Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

401.

The sum of the squares of two consecutive positive even numbers is 52. Find the numbers.

Answer»

Let the consecutive positive even numbers be x and x + 2.

From the given information,

x2 + (x + 2)2 = 52

2x2 + 4x + 4 = 52

2x2 + 4x − 48 = 0

x2 + 2x − 24 = 0

(x + 6) (x − 4) = 0

x = − 6, 4

Since, the numbers are positive, so x = 4.

Thus, the numbers are 4 and 6.

402.

The sum of the squares of two positive integers is 208. If the square of the larger number is 18 times the smaller number, find the numbers.

Answer»

Let the two numbers be x and y, y being the bigger number. From the given information,

x2 + y2 = 208 ..... (i)

y2 = 18x ..... (ii)

From (i), we get y2 = 208 − x2. Putting this in (ii), we get,

208 − x2 = 18x

⇒ x2 + 18x − 208 = 0

⇒ x2 + 26x – 8x − 208 = 0

⇒ x(x + 26) − 8(x + 26) = 0

⇒ (x − 8)(x + 26) = 0

⇒ x can't be a negative number, hence x = 8

⇒ Putting x = 8 in (ii), we get y2 = 18 x 8 = 144

⇒ y = 12, since y is a positive integer

Hence, the two numbers are 8 and 12.

403.

If 1 + √2 is a root of a quadratic equation with rational coefficients, write its other root.

Answer»

1 + √2 Is a root of quadratic equation with rational coefficients that is the sum of the roots is rational and the product of the roots is also rational.

Since the rational roots occurs in conjugate pairs so the other root of the equation is 1 – √2

404.

If α, β be the two roots of the equation x2 + x + 1 = 0, then the equation whose roots are \(\frac{α}{β}\) and \(\frac{β}{α}\) is ?(a) x2 – x – 1 = 0 (b) x2 – x + 1 = 0 (c) x2 + x – 1 = 0 (d) x2 + x + 1 = 0

Answer»

(d) x2 + x + 1 = 0

Let α, β be the roots of the equations x2 + x + 1 = 0. Then, 

Sum of roots = α + β = – 1, Product of roots = αβ = 1 

Now the equation whose roots are \(\frac{α}{β}\) and \(\frac{β}{α}\) is

x2\(\big(\frac{α}{β} + \frac{β}{α}\big)x\) + \(\big(\frac{α}{β} \times \frac{β}{α}\big)=0.\)

\(\frac{α}{β}\) + \(\frac{β}{α}\) = \(\frac{α^2+β^2}{αβ}\) = \(\frac{(α+β)^2-2αβ}{αβ}\) = \(\frac{(-1)^2-2(1)}{1}\) = -1 and \(\frac{α}{β}\) x \(\frac{β}{α}\) = 1.

∴ Required equation = x2 + x + 1 = 0.

405.

The value of a such that x2 - 11x +a = 0 and x2 -14x +2a = 0 may have a common root is A. 0 B. 12 C. 24 D. 32

Answer»

Subtracting both the equations we get, 

x2 – 11x + a - x2 +14x + 2a = 0 

3x – a = 0 

x = \(\frac{a}{3}\)

Substituting it in first equation we get,

\(\Big(\frac{a}{3}\Big)^2\) - 11 \(\frac{a}{3}\) + a = 0

\(\frac{a^2}{9}\) - \(\frac{8a}{3}\) = 0

a2 - 24a = 0

a = 24

406.

If the roots of the equation x2 – 2ax + a2 + a – 3 = 0 are real and less than 3, then which one of the following is correct ?(a) a < 2 (b) 2 < a < 3 (c) 3 < a < 4 (d) a > 4

Answer»

(a)  a < 2.

If the roots of the equation x2 – 2ax + a2 – a – 3 = 0 are real and less than 3, then D ≥ 0 and f (3) > 0. 

⇒ 4a2 – 4(a2 + a – 3) ≥ 0 and (3)2 – 2a (3) + a2 + a – 3 > 0 

⇒ a2 – a2 – a + 3 ≥ 0 and 9 – 6a + a2 + a – 3 > 0 

⇒ –a + 3 ≥ 0 and a2 – 5a + 6 > 0 ⇒ a – 3 ≤ 0 and (a – 2) (a – 3) > 0 

⇒ a ≤ 3 and a < 2 or a > 3 ⇒ a < 2.

407.

If 2 is a root of the equation x2 + ax + 12 = 0 and the quadratic equation x2 + ax + q = 0 has equal roots, then qA. 12B. 8C. 20D. 16

Answer»

The given equation x2 + ax + 12 = 0 has a root = 2 

So it will satisfy the equation 

4 + 2a + 12 = 0 

2a + 16 = 0 

a = – 8 

Putting value of a in second equation, it becomes 

x2 + ax + q = 0 

x2 – 8x + q = 0 

Roots are equal so d = 0 

⇒ b2 – 4ac = 0 

⇒ 64 – 4q = 0 

⇒ q = 64/4 

⇒ q = 16

408.

