Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

Find the values of k for roots are real and equal in equation:(3k +1)x2+ 2(k +1)x + k = 0

Answer»

The given equation (3k +1)x+ 2(k +1)x + k = 0 is in the form of ax+ bx + c = 0

Where a = (3k +1), b = 2(k + 1), c = k

For the equation to have real and equal roots, the condition is

D = b– 4ac = 0

⇒ (2(k + 1))– 4(3k +1)(k) = 0

⇒ 4(k +1)– 4(3k2 + k) = 0

⇒ (k + 1)– k(3k + 1) = 0

⇒ 2k– k – 1 = 0

Now, solving for k by factorization we have

⇒ 2k– 2k + k – 1 = 0

⇒ 2k(k – 1) + 1(k – 1) = 0

⇒ (k – 1)(2k + 1) = 0,

k = 1 and k = \(\frac{-1}{2}\),

So, the value of k can either be 1 or\(\frac{-1}{2}\).

352.

Write the discriminant of quadratic equation:(x – 1)(2x – 1) = 0

Answer»

Given equation,

(x -1) (2x -1) = 0

On expanding it, we get

2x2 – 3x + 1 = 0

It is in the form of ax2 + bx + c = 0

Where, a = 2, b = -3, c = 1

So, the discriminant is given by D = b2 – 4ac

D = (-3)2 – 4 x 2 x 1

D = 9 – 8 

= 1

Hence, the discriminant of the given quadratic equation is 1.

353.

Write the discriminant of quadratic equation:x2 -2x + k = 0, k ∈ R

Answer»

Given equation,

x– 2x + k = 0

It is in the form of ax2 + bx + c = 0

Where, a = 1, b = -2, and c = k

So, the discriminant is given by D = b2 – 4ac

D = (-2)2 – 4(1)(k)

= 4 – 4k

Hence, the discriminant of the given equation is (4 – 4k).

354.

Write the discriminant of quadratic equation:2x2 – 5x + 3 = 0

Answer»

Given equation,

2x2 – 5x + 3 = 0

It is in the form of ax2 + bx + c = 0

Where, a = 2, b = -5 and c = 3

So, the discriminant is given by D = b2 – 4ac

D = (-5)2 – 4 x 2 x 3

D = 25 – 24 

= 1

Hence, the discriminant of the given quadratic equation is 1.

355.

Write the discriminant of quadratic equation:x2 + 2x + 4 = 0

Answer»

Given equation,

x2 + 2x + 4 = 0

It is in the form of ax2 + bx + c = 0

Where, a = 1, b = 2 and c = 4

So, the discriminant is given by D = b2 – 4ac

D = (2)2 – 4 x 1 x 4

D = 4 – 16 

= – 12

Hence, the discriminant of the given quadratic equation is – 12.

356.

Prove that both the roots of the equation (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 are real but they are equal only when \(a=b=c.\)

Answer»

For a quadratic equation, ax2 + bx + c = 0, 

D = b2 – 4ac 

If D > 0, roots are real.

(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0

 ⇒ x2 – (a + b)x + ab + x2 – (b + c)x + bc + x2 – (a + c)x + ac = 0 

⇒ 3x2 - 2(a + b + c)x + ab + bc + ac = 0 

⇒ D = 4(a + b + c)2 – 12(ab + bc + ac) 

⇒ D = a2 + b2 + c2 + 2ab + 2ac + 2bc – 3ab – 3bc – 3ac 

⇒ D = 1/2 × (2a2 + 2b2 + 2c2 - 2ab – 2ac – 2bc) 

⇒ D = 1/2 × ((a – b)2 + (b – c)2 + (c – a)2

Thus, D is always greater than 0, and the roots are real 

Now, 

when a = b = c, D = 0, 

thus the roots are equal when a = b = c.

357.

The length of a hall is 5 m more than its breadth. If the area of the floor of the hall is 84 m2, what are the length and breadth of the hall?

