Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

निम्न समीकरणों को हल कीजिए - `3 tan^(-1)""(1)/(2+sqrt(3))-tan^(-1)""(1)/(x)=tan^(-1)""(1)/(3)`

Answer» Correct Answer - 2
102.

निम्न समीकरणों को हल कीजिएः `"tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha`

Answer» Correct Answer - `+-sqrtsin2theta`
103.

निम्न समीकरणों को हल कीजिए - `cos(tan^(-1)x)=sin(cot^(-1).(3)/(4)).`

Answer» `cos(tan^(-1)x)=sin(cot^(-1).(3)/(4))`
`rArr sin((pi)/(2)-tan^(-1)x)=sin(cot^(-1).(3)/(4))`
`" "[because cos theta=sin((pi)/(2)-theta)]`
दोनों पक्षों की तुलना करने पर,
`(pi)/(2)-tan^(-1)x=cot^(-1).(3)/(4)`
`rArr" "tan^(-1)x+cot^(-1).(3)/(4)=(pi)/(2)`
हम जानते हैं कि `tan^(-1)x+cot^(-1)x=(pi)/(2x in R`
`therefore" "cot^(-1).(3)/(4)=cot^(-1)x`
`rArr" "x=(3)/(4).`
104.

मूल्यांकन कीजिए - `tan^(-1)(sqrt3)-sec^(-1)(-2)+"cosec"^(-1)((2)/(sqrt3))`.

Answer» `tan^(-1)(sqrt3)=(pi)/(3)" "`[उदाहरण 1 (iii ) से]
`sec^(-1)(-2)=(2pi)/(3)" "` [उदाहरण 2 (iv ) से ]
माना `"cosec"^(-1)((2)/(sqrt3))=theta`
`rArr" cosec"theta =(2)/(sqrt3)." "theta in [-(pi)/(2),(pi)/(2)]-{0}`
`rArr" cosec"theta="cosec"(pi)/(3)`
`rArr" "theta=(pi)/(3) "cosec" [-(pi)/(2),(pi)/(2)]-{0}`
`therefore tan^(-1)sqrt3-sec^(-1)(-2)+"cosec"^(-1)((2)/(sqrt3))`
`=(pi)/(3)-(2pi)/(3)+(pi)/(3)`
= 0.
105.

`cos^(-1)(cos""(7pi)/(6))` का मान बराबर हैA. `(7pi)/(6)`B. `(5pi)/(6)`C. `(pi)/(3)`D. `(pi)/(6)`

Answer» Correct Answer - B
106.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए : `sec^(-1)((2)/(sqrt3))`

Answer» `sec^(-1)((2)/(sqrt3))=sec^(-1)(sec""(pi)/(6))=(pi)/(6)`
107.

यदि `sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) ` तो x का मान बराबर है :A. `0,(1)/(2)`B. `1,(1)/(2)`C. `0`D. `(1)/(2)`

Answer» Correct Answer - C
108.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए - `sec^(-1)(-(2)/(3)sqrt3)`

Answer» माना `sec^(-1)(-(2)/(3)sqrt3)=theta`
`rArr" "sec^(-1)(-(2)/(sqrt3))=theta, theta in [0,pi]-{(pi)/(2)}`
`rArr" "sec theta=-(2)/(sqrt3)`
`rArr" "sec theta=sec(pi-(pi)/(6))`
`rArr" "sec theta=sec.(5pi)/(6)`
`rArr" "theta=(5pi)/(6)`
अतः `sec^(-1)(-(2)/(3)sqrt3)` का मुख्य मान `(5pi)/(6)` है।
109.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए - `sec^(-1)((2)/(sqrt3))`

Answer» हम जानते हैं कि `sec^(-1)` की मुख्य शाखा का परिसर `[0,pi]-{(pi)/(2)}` होता है।
माना `" "sec^(-1)((2)/(sqrt3))=theta`
`rArr" "sec theta=(2)/(sqrt3), theta in [0,pi]-{(pi)/(2)}`
`rArr" "sec theta=sec.(pi)/(6)`
`rArr" "theta=(pi)/(6)`
अतः `sec^(-1)((2)/(sqrt3))` का मुख्य मान `(pi)/(6)` है।
110.