The roots of √(2x - 3) + √(3x - 5) - √(5x - 6) = 0 areA) 2 or 7/6B) 2 only C) 7/6 only D) 2 and 7/6

Answer»

Correct option is (B) 2 only

Given equation is

\(\sqrt{2x-3}+\sqrt{3x-5}-\sqrt{5x-6}=0\)      _______________(1)

\(\Rightarrow\) \(\sqrt{2x-3}+\sqrt{3x-5}=\sqrt{5x-6}\)

\(\Rightarrow2x-3+3x-5\) \(+2\sqrt{(2x-3)(3x-5)}=5x-6\)     (By squaring both sides)

\(\Rightarrow\) \(2\sqrt{(2x-3)(3x-5)}\) \(=5x-6-5x+8\)

\(\Rightarrow\) \(2\sqrt{6x^2-19x+15}=2\)

\(\Rightarrow\) \(\sqrt{6x^2-19x+15}=1\)

\(\Rightarrow6x^2-19x+15=1\)      (By squaring both sides)

\(\Rightarrow6x^2-19x+14=0\)

\(\Rightarrow6x^2-12x-7x+14=0\)

\(\Rightarrow6x(x-2)-7(x-2)=0\)

\(\Rightarrow(x-2)(6x-7)=0\)

\(\Rightarrow x-2=0\;or\;6x-7=0\)

\(\Rightarrow x=2\;or\;x=\frac76\)

Let x = \(\frac{7}{6}\), 2x - 3 \(=2\times\frac{7}{6}-3\)

\(=\frac{7-9}3=\frac{-2}3<0\)

Hence, x = \(\frac{7}{6}\) is not in domain of given equation.

\(\therefore\) x = \(\frac{7}{6}\) is not a root of given equation.

Put x = 2 in equation (1)

\(\sqrt{2\times2-3}+\sqrt{3\times2-5}-\sqrt{5\times2-6}=0\)

\(\Rightarrow\) \(\sqrt{4-3}+\sqrt{6-5}-\sqrt{10-6}=0\)

\(\Rightarrow\) 1 + 1 - 2 = 0

\(\Rightarrow\) 0 = 0                   (Satisfied)

Hence, x = 2 is a root of given equation.

Correct option is B) 2 only

409.

If one of roots of x2 + ax + 4 = 0 is twice the other root, then the value of ‘a’ isA) 8√2 B) √2 C) -3√2 D) -2√2

Answer»

Correct option is (C) -3√2

Let \(\alpha\;and\;2\alpha\) are roots of \(x^2+ax + 4 = 0\)   _______________(1)

\(\therefore\) Product of roots = 4

\(\Rightarrow\) \(2\alpha^2=4\)

\(\Rightarrow\) \(\alpha^2=2\)

\(\Rightarrow\) \(\alpha=\pm\sqrt2\)         ______________(2)

And sum of roots = -a

\(\therefore\) \(-a=\alpha+2\alpha\)

\(=3\alpha\)

\(=3(\pm\sqrt2)\)      (From (2))

\(=\pm3\sqrt2\)

\(\therefore a=\mp3\sqrt2\)

Possible values of a are \(3\sqrt{2}\;or\;-3\sqrt{2}.\)

Correct option is C) -3√2

410.

Roots of the quadratic equationx2 + x - (a + 1)(a+2) = 0 are .....(A) -(a + 1), (a + 2)(B) (a + 1), -(a + 2)(C) (a + 1), (a + 2)(D) -(a + 1), -(a + 2)

Answer»

The correct option is: (B) (a + 1), -(a + 2)

Explanation:

Given equation is x2 + x-(a + 1)(a + 2)= 0

=> x2 + (a + 2)x - (a + 1)x- (a + 1) (a + 2) = 0

=> x(x + (a + 2)) -(a + 1)(x+ (a + 2)) = 0

=> (x- (a + 1))(x + (a + 2)) = 0

=> x = (a + 1) or x = - (a + 2)

411.

The sum of the squares of two consecutive odd positive integers is 394. Find them.

Answer»

Let’s assume the consecutive odd positive integer to be 2x – 1 and 2x + 1 respectively. [Keeping the common difference as 2]

Now, it’s given that the sum of their squares is 394.

Which means,

(2x – 1)+ (2x + 1)= 394

4x+1 – 4x + 4x+1 + 4x = 394

By cancelling out the equal and opposite terms, we get

8x+ 2 = 394

8x2 = 392

x2 = 49

x = 7 and – 7

Since we need only consecutive odd positive integers, we only consider x = 7.

Now,

2x – 1 = 14 -1 = 13

2x + 1 = 14 + 1 = 15

Thus, the two consecutive odd positive numbers are 13 and 15 respectively.

412.

A train covers a distance of 90 km at a uniform speed. Had the speed been 15 km / hour more, it would have taken 30 minutes less for the journey. Find the original speed of the train.

Answer»

Time = distance/speed

Given, train covers a distance of 90 km at a uniform speed. Had the speed been 15 km / hour more, it would have taken 30 minutes less for the journey.

Let the usual speed be ‘a’.

\(\frac{90}{a}-\frac{90}{a\,+\,15}=\frac{30}{60}\)

⇒ 90 ×(a + 15 –a) = (a2 + 15a)/2

⇒ a2 + 15a – 2700 = 0 

⇒ a2 + 60a – 45a – 2700 = 0 

⇒ a(a + 60) – 45(a + 60) = 0 

⇒ (a + 60)(a – 45) = 0 

⇒ a = 45 km/hr

413.

 Answer the question in the given image. Find the number of integral solution of the equation 7(y+1/y)-2(y2+1/y2)=9

Answer»

We know that (a+b)2=a2+b2+2ab

take a=y, and b=1/y

a2+b2=(a+b)2-2ab

y2+1/y2=(y+1/y)2-2x y x 1/y

y2+1/y2 =(y+1/y)2-2..........................(1)

7(y+1/y)-2(y2+1/y2)=9

7(y+1/y)-2[(y+1/y)2-2]=9..............from equation(1)

taking (y+1/y)=z we get

7z-2[z2-2]=9

=> 7z-2z2+4=9

=> -2z2+7z-5=0................(2)

solving equation (2) we get 

2z2-7z+5=0

=> z(2z-5)-1(2z-5)=0

=> (z-1)(2z-5)=0

=>(z-1)=0 or (2z-5)=0

z=1  or, z=5/2

Now,

y+1/y=1 or y+1/y=5/2

=> y2+1=y

=> y2-y+1=0 [this is not possible]

Now,

y+1/y=5/2

=>y2+1=5y/2

=> 2y2+2=5y

=> 2y2-5y+2=0

=>2y(y-2)-1(y-2)=0

=> (2y-1)(y-2)=0

=>2y-1=0 ,y-2=0

number of integral solution of the equation

y=1/2, y=2

Arrange the equation in quadratic form.

