें

Answer» Correct Answer - `(2pi)/(3)`