`3sin^(-1)x=sin^(-1)(3x-4x^(3)),x"in[-(1)/(2),(1)/(2)]`

Answer» माना `sin^(-1)x=theta`
`impliesx=sintheta`
`R.H.S=sin^(-1)(3x-4x^(3))`
`=sin^(-1)(3sintheta-4sin^(3)theta)`
`=sin^(-1)(sin3theta)`
`=3theta=3sin^(-1)x`
=L.H.S
111.

`sin[sin^(-1)(-(1)/(2))+(pi)/(3)]` का मान है-A. `-sqrt(3)/(2)`B. `-(1)/(2)`C. `(1)/(2)`D. `sqrt(3)/(2)`

Answer» Correct Answer - C
112.

` " cosec" (sin^(-1)x+ cos^(-1) x)` का मुख्य मान ज्ञात कीजिए ।

Answer» Correct Answer - 1
113.

`cosec^(-1) (2)` का मुख्य मान निकालें

Answer» Correct Answer - `(pi)/(6)`
114.

निम्नलिखित के मुख्य मानों को ज्ञात कीजिए : `cosec^(-1)(-sqrt2)`

Answer» Correct Answer - `(-pi)/(4)`
115.

यदि `tan^(-1)""((x-2)/(x-4))+tan^(-1)""((x+2)/(x+4))=(pi)/(4)` तब x का मान ज्ञात कीजिए ।

Answer» दी गयी समीकरण को हम इस प्रकार लिख सकते है ।
`tan^(-1)""((x-2)/(x-4))=(pi)/(4)-tan^(-1)""((x+2)/(x+4))`
`=tan^(-1)1-tan^(-1)""((x+2)/(x+4))=tan^(-1)""[(1-(x+2)/(x+4))/(1+(x+2)/(x+4))]`
`=tan^(-1)""((2)/(2x+6))=tan^(-1)""((1)/(x+3))`
इसलिए , `(x-2)/(x-4)=(1)/(x+3)`
`implies (x-2)(x+3)=x-4`
`implies x^(2)+x-6=x-4`
`implies x^(2)=2 implies x=pm sqrt(2)`
116.

यदि `sin[cot^(-1)(1+x)]=cos(tan^(-1)x)` तब x=A. `(1)/(2)`B. `-(1)/(2) `C. `0`D. 1

Answer» Correct Answer - B
117.

`cos^(-1)[cos""(5pi)/(3)]+sin^(-1)[sin""(5pi)/(3)]` का मान है -A. `(pi)/(2)`B. `(5pi)/(3)`C. `(10pi)/(3)`D. `0`

Answer» Correct Answer - D
118.

निम्न समीकरणों को हल कीजिए - ` sin^(-1)""(5)/(x)+sin^(-1)""(12)/(x)=(pi)/(2)`

Answer» Correct Answer - 13
119.

निम्नलिखित समीकरणों को हल कीजिए - `tan^(-1)((x-1)/(x+2))+tan^(-1)((x+1)/(x+2))=(pi)/(4).`

Answer» दिया गया समीकरण है-
`tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)`
`rArr" "tan^(-1)(((x-1)/(x-2)+(x+1)/(x+2))/(1-((x-1)/(x-2))((x+1)/(x+2))))=(pi)/(4),`
`[because tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))]`
`rArr tan^(-1)[(((x-1)(x+2)+(x+1)(x-2))/((x-2)(x+2)))/(((x-2)(x+2)-(x-1)(x+1))/((x-2)(x+2)))]=(pi)/(4)`
`rArr tan^(-1)[(x^(2)+2x-x-2+x^(2)+2x+x-2)/((x^(2)-4)-(x^(2)-1))]=(pi)/(4)`
`rArr" "tan^(-1)((2x^(2)-4)/(-3))=(pi)/(4)`
`rArr" "(2x^(2)-4)/(-3)=tan.(pi)/(4)`
`rArr" "(2x^(2)-4)/(-3)=1` ltbr `rArr" "2x^(2)-4=-3`
`rArr" "2x^(2)=1`
`rArr" "x=pm(1)/(sqrt2).`
120.