As x must be real, the discriminant must be ≥0

Make discriminant D ≥ 0

After solving the discriminant equation you will get the number of integral solution.

414.

Which constant must be added and subtracted to solve the quadratic equation 9x2 + 3/4 x – √2 = 0 by the method of completing the square?(A) 1/8 (B) 1/64 (C) 1/4 (D) 9/64

Answer»

Correct answer is (B) 1/64

415.

If -5 is a root of the quadratic equation 2x2 + 2px - 15 = 0 and the quadratic equation p (x2 + x) + k = 0 has equal roots, find the value of k.

Answer»

2x2 + 2px - 15 = 0

Put x = –5

2(–5)2 + 2p(–5) - 15 = 0

50 – 10p – 15 = 0

35 = 10p

p = 3.5

Equation p (x2 + x) + k = 0 has equal roots i.e. d = 0

p (x2 + x) + k = 0

p = 3.5

3.5 (x2 + x) + k = 0

3.5x2 + 3.5x + k = 0

d = b2 – 4ac

d = (3.5)2 – 4(3.5)(k)

d = 12.25 – 14k

Putting d = 0

∴ Equation will be:

0 = 12.25 – 14k

14k = 12.25

k = 12.25/14

k = 0.875

416.

If the roots of the equation (a - b)x2 + (b - c) x + (c - a) = 0 are equal, prove that 2a = b + c.

Answer»

Since roots are equal

∴ d=0 (1)

(a — b)x2 + (b — c) x + (c — a) = 0

d = b2 – 4ac

d = (b–c)2 – 4 (a–b) (c–a)

d = b2 + c2 – 2bc –4 [a (c – a) – b (c – a)]

d = b2 + c2 – 2bc – 4 [ac – a2 – bc + ba]

From (1), d = 0

∴ Equation will be:

0 = b2 + c2 – 2bc – 4ac + 4a2 + 4bc – 4ba

b2 + c2 – (2a)2 2bc + 2c (–2a) + 2(–2a)b = 0

(b + c – 2a)2 = 0

(b + c – 2a) = 0

b + c = 2a

Hence proved.

417.

Find the roots of the following quadratic equations by factorisation:3x2 - 14x - 5 = 0

Answer»

3x2 - 15x + x - 5 = 0

3x (x – 5) + (x – 5) = 0

(3x + 1) (x – 5) = 0

3x + 1 = 0 x – 5 = 0

x = -1/3, x = 5

Therefore, the roots of the equation are -1/3, 5.

418.

Find the roots of 2x2 + 5/3 x – 2 = 0 by the factorisation of the corresponding quadratic polynomial.

Answer»

Given, 2x2 + 5/3 x  - 2 = 0

⇒ 6x2 + 5x – 6 = 0

By splitting the middle term,

⇒ 6x2 + 9x - 4x – 6 = 0

Taking common in the expression,

⇒ 3x (2x + 3) – 2 (2x + 3) = 0

⇒ (2x + 3) (3x - 2) = 0

 2x + 3 = 0 and  3x – 2 = 0

∴ x = -3/2 and ∴ x = 2/3

419.

Find the roots of 2/5 x2 - x – 3/5 = 0 by the factorisation of the corresponding quadratic polynomial.

Answer»

Given, 2/5 x2 - x - 3/5 = 0

⇒ 2x2 - 5x – 3 = 0

By splitting the middle term,

⇒ 2x2 - 6x + x – 3 = 0

Taking common in the expression,

⇒ 2x (x - 3) + 1 (x - 3) = 0

⇒ (2x + 1) (x - 3) = 0

 2x + 1 = 0 and  x – 3 = 0

∴ x = -1/2 and ∴ x = 3

420.

If (a2 + b2) x2 + 2 (ac + bd) x + c2 + d2 = 0 has no real roots, then A. ad = bc B. ab = cd C. ac = bd D. ad ≠ bc

Answer»

Since the equation 

(a2 + b2) x2 + 2 (ac + bd) x + c2 + d2 = 0 has no real root 

D < 0 

b2 – 4ac < 0 

b2 < 4ac 

Here a = (a2 + b2), b = 2 (ab + bd), c = c2 + d2 

4(ac + bd)2 – 4 (a2 + b2)(c2 + d2) < 0 

4a2c2 + 4b2d2 + 8abcd – 4(a2c2 + b2c2 + a2d2 + b2d2) < 0 

– 4(a2d2 + b2c2 – 2abcd) < 0 

– 4(ad + bc)2< 0

∴ d is always negative

And ad \(\neq\) bc

421.

If p and q are the roots of the equation x2 + px + q = 0, then A. p = 1, q = – 2 B. q = 0, p = 1 C. p = – 2, q = 0 D. p = – 2, q = 1

Answer»

Since p and q are roots of the equations then 

Sum of the roots is p + q = = – (p) = – p 

Here a = 1, b = p and c = q 

Products of the root = p × q = = q 

∴ p × q = q p = 1 

Putting value of ‘p’ in p + q = – p 

1 + q = – 1 

q = – 2

422.

The number of quadratic equations having real roots and which do not change by squaring their roots is A. 4 B. 3 C. 2 D. 1

Answer»

The roots of the equation are real (given) 

Let α and β be the two roots according to the given condition 

α = α2 

β = β

Sum of the roots = α + β = α2 + β2 

Product of the roots = α β = α2 β2 

There are only two number who does not change on squaring them that is 0 and 1 

So the number of equations could be 2 by being the roots as 

(0,1) and (1,0)

423.

If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 + bx + 1 = 0 having real roots is A. 10 B. 7 C. 6 D. 12

Answer»

For quadratic equation to have real roots, 

d≥ 0 

b2 – 4a ≥ 0 

b2 ≥ 4a 

For a = 1, 4a = 4, b = 2, 3, 4 (3 equations) 

With values of (a,b) as (1,2), (1,3), (1,4) 

a = 2, 4a = 8, b = 3, 4 (2 equations) 

With values of a,b as (2,3), (2,4) 

a = 3, 4a = 12, b = 4 (1 equation) 

With value of (a,b) as (3,4) 

a = 4, 4a = 16, b = 4 (1 equation) 

With values of (a,b) as (4,16) 

Thus, total 7 equations are possible.

424.

Find the values of k for which the roots are real and equal in each of the following equations:(i) 2x2 + kx + 3 = 0(ii) kx(x - 2) + 6 = 0(iii) x2 - 4kx + k = 0(iv) \(k\text{x}(\text{x}-2\sqrt{5})+10=0\)(v) px(x - 3) + 9 = 0(vi) 4x2 + px + 3 = 0

Answer»

(i) 2x2 + kx + 3 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac 

If D = 0, roots are real and equal 

2x2 + kx + 3 = 0

⇒ D = k2 – 4 × 2 × 3 = 0 

⇒ k2 = = 24 

⇒ k = 2√6

(ii) kx(x - 2) + 6 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac 

If D = 0, roots are real and equal

kx(x - 2) + 6 = 0

⇒ kx2 – 2kx + 6 = 0 ⇒ D 

= 4k2 – 4 × 6 × k = 0 

⇒ 4k(k – 6) = 0 

⇒ k = 0, 6 but k can’t be 0 a it is the coefficient of x2, thus k = 6

(iii) x2 - 4kx + k = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

x2 - 4kx + k = 0

⇒ D = 16k2 – 4k = 0 

⇒ 4k(4k – 1) = 0 

⇒ k = 0, 1/4

(iv) \(k\text{x}(\text{x} - 2\sqrt{5})+10=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

\(k\text{x}(\text{x} - 2\sqrt{5})+10=0\)

⇒ kx2 – 2√5kx + 10 = 0

⇒ D = 4 × 5k2 – 4 × k × 10 = 0 

⇒ k2 = 2k 

⇒ k = 2

(v) px(x - 3) + 9 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

px(x - 3) + 9 = 0

⇒ px2 – 3px + 9 = 0 

⇒ D = 9p2 – 4 × 9 × p = 0 

⇒ p = 4

(vi) 4x2 + px + 3 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

4x2 + px + 3 = 0

⇒ D = p2 – 4 × 4 × 3 = 0 

⇒ p2 = 48 

⇒ p = 4√3

425.

Find the values of k for which the roots are real and equal in each of the following equations:(i) (k + 1) x2 + 2 (k + 3) x + (k + 8) = 0(ii) x2 - 2kx + 7x + 1/4 = 0(iii) (k + 1) x2 - 2 (3k + 1) x + 8k + 1 = 0(iv) 5x2 - 4x + 2 +k ((4x2 - 2x - 1) = 0(v) (4 - k) x2 + (2k + 4) x + (8k + 1) = 0

Answer»

(i) (k + 1) x2 + 2 (k + 3) x + (k + 8) = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

(k + 1) x2 + 2 (k + 3) x + (k + 8) = 0

⇒ D = 4(k + 3)2 – 4(k + 1)(k + 8) = 0 

⇒ 4k2 + 36 + 24k – 4k2 – 32 – 36k = 0 

⇒ 12k = 4 

⇒ k = 1/3

(ii) x2 - 2kx + 7x + 1/4 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

x2 – 2kx + 7x + 1/4 = 0 

⇒ D = (7 – 2k)2 – 4 × 1/4 = 0 

⇒ 49 + 4k2 – 28k – 1 = 0 

⇒ k2 – 7k + 12 = 0 

⇒ k2 – 4k – 3k + 12 = 0 

⇒ k(k – 4) – 3(k – 4) = 0

⇒ (k – 3)(k – 4) = 0 

⇒ k = 3, 4

(iii) (k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

(k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0

⇒ D = 4(3k + 1)2 – 4(k + 1)(8k + 1) = 0

⇒ 4 × (9k2 + 6k + 1) – 32k2 – 4 – 36k = 0

⇒ 36k2 + 24k + 4 – 32k2 – 4 – 36k = 0

⇒ 4k(k – 3) = 0

⇒ k = 0, 3

(iv) 5x2 - 4x + 2 + k (4x2 - 2x - 1) = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

5x2 - 4x + 2 + k (4x2 - 2x - 1) = 0

⇒ (5 + 4k)x2 – (4 + 2k)x + 2 – k = 0

⇒ D = (4 + 2k)2 – 4 × (5 + 4k)(2 – k) = 0

⇒ 16 + 4k2 + 16k + 16k2 – 12k – 40 = 0 

⇒ 20k2 – 4k – 24 = 0 

⇒ 5k2 - k - 6 = 0 

⇒ 5k2 – 6k + 5k – 6 = 0 

⇒ k(5k – 6) + (5k – 6) = 0 

⇒ (k + 1)(5k – 6) = 0 

⇒ k = -1, 6/5

(v) (4 - k)x2 + (2k + 4)x + (8k + 1) = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

(4 - k)x2 + (2k + 4)x + (8k + 1) = 0

⇒ D = (2k + 4)2 – 4 × (4 – k)(8k + 1) = 0

⇒ 4k2 + 16 + 16k + 32k2 – 16 – 124k = 0

⇒ 36k2 – 108k = 0

⇒ 36k(k – 3) = 0 

⇒ k = 0, 3

426.