निम्नलिखित का मान ज्ञात कीजिए : `tan^(-1)sqrt(3)-sec^(-1)(-2) `का मान बराबर हैA. `pi`B. `-(pi)/(3)`C. `(pi)/(3)`D. `(2pi)/(3)`

Answer» Correct Answer - B
121.

`tan^(-1)sqrt3-sec^(-1)(-2)` का मान बराबर है :A. `pi`B. `-(pi)/(3)`C. `(pi)/(3)`D. `(2pi)/(3)`

Answer» Correct Answer - B
`tan^(-1)sqrt3-sec^(-1)(-2)`
`=tan^-1(tan""(pi)/(3))-[pi-sec^(-1)2]`
`=(pi)/(3)-pi+sec^(-1)(sec""(pi)/(3))`
`(pi)/(3)-pi+(pi)/(3)=-(pi)/(3)`
122.

`sin(2sin^(-1)""(4)/(5))` का मान है-A. `(40)/(41)`B. `(9)/(41)`C. `(16)/(25)`D. इनमे से कोई नहीं।

Answer» Correct Answer - A
123.

यदि `0 lt x lt 1` हो तब ` sqrt(1+x^(2))[{x cos(cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^((1)/(2))`=...A. xB. `x^(2)`C. `x sqrt(1+x^(2))`D. `sqrt(1+x^(2))`

Answer» Correct Answer - C
124.

यदि ` tan^(-1)x+tan^(-1)y=(pi)/(4)` तब ` x+y+xy` का मान ज्ञात कीजिए ।

Answer» Correct Answer - 1
125.

`sin(sec^(-1)x + " cosec"^(-1) x)` का मुख्य मान ज्ञात कीजिए ।

Answer» Correct Answer - 1
126.

निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए : ` tan""(1)/(2)[sin^(-1)""(2x)/(1+x^(2))+cos^(-1)""(1-y^(2))/(1+y^(2))],|x| lt 1 , y gt 0` तथा `xy lt 1`

Answer» Correct Answer - `(x+y)/(1-xy)`
127.

यदि `tan^(-1)((3)/(4))+tan^(-1)((1)/(k))=(pi)/(4)` हो, तो k का मान ज्ञात कीजिए ।

Answer» दिया है- `tan^(-1)((3)/(4))+tan^(-1)((1)/(k))=(pi)/(4)`
`rArr tan^(-1)((3)/(4))+tan^(-1)((1)/(k))=tan^(-1)1`
`rArr" "tan^(-1)((1)/(k))=tan^(-1)1-tan^(-1)((3)/(4))`
`=tan^(-1)((1)/(k))=tan^(-1)((1-(3)/(4))/(1+(3)/(4)))=tan^(-1)((1-(3)/(4))/(1+(3)/(4)))=tan^(-1)(((4-3)/(4))/((4+3)/(4)))`
`rArr tan^(-1)((1)/(k))=tan^(-1)((1)/(7))`
`rArr" "(1)/(k)=(1)/(7)`
`rArr" "k=7.`
128.

निम्नलिखित समीकरणों को हल कीजिए - `tan^(-1)2x+tan^(-1)3x=(pi)/(4).`

Answer» दिया गया समीकरण है -
`tan^(-1)2x+tan^(-1)3x=(pi)/(4)`
`rArr" "tan^(-1)((2x+3x)/(1-(2x)/(3x)))=(pi)/(4)`
`rArr" "tan^(-1)((5x)/(1-6x^(2)))=(pi)/(4)`
`rArr" "(5x)/(1-6x^(2))=tan.(pi)/(4)`
`rArr" "(5x)/(1-6x^(2))=1`
`rArr" "6x^(2)+5x-1=0`
`rArr" "6x^(2)+6x-x-1=0`
`rArr 6x(x+1)-1(x+1)=0`
`rArr" "(6x-1)(x+1)=0`
`rArr" "x=(1)/(6), x=-1` ltMbrgt चूँकि `x=-1` दिए गये समीकरण को संतुष्ट नहीं करता है।
`therefore x=(1)/(6).`
129.

निम्नलिखित समीकरणों को हल कीजिए - `tan^(-1)x+2cot^(-1)x=(2pi)/(3).`

Answer» दिया गया समीकरण है -
`tan^(-1)x+2cot^(-1)x=(2pi)/(3)`
`rArr" "tan^(-1)x+2tan^(-1)((1)/(x))=(2pi)/(3),`
`" "[because cot^(-1)x=tan^(-1).(1)/(x)]`
`rArr" "tan^(-1)x+tan^(-1)((2xx+(1)/(x))/(1-(1)/(x^(2))))=(2pi)/(3)`
`rArr" "tan^(-1)x+tan^(-1)(((2)/(x))/((x^(2)-1)/(x^(2))))=(2pi)/(3)`
`rArr" "tan^(-1)x+tan^(-1)((2x)/(x^(2)-1))=(2pi)/(3)`
`rArr" "tan^(-1)((x+(2x)/(x^(2)-1))/(1-x xx(2x)/(x^(2)-1)))=(2pi)/(3)`
`rArr" "tan^(-1)((x^(3)+x)/(-1-x^(2)))=(2pi)/(3)`
`rArr" "(x^(3)+x)/(-1-x^(2))=tan((2pi)/(3))`
`rArr" "-(x^(3)+x)/(1+x^(2))tan(pi-(pi)/(3))`
`rArr" "-(x^(3)-x)/(1+x^(2))=-tan.(pi)/(3)`
`rArr" "(x(1+x^(2)))/(1+x^(2))=sqrt3.`
`rArr" "x=sqrt3.`
130.

`sin(tan^(-1)x), |x| lt 1` बराबर होता है :A. `(x)/(sqrt(1-x^(2)))`B. `(1)/(sqrt(1-x^(2)))`C. `(1)/(sqrt(1+x^(2)))`D. `(x)/(sqrt(1+x^(2)))`

Answer» Correct Answer - D
131.

`tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x,(xgt0)`

Answer» `tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x,(xgt0)`
`impliestan^(-1)-tan^(-1)x=(1)/(2)tan^(-1)x`
`implies(pi)/(4)=(1)/(2)tan^(-1)x+tan^(-1)x`
`implies(3)/(2)tan^(-1)x=(pi)/(4)`
`impliestan^(-1)x=(pi)/(6)`
`impliesx=tan""(pi)/(6)=(1)/(sqrt3)`
132.

यदि `sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2)` तो x का मान बराबर है :A. `0,(1)/(2)`B. `1,(1)/(2)`C. 0D. `(1)/(2)`

Answer» Correct Answer - C
`sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2)`
`{:(" माना "sin^(-1)x=theta),(implies" "x=sintheta):}`
`impliessin^(-1)(1-sintheta)-2theta=(pi)/(2)`
`impliessin^(-1)(1-sintheta)=((pi)/(2)+2theta)`
`1-sintheta=sin((pi)/(2)+2theta)`
`implies=cso2theta=1-2sin^(2)theta`
`implies2sin^(2)theta-sintheta=0implies2x^(2)-x=0`
`impliesx(2x-1)=0impliesx=0" या "x=(1)/(2)`
परन्तु `x=(1)/(2)` से दिया समीकरण सन्तुष्ट नहीं होता।
`:.x=0`
133.

`sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3)` का मान है-A. 30B. 29C. 27D. 25

Answer» Correct Answer - C
134.

यदि `tan^(-1)x+tan^(-1)y=(pi)/(4),xy lt 1,` तब `x+y+xy` का मान ज्ञात कीजिए ।

Answer» यहाँ `tan^(-1)x+tan^(-1)y=(pi)/(4)," यदि "xy lt 1`
हम जानते हैं कि
`tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)), xy lt 1`
`therefore" "tan^(-1)((x+y)/(1-xy))=(pi)/(4)`
`rArr" "(x+y)/(1-xy)= tan((pi)/(4))`
`rArr" "(x+y)/(1-xy)=tan((pi)/(4))`
`rArr" "(x+y)/(1-xy)=1`
`rArr" "x+y=1-xy`
`rArr" "x+y+xy=1.`
135.