Find the values of k for which the roots are real and equal in each of the following equations:(i) 9x2 - 24x + k = 0(ii) 4x2 - 3kx + 1 = 0(iii) x2 - 2(5 + 2k)x+3(7 + 10k) = 0(iv) (3k + 1) x2 + 2 (k + 1) x + k = 0(v) kx2 + kx + 1 = -4x2 - x

Answer»

(i) 9x2 - 24x + k = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

9x2 - 24x + k = 0

⇒ D = 576 – 4 × 9 × k = 0

⇒ k = 576/36 = 16

(ii) 4x2 - 3kx + 1 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

4x2 - 3kx + 1 = 0

⇒ D = 9k2 – 4 × 4 × 1 = 0

⇒ 9k2 = 16

⇒ k = 4/3

(iii) x2 - 2(5 + 2k)x + 3(7 + 10k) = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

x2 - 2(5 + 2k)x + 3(7 + 10k) = 0

⇒ D = 4(5 + 2k)2 – 4 × 3(7 + 10k) = 0 

⇒ 100 + 16k2 + 80k – 84 – 120k = 0 

⇒ 16k2 – 40k + 16 = 0 

⇒ 2k2 – 5k + 2 = 0 

⇒ 2k2 – 4k – k + 2 = 0 

⇒ 2k(k – 2) – (k – 2) = 0 

⇒ (2k – 1)(k – 2) = 0 

⇒ k = 2, 1/2

(iv) (3k + 1) x2 + 2 (k + 1) x + k = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac 

If D = 0, roots are real and equal

(3k + 1) x2 + 2 (k + 1) x + k = 0

⇒ D = 4(k + 1)2 – 4k(3k + 1) = 0 

⇒ 4k2 + 8k + 4 – 12k2 – 4k = 0 

⇒ 2k2 – k – 1 = 0 

⇒ 2k2 – 2k + k – 1 = 0 

⇒ 2k(k – 1) + (k – 1) = 0 

⇒ (2k + 1)(k – 1) = 0 

⇒ k = 1, -1/2

(v) kx2 + kx + 1 = -4x2 - x

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

kx2 + kx + 1 = -4x2 - x

⇒ (k + 4)x2 + (k + 1)x + 1 = 0

D = (k + 1)2 – 4(k + 4) = 0

⇒ k2 + 2k + 1 – 4k – 16 = 0

⇒ k2 – 2k – 15 = 0

⇒ k2 – 5k + 3k – 15 = 0

⇒ k(k – 5) + 3(k – 5) = 0

⇒ (k + 3)(k – 5) = 0 

⇒ k = 5, -3

427.

Determine the nature of the roots of the quadratic equation:2x2 -3x + 5 =0

Answer»

Here, a= 2, b= -3, c= 5

D = b2 – 4ac

= (-3)2 -4(2)(5)

= 9 – 40

= -31< 0

It’s seen that D < 0 and hence, the given equation does not have any real roots.

428.

Determine the nature of the roots of the quadratic equation:\((\frac{3}{5})x^2 – (\frac{2}{3}) + 1 = 0\)

Answer»

Here, a = \(\frac{3}{5}\) \(\), b = \(\frac{-2}{3},\) c = 1

D = (\(\frac{-2}{3}\))2 -4(\(\frac{3}{5}\))(1)

= \(\frac{4}{9} – \frac{12}{5}\)

= \(\frac{-88}{45}\) < 0

It’s seen that D < 0 and hence, the given equation does not have any real roots.

429.

Find the values of k for which the roots are real and equal in each of the following equations:(i) kx2 + 4x + 1 = 0(ii) \(kx^2-2\sqrt{5}+4=0\) (iii) 3x2 - 5x + 2k = 0(iv) 4x2 + kx + 9 = 0(v) 2kx2 - 40x + 25 = 0

Answer»

(i) kx2 + 4x + 1 = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

kx2 + 4x + 1 = 0

⇒ D = 16 – 4k = 0

⇒ k = 4

(ii) \(kx^2-2\sqrt{5}x+4=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

\(kx^2-2\sqrt{5}x+4=0\)

⇒ D = 4 × 5 – 4 × 4k = 0

⇒ k = 5/4

(iii) 3x2 - 5x + 2k = 0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac 

If D = 0, roots are real and equal

3x2 - 5x + 2k = 0

⇒ D = 25 – 4 × 3 × 2k = 0

⇒ k = 25/24

(iv) 4x2 + kx + 9 =0

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D = 0, roots are real and equal

4x2 + kx + 9 =0

⇒ D = k2 – 4 × 4 × 9 = 0

⇒ k2 – 144 = 0

⇒ k = 12

(v) 2kx2 - 40x + 25 = 0

For a quadratic equation, ax2 + bx + c = 0

D = b2 – 4ac

If D = 0, roots are real and equal

2kx2 - 40x + 25 = 0

⇒ 1600 – 4 × 2k × 25 = 0 

⇒ k = 8

430.

Determine the nature of the roots of the quadratic equation:2x2 -6x + 3=0

Answer»

Here, a= 2, b= -6, c= 3

D = (-6)2 -4(2)(3)

= 36 – 24

= 12 > 0

It’s seen that D > 0 and hence, the given equation have real and distinct roots.