`2tan^(-1)""(1)/(2)+tan^(-1)""(1)/(7)=tan^(-1)""(31)/(17)`

Answer» `L.H.S.=2tan^(-1)""(1)/(2)+tan^(-1)""(1)/(7)`
`=tan^(-1)((2xx(1)/(2))/(1-(1)/(4)))+tan^(-1)""(1)/(7)`
`=tan^(-1)""(4)/(3)+tan^(-1)""(1)/(7)`
`tan^(-1)""((4)/(3)+(1)/(7))/(1-(4)/(3)xx(1)/(7))=tan^(-1)""((28+3)/(21))/((21-4)/21)`
`tan^(-1)""(31)/(17)=R.H.S.`
136.

निम्नलिखित समीकरणों को हल कीजिए - `2tan^(-1)(cosx)=tan^(-1)("2 cosec x").`

Answer» दिया गया समीकरण है -
`2tan^(-1)(cosx)=tan^(-1)("2 cosec x")`
`rArr tan^(-1)((2cos x)/(1-cos^(2)x))=tan^(-1)((2)/(sinx))`
`" "[because 2 tan^(-1)x=tan^(-1)((2x)/(1-x^(2)))]`.
`rArr" "(2cosx)/(1-cos^(2)x)=(2)/(sinx)`
`rArr" "(2cos x)/(sin^(2)x)=(2)/(sinx)`
`rArr" "cos x=sinx`
`rArr" "tanx=1`
`rArr" "x=tan^(-1)(1)`
`rArr" "x=tan^(-1)(tan.(pi)/(4))`
`rArr" "x=(pi)/(4).`
137.

मान निकालें : `sin^(-1)((sqrt(3))/(2))`

Answer» Correct Answer - `(pi)/(3)`
138.

हल करें : `tan(cos^(-1)x) = sin(tan^(-1)2)`

Answer» Correct Answer - `pm(sqrt(5))/(3)`
139.

सिद्ध कीजिए कि `tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""((3x-x^(3))/(1-3x^(2))),|x| lt (1)/(sqrt(3))`

Answer» Correct Answer - `((pi)/(4)+(x)/(2))`
140.

सिद्ध कीजिए कि `sec^(2)(tan^(-1)3)+cosec^(2)(cot^(-1)2)=15.`

Answer» माना `tan^(-1)3=A" और "cot^(-1)2=B`
`impliestanA=3" और "cotB=2`
`L.H.S=sec^(2)(tan^(-1)3)+cosec^(2)(cot^(-1)2)` ltbgt `=sec^(2)A+cosec^(2)B=1+tan^(2)A+1+cot^(2)B`
`=2+3^(2)+2^(2)=15=R.H.S`
141.

सिद्ध कीजिए कि `cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))`

Answer» माना `cos^(-1)x=thetaimpliesx=costheta`
`R.H.S.=2sin^(-1)sqrt((1-x)/(2))=2sin^(-1)sqrt((1-costheta)/(2))`
`=2sin^(-1)sqrt((2sin^(2)""(theta)/(2))/(2))=2sin^(-1)(sin""(theta)/(2))`
`=2.(theta)/(2)=theta=cos^(-1)x=L.H.S.`
142.

एक त्रिभुज के कोई दो कोण हो, तो तीसरा कोण `tan^(-1).(1)/(2)` एवं `tan^(-1).(1)/(3)` का मान ज्ञात कीजिए ।

Answer» माना त्रिभुज का तीसरा कोण x है।
दिया है - दो कोण, `y=tan^(-1).(1)/(2)" एवं "z=tan^(-1).(1)/(2)`
`because` त्रिभुज के कोण नियम से,
`x+y+z=pi`
`rArr" "x+tan^(-1).(1)/(2)+tan^(-1).(1)/(3)=pi`
`rArr" "x+tan^(-1)[((1)/(2)+(1)/(3))/(1-(1)/(2)xx(1)/(3))]=pi`
`rArr" "x+tan^(-1)[(5//6)/(5//6)]=pi`
`rArr" "x+tan^(-1)[1]=pi`
`rArr" "x+(pi)/(4)=pi`
`rArr" "X=pi-(pi)/(4)`
`rArr" "x=(3pi)/(4)`
143.