431.

Determine the nature of the roots of the following quadratic equations:(i) \((x-2a)(x-2b)=4ab\) (ii) \(9a^2b^2x^2-24abcdx+16c^2d^2=0,a\neq0,b\neq0\) (iii) \(2(a^2+b^2)x^2+2(a+b)x+1=0\)(iv) \((b+c)x^2-(a+b+c)x+a=0\)

Answer»

(i) \((x-2a)(x-2b)=4ab\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\((x-2a)(x-2b)=4ab\)

⇒ x2 – (2a + 2b)x + 4ab = 4ab 

⇒ x2 – (2a + 2b)x = 0 

D = (2a + 2b)2 – 0 = (2a + 2b)2

Roots are real and distinct

(ii) \(9a^2b^2x^2-24abcdx+16c^2d^2=0,a\neq0,b\neq0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(9a^2b^2x^2-24abcdx+16c^2d^2=0,a\neq0,b\neq0\)

⇒ D = 576a2b2c2d2 – 4 × 16 × 9 × a2b2c2d2 = 0

Roots are real and equal

(iii) \(2(a^2+b^2)x^2+2(a+b)x+1=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac 

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(2(a^2+b^2)x^2+2(a+b)x+1=0\)

⇒ D = 4(a + b)2 – 4 × 2 × (a2 + b2)

⇒ D = 4(a + b)2 – 4 × 2 × (a2 + b2)

Roots are not real

(iv) \((b+c)x^2-(a+b+c)x+a=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\((b+c)x^2-(a+b+c)x+a=0\)

⇒ D = (a + b + c)2 – 4a(b + c)

⇒ D = a2 + b2 + c2 – 2ab – 2ac + 2bc

⇒ D = (a – b – c)2

Thus, roots are real and unequal

432.

Determine the nature of the roots of the following quadratic equations:(i) \(2x^2-3x+5=0\)(ii) \(2x^2-6x+3=0\)(iii) \(\frac{3}{5}x^2-\frac{2}{3}x+1=0\)(iv) \(3x^2-4\sqrt{3}x+4=0\)(v) \(3x^2-2\sqrt{6}x+2=0\)

Answer»

(i) \(2x^2-3x+5=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(2x^2-3x+5=0\)

⇒ D = 9 – 4 × 5 × 2 = -31

Roots are not real.

(ii) \(2x^2-6x+3=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(2x^2-6x+3=0\)

⇒ D = 36 – 4 × 2 × 3 = 12 

Roots are real and distinct.

(iii) \(\frac{3}{5}x^2-\frac{2}{3}x+1=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac 

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(\frac{3}{5}x^2-\frac{2}{3}x+1=0\)

⇒ D = 4/9 – 4 × 3/5 × 1 = -88/45

Roots are not real.

(iv) \(3x^2-4\sqrt{3}x+4=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(3x^2-4\sqrt{3}x+4=0\)

⇒ D = 48 – 4 × 3 × 4 = 0

Roots are real and equal

(v) \(3x^2-2\sqrt{6}x+2=0\)

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real 

If D > 0, roots are real and unequal 

If D = 0, roots are real and equal

\(3x^2-2\sqrt{6}x+2=0\)

⇒ D = 24 – 4 × 3 × 2 = 0

Roots are real and equal.

433.

Find the roots of quadratic equation 15x2 - 28 = x

Answer»

Given

15x2 - 28 = x

⇒ 15x2 - x - 28 = 0

⇒ 15x2 - (21x - 20x) - 28 = 0

⇒ 15x2 - 21x + 20x - 28 = 0

⇒ 3x (5x - 7) + 4(5x - 7) = 0

⇒ (3x + 4) (5x - 7) = 0

⇒ 3x + 4 = 0 or 5x - 7 = 0

⇒ x = -4/3 or x = 7/5

Hence, the roots of the equation are -4/3 and 7/5.

434.

Find the values of k of the following quadratic equation so that they have two equal roots.kx(x – 2) + 6 = 0

Answer»

Given: kx(x – 2) + 6 = 0 

kx2 – 2kx + 6 = 0 

As this Q.E. has equal roots, 

b2 – 4ac = 0 

Here 

a = k; b = -2k; c = 6 

∴ b2 – 4ac = (-2k)2 – 4(k)(6) = 0

⇒ 4k2 – 24k = 0 

⇒ 4k(k – 6) = 0 

⇒ 4k = 0 (or) k – 6 = 0 

⇒ k = 0 (or) 6 

But k = 0 is trivial 

∴ k = 6.

435.

Find the values of k of the following quadratic equation so that they have two equal roots.2x2 + kx + 3 = 0

Answer»

Given : 2x2 + kx + 3 = 0 has equal roots 

∴ b2 – 4ac = 0 

Here a = 2; b = k; c = 3 

b2 – 4ac = (k)2 – 4(2)(3) = 0 

⇒ k2 – 24 = 0 

⇒ k2 = 24 

⇒ k = √24 = ± 2√6

436.

Find the roots of quadratic equations abx2 + (b2 - ac)x - bc = 0

Answer»

abx2 + (b2 - ac)x - bc = 0

⇒ abx2 + b2x - acx - bc = 0

⇒ bx (ax + b) - c (ax + b) = 0

⇒ bx - c = 0 or ax + b = 0

⇒ x = c/b or x = -b/a

Hence, the roots of the equation are c/b and - b/a

437.

Solve the quadratic equation 16x2 - 24x = 0.

Answer»

The given equation may be written as 8x(2x - 3) = 0

This gives x = 0 or x =3/2.

x=0, 3/2, are the required solutions.