सिद्ध कीजिए कि - `cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3`

Answer» `L.H.S. = cot^(-1)7+cot^(-1)8+cot^(-1)18`
`=tan^(-1).(1)/(7)+tan^(-1).(1)/(8)+tan^(-1).(1)/(18),`
`" "[because cot^(-1)x=tan^(-1).(1)/(x)]`
`=(tan^(-1).(1)/(7)+tan^(-1).(1)/(8))+tan^(-1).(1)/(18)`
`=tan^(-1)(((1)/(7)+(1)/(8))/(1-(1)/(7)xx(1)/(8)))+tan^(-1).(1)/(18)`
`=tan^(-1)((15)/(55))+tan^(-1).(1)/(18)`
`=tan^(-1).(3)/(11)+tan^(-1).(1)/(18)`
`=tan^(-1)((65)/(195))=tan^(-1)((1)/(3))`
`=cot^(-1)3`
= R.H.S.
यही सिद्ध करना था।
144.

सिद्ध कीजिए - `2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=tan^(-1)((31)/(17)).`

Answer» L.H.S. `=2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))`
`=tan^(-1).((2xx(1)/(2))/(1-((1)/(2))^(2)))+tan^(-1)((1)/(7)),`
`[because 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2)))]`
`=tan^(-1)((4)/(3))+tan^(-1)((1)/(7))`
`=tan^(-1)(((4)/(3)+(1)/(7))/(1-(4)/(3)xx(1)/(7)))`
`=tan^(-1)(((28+3)/(21))/((21-4)/(21)))`
`=tan^(-1).(31)/(17)`
= R.H.S.
145.

हल करें : `tan^(-1) ""(2alpha)/(1+alpha^(2)) + sin^(-1)""(2beta)/(1+beta^(2)) = 2tan^(-1)x,|alpha|le|1,|beta|le|1`

Answer» `(alpha+beta)/(1-alphabeta)`
146.

सिद्ध कीजिए - `2tan^(-1)((1)/(5))+sec^(-1)((5sqrt2)/(7))+2tan^(-1).(1)/(8)=(pi)/(4)`

Answer» L.H.S.
`=2tan^(-1)((1)/(5))+sec^(-1)((5sqrt2)/(7))+2tan^(-1)((1)/(8))`
`=2[tan^(-1).(1)/(5)+tan^(-1).(1)/(8)]+tan^(-1)sqrt(((5sqrt2)/(7))^(3)-1),`
`" "[because sec^(-1)x=tan^(-1)sqrt(x^(2)-1)]`
`=2tan^(-1)(((1)/(5)+(1)/(8))/(1-(1)/(5)xx(1)/(8)))+tan^(-1)sqrt((50)/(49)-1),`
`" "[because tan^(-1)x+tan^(-1)y=tan^(-1).(x+y)/(1-xy)]`
`=2tan^(-1).(13)/(39)+tan^(-1).(1)/(7)`
`=2tan^(-1).(1)/(3)+tan^(-1).(1)/(7)`
`=tan^(-1)((2xx(1)/(3))/(1-((1)/(3))^(2)))+tan^(-1).(1)/(7),`
`" "[because 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2)))]`
`=tan^(-1)(((2)/(3))/((8)/(9)))+tan^(-1).(1)/(7)`
`=tan^(-1)((3)/(4))+tan^(-1).(1)/(7)`
`=tan^(-1)(((3)/(4)+(1)/(7))/(1-(3)/(4)xx(1)/(7)))`
`=tan^(-1)((25)/(25))`
`=tan^(-1)(1)`
`=tan^(-1)(tan.(pi)/(4))=(pi)/(4)" "[because tan^(-1)(Tan theta)=theta]`
= R.H.S.
यही सिद्ध करना था।
147.