438.

Find the least positive value of k for which the equation x2 + kx + 4 = 0 has real roots.

Answer»

Given,

x2 + kx + 4 = 0

It’s of the form of ax+ bx + c = 0

Where, a =1, b = k, c = 4

For the given quadratic equation to have real roots D = b– 4ac ≥ 0

D = (k)2 – 4(1)(4) ≥ 0

⇒ k2 – 16 ≥ 0

⇒ k ≥ 4 and k ≤ -4

Considering the least positive value, we have

⇒ k = 4

Thus, the least value of k is 4 for the given equation to have real roots.

439.

For what value of k, \((4-k)\text{x}^2+(2k+4)\text{x}+(8k+1)=0,\) is a perfect square.

Answer»

\((4-k)\text{x}^2+(2k-4)\text{x}+(8k + 1)=0\)

For the above expression to be a perfect square, D = b2 – 4ac = 0

⇒ (2k + 4)2 – 4 × (4 – k)(8k + 1) = 0 

⇒ 4k2 + 16k + 16 + 32k2 – 124k – 16 = 0 

⇒ 36k2 – 108k = 0 

⇒ 36k(k – 3) = 0 

⇒ k = 0, 3

440.

Find the values of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also, find the roots.

Answer»

The given equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 is in the form of ax+ bx + c = 0

Where a = (2p +1), b = -(7p + 2), c = (7p – 3)

For the equation to have real and equal roots, the condition is

D = b– 4ac = 0

⇒ (-(7p + 2))– 4(2p +1)( 7p – 3) = 0

⇒ (7p + 2)– 4(14p2 + p – 3) = 0

⇒ 49p2 + 28p + 4 – 56p2 – 4p + 12 = 0

⇒ -7p+ 24p + 16 = 0

Solving for p by factorization,

⇒ -7p+ 28p – 4p + 16 = 0

⇒ -7p(p – 4) -4(p – 4) = 0

⇒ (p – 4) (-7p – 4) = 0

Either p – 4 = 0 ⇒ p = 4 Or, 7p + 4 = 0 ⇒ p = -4/7,

So, the value of k can either be 4 or -4/7

Now, using k = 4 in the given quadratic equation we get

(2(4) + 1)x2 – (7(4) + 2)x + (7(4) – 3) = 0

9x2 – 30x + 25 = 0

⇒ (3x – 5)2 = 0

Thus, x = 5/3 is the root of the given quadratic equation.

Next, on using k = 1 in the given quadratic equation we get

(2(-4/7 ) + 1)x2 – (7(-4/7 ) + 2)x + (7(-4/7 ) – 3) = 0

x2 – 14x + 49 = 0

⇒ (x – 7)2 = 0

Thus, x – 7 = 0 ⇒ x = 7 is the root of the given quadratic equation.

441.

Find the values of k for which the quadratic equation (3k + 1)x2 + 2(k + 1)x + 1 = 0 has equal roots. Also, find the roots.

Answer»

The given equation (3k +1)x+ 2(k +1)x + 1 = 0 is in the form of ax+ bx + c = 0

Where a = (3k +1), b = 2(k + 1), c = 1

For the equation to have real and equal roots, the condition is

D = b– 4ac = 0

⇒ (2(k + 1))– 4(3k +1)(1) = 0

⇒ (k +1)– (3k + 1) = 0 [After dividing by 4 both sides]

⇒ k2 + 2k + 1 – 3k – 1 = 0

⇒ k– k = 0

⇒ k(k – 1) = 0

Either k = 0 Or, k – 3 = 0 ⇒ k = 1,

So, the value of k can either be 0 or 1

Now, using k = 0 in the given quadratic equation we get

(3(0) + 1)x2 + 2(0 + 1)x + 1 = 0

x2 + 2x + 1 = 0

⇒ (x + 1)2 = 0

Thus, x = -1 is the root of the given quadratic equation.

Next, on using k = 1 in the given quadratic equation we get

(3(1) + 1)x2 + 2(1 + 1)x + 1 = 0

4x2 + 4x + 1 = 0

⇒ (2x + 1)2 = 0

Thus, 2x = -1 ⇒ x = -1/2 is the root of the given quadratic equation.

442.

Find the values of k for roots are real and equal in equation:(k + 1)x2 – 2(3k + 1)x + 8k + 1 = 0

Answer»

The given equation (k +1)x– 2(3k +1)x + 8k + 1 = 0 is in the form of ax+ bx + c = 0

Where a = (k +1), b = -2(3k + 1), c = 8k + 1

For the equation to have real and equal roots, the condition is

D = b– 4ac = 0

⇒ (-2(3k + 1))– 4(k +1)(8k + 1) = 0

⇒ 4(3k +1)– 4(k + 1)(8k + 1) = 0

⇒ (3k + 1)– (k + 1)(8k + 1) = 0

⇒ 9k+ 6k + 1 – (8k+ 9k + 1) = 0

⇒ 9k+ 6k + 1 – 8k– 9k – 1 = 0

⇒ k– 3k = 0

⇒ k(k – 3) = 0

Either k = 0 Or, k – 3 = 0 ⇒ k = 3,

So, the value of k can either be 0 or 3

443.

Find the values of k for which the quadratic equation \((3k+1)\text{x}^2+2(k+1)\text{x}+1=0\) as equal roots. Also, find these roots.