यदि `sin^(-1)x+sin^(-1)y=theta` हो तो सिद्ध कीजिए कि हम जानते हैं कि, - `cos^(-1)x+cos^(-1)y=pi-theta.`

Answer» हम जानते हैं कि,
`sin^(-1)x+cos^(-1)x=(pi)/(2)`
तथा`" "sin^(-1)y+cos^(-1)y=(pi)/(2)`
समीकरण (1 ) और (2 ) को जोड़ने पर,
`sin^(-1)x+sin^(-1)ycos^(-1)x+cos^(-1)y=(pi)/(2)+(pi)/(2)`
दिया गया है -
`sin^(-1)x+sin^(-1)y=theta`
समीकरण (3 ) व (4 ) से,
`theta+cos^(-1)x+cos^(-1)y=pi`
`cos^(-1)x+cos^(-1)y=pi-theta`. यही सिद्ध करना था ।
148.

सिद्ध कीजिए कि `sin^(-1)""(3)/(5)=tan^(-1)""(3)/(4)`

Answer» माना `sin^(-1)""(3)/(5)=theta`
`impliessintheta=(3)/(5)" implies "cosectheta=(5)/(3)`
`impliescosec^(2)theta=(25)/(9)" implies "1+cot^(2)theta=(25)/(9)`
`impliescot^(2)theta=(16)/(9)" implies "cottheta=(4)/(3)`
`impliestantheta=(3)/(4)" implies "theta=tan^(-1)""(3)/(4)`
`impliessin^(-1)""(3)/(5)=tan^(-1)""(3)/(4)`
149.

सिद्ध कीजिए - `sin^(-1).(4)/(5)+sin^(-1).(5)/(13)+sin^(-1).(16)/(65)=(pi)/(2).`

Answer» L.H.S. `=sin^(-1).(4)/(5)+sin^(-1).(5)/(13)+sin^(-1).(16)/(65)`
`=sin^(-1)[(4)/(5)xxsqrt(1-((5)/(13))^(2))+(5)/(13)xxsqrt(1-((4)/(5))^(2))]+sin^(-1).(16)/(65)`
`=sin^(-1)[(4)/(5)xxsqrt((144)/(169))+(5)/(13)xx sqrt((9)/(25))]+sin^(-1).(16)/(65)`
`=sin^(-1)((4)/(5)xx(12)/(13)+(5)/(13)xx(3)/(5))+sin^(-1).(16)/(65)`
`=sin^(-1)((45)/(65)+(15)/(65))+sin^(-1).(16)/(65)`
`=sin^(-1)((63)/(65))+sin^(-1)((16)/(65))`
`=sin^(-1)[(63)/(65)sqrt(1-((16)/(65))^(2))+(16)/(65)sqrt(1-((63)/(65))^(2))]`
`=sin^(-1)[(63)/(65)sqrt((4225-256)/(4225))+(16)/(65)xxsqrt((4225-3969)/(4225))]`
`=sin^(-1)[(63)/(65)xxsqrt((3969)/(4225))+(16)/(65)xx sqrt((256)/(4225))]`
`=sin^(-1)[(63)/(65)xx(63)/(65)+(16)/(65)xx(16)/(65)]`
`=sin^(-1)((3969+256)/(4225))`
`=sin^(-1)((4225)/(4225))`
`=sin^(-1)=(pi)/(2)`
= R.H.S.
यही सिद्ध करना था।
150.

सिद्ध कीजिए - `cot^(-1)((xy+1)/(x-y))+cot^(-1)((yz+1)/(y-z))+cot^(-1)((zx+1)/(z-x))=0,0 lt xy, yz, zx lt1.`

Answer» L.H.S.
`cot^(-1)((xy+1)/(x-y))+cot^(-1)((yz+1)/(y-z))+cot^(-1)((zx+1)/(z-x))`
`=tan^(-1)((x-y)/(1+xy))+tan^(-1)((y-z)/(1+yz))+tan^(-1)((z-x)/(1+zx))`
`" "[because cot^(-1)x=tan^(-1).(1)/(x)]`
`=(tan^(-1)x-tan^(-1)y)+(tan^(-1)y-tan^(-1)z)+(tan^(-1)z-tan^(-1)x),`
`[because 0 lt xy, yz, zx lt 1]" और "[ tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy))" यदि " xy gt -1]`
= 0
= R.H.S.
यही सिद्ध करना था।