Answer»

For a quadratic equation, ax2 + bx + c = 0, 

D = b2 – 4ac 

If D = 0, roots are equal

\((3k+1)\text{x}^2+2(k+1)\text{x}+1=0\)

⇒ D = 4(k + 1)2 – 4(3k + 1) = 0 

⇒ k2 + 2k + 1 – 3k – 1 = 0 

⇒ k(k – 1) = 0 

⇒ k = 0, 1 

When k = 0, 

Eq. – x2 + 2x + 1 = 0 

⇒ (x + 1)2 = 0 

⇒ x = -1 

When k = 1, 

Eq. – 4x2 + 4x + 1 = 0 

⇒ (2x + 1)2 = 0 

⇒ x = -1/2

444.

Find the values of k for which the quadratic equation (3k + 1) x2 + 2 (k + 1) x + 1 = 0 has real and equal roots.

Answer»

(3k + 1) x2 + 2(k + 1) x + 1 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = (3k + 1), b = 2(k + 1), c = 1

Find discriminant:

D = b2 – 4 ac

= (2(k + 1))2 – 4(3k + 1) x 1

= 4k2 + 4 + 8k – 12k – 4

= 4k (k – 1)

Since roots are real and equal (given)

Put D = 0

4k (k – 1) = 0

Either, k = 0 or k – 1 = 0

k = 0, k = 1

445.

The discriminant of the quadratic equation ax2 + bx + c = 0is A) b2 – 4ac B) a2 – 4bc C) c2 – 4ab D) None

Answer»

Correct option is (A) b2 – 4ac

The discriminant of the quadratic equation \(ax^2+bx+c=0\) is \(D=b^2-4ac.\)

Correct option is A) b2 – 4ac

446.

If the roots of the quadratic equation ax2 + bx + c =0 are sinα and cosα, then A) a2 + b2 = c2B) b2 – 2ac = a2C) b2 + 2ac = a2D) a2 2 – 2bc = b2

Answer»

Correct option is (B) \(b^2-2ac=a^2\)

Given quadratic equation is

\(ax^2+bx+c=0\)

Given that \(sin\;\alpha\) and \(cos\;\alpha\) are roots of the equation

\(ax^2+bx+c=0\)

\(\therefore\) Sum of roots \(=\frac{-b}a\)

\(\Rightarrow\) \(sin\;\alpha+cos\;\alpha\) \(=\frac{-b}a\)   ______________(1)

& Product of roots \(=\frac ca\)

\(\Rightarrow\) \(sin\;\alpha\;cos\;\alpha\) \(=\frac ca\)       ______________(2)

\(\because\) \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow\) \((sin\;\alpha+cos\;\alpha)^2\) \(-2\;sin\;\alpha\;cos\;\alpha=1\)

\(\Rightarrow(\frac{-b}a)^2-\frac{2c}a=1\)

\(\Rightarrow\) \(\frac{b^2-2ac}{a^2}=1\)

\(\Rightarrow\) \(b^2-2ac=a^2\)

Correct option is B) b2 – 2ac = a2

447.

If the difference of the roots of the quadratic equation x2 – ax + b = 0 is 1, then A) a2 – 4b = -1 B) a2 – 4b = 4 C) a2 – 4b = 1 D) a2 – 4b = 0

Answer»

Correct option is (C) a2 – 4b = 1

Let \(\alpha\;and\;\beta\) are roots of quadratic equation \(x^2-ax+b=0.\)

\(\therefore\) Sum of roots \(=\frac{-(-a)}1=a\)

\(\Rightarrow\) \(\alpha+\beta=a\)      ______________(1)

& Product of roots \(=\frac b1=b\)

\(\Rightarrow\) \(\alpha\beta=b\)          ______________(2)

Now, \((\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta\)

\(\Rightarrow\) \((\alpha-\beta)^2=a^2-4b\)    ______________(3)

Given that difference of the roots of given equation is 1.

\(\therefore\) \(\alpha-\beta=1\)

Then from (3), we have

\(a^2-4b=1^2=1\)

\(\Rightarrow\) \(a^2-4b=1\)

Correct option is C) a2 – 4b = 1 

448.

If the roots of a quadratic equation are equal, then A) b2 = 4ac B) b2 – 4ac &lt; 0 C) b2 – 4ac &gt; 0 D) b2 – 4ac = 0

Answer»

Correct option is (A) b2 = 4ac

If roots of quadratic equation \(ax^2+bx+c=0\) are equal, then \(b^2-4ac=0\) or \(b^2= 4ac.\)

Correct option is A) b2 = 4ac

449.

If the discriminant of the quadratic equation ax2 + bx + c = 0 is zero, then the roots of the equation A) are irrational and equal B) are rational and equal C) do not exist and real D) are real and equal

Answer»

Correct option is (D) are real and equal

Given equation is \(ax^2+bx+c=0\)

If discriminant = 0

Then roots are real and equal.

Correct option is D) are real and equal

450.

If one root of the two quadratic equations x2 + ax + b = 0 and x2 + bx + a = 0 is common, then A) a + b = -1 B) ab = -1 C) ab = 1 D) a + b = 1

Answer»

Correct option is (A) a + b = -1

Let \(\alpha\) be common root of given quadratic equations.

\(\therefore\alpha^2+a\alpha+b=0\)        ______________(1)

\(\alpha^2+b\alpha+a=0\)        ______________(2)

Subtract equation (2) from (1), we get

\((\alpha^2+a\alpha+b)-(\alpha^2+b\alpha+a)=0\)

\(\Rightarrow(a-b)\alpha+b-a=0\)

\(\Rightarrow(a-b)\alpha-(a-b)=0\)

\(\Rightarrow\alpha=\frac{a-b}{a-b}=1\)

Hence, x = 1 is a common root of given quadratic equations.

Put x = 1 in given equation, we get

\(1^2+a.1+b=0\)

\(\Rightarrow\) 1+a+b = 0

\(\Rightarrow\) a + b = -1

Correct option is A) a + b = -1