Answer»

Let the breadth of the hall be ‘a’ 

Length = a + 5 

Given, area of the floor of the hall is 84 m2 

⇒ a(a + 5) = 84 

⇒ a2 + 5a – 84 = 0 

⇒ a2 + 12a – 7a – 84 = 0 

⇒ a(a + 12) – 7(a + 12) = 0 

⇒ (a – 7)(a + 12) = 0 

⇒ a = 7 m 

Length of the hall = 7 + 5 = 12 m

358.

Show that the equation \(2(a^2+b^2)\text{x}^2+2(a+b)\text{x}+1=0\) has no real roots, when a ≠ b.

Answer»

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real.

\(2(a^2+b^2)\text{x}^2+2(a+b)\text{x}+1=0\)

⇒ D = 4(a + b)2 – 8(a2 + b2

⇒ D = 4a2 + 4b2 + 8ab – 8a2 – 8b

⇒ D = - 4(a2 + b2 – 2ab) = - 4(a – b)2 

Thus, D < 0 for all values of a and b. 

∴ Roots are not real.

359.

If the roots of the equation (c2 - ab)x2 - 2(a2 - bc) x + b2 - ac = 0 are equal, prove that either a = 0 or a3 + b3 + c3 = 3abc.

Answer»

For a quadratic equation, ax2 + bx + c = 0, 

D = b2 – 4ac 

If D = 0, roots are equal 

Given, 

roots of (c2 - ab)x2 - 2(a2 - bc) x + b2 - ac = 0 are equal. 

∴ D = 0 

⇒ 2(a2 – bc)]2 – 4(c2 – ab)(b2 – ac) = 0 

⇒ 4(a2 – bc)2 – 4(c2 – ab)(b2 – ac) = 0 

⇒ a4 + b2c2 – 2a2bc – b2c2 – a2bc + ab3 + ac3 = 0 

⇒ a(a3 + b3 + c3 – 3abc) = 0 

⇒ a = 0 or a3 + b3 + c3 = 3abc

360.

If a and b are real and a ≠ b then show that the roots of the equation (a - b)x2 + 5(a + b)x - 2(a - b) = 0. are equal and unequal.

Answer»

the given equation is (a - b)x2 + 5(a + b)x - 2(a - b) = 0

∴ D = [5(a + b)]2 - 4 x (a - b) x [-2(a - b)]

= 25(a + b)2 + 8(a - b)2

Since a and b are real and a ≠ b, so (a - b)2 > 0 and (a + b)2 > 0

∴8(a - b)2 > 0 ......... (1) (Product of two positive numbers is always positive)

Also, 25(a + b)2 > 0 .......(2) (Product of two positive numbers is always positive)

Adding (1) and (2), we get

25(a + b)2 + 8(a - b)2 > 0 (Sum of two positive numbers is always positive)

⇒ D > 0

Hence, the roots of the given equation are real and unequal.

361.

Find the value of p for which the quadratic equation: (p+1)x2 - 6(p+1)x + 3(p + 9) = 0, where, p ≠ -1 has equal roots. Hence, find the roots of the equation.

Answer»

Note: For a quadratic equation, ax2 + bx + c = 0, we have 

D = b2 – 4ac. 

If D = 0, then the roots of the quadratic equation are equal. 

Therefore, 

(p+1)x2 - 6(p+1)x + 3(p + 9) = 0 

will have equal roots when, 

⇒ D = 0 

⇒ b2 – 4ac = 0 

⇒ b2 = 4ac 

Here, 

b = -6(p+1), 

a = (p+1) 

and, c = 3(p+9)

⇒{-6(p + 1)}2 = 4×(p + 1)×3(p + 9) 

⇒ 36(p+1)(p+1) = 12(p + 1)(p + 9) 

⇒ 3(p+1)=(p + 9) 

⇒ 3p + 3 - p - 9 = 0 

⇒ 2p - 6 = 0 

⇒ p = 6/2 

⇒ p = 3 

Thus, the value of p is 3 

Now, 

putting the value of p in (p+1)x2 - 6(p+1)x + 3(p + 9) = 0, 

we get, 

⇒ 4x2 - 24x + 36 = 0 

On taking 4 common, we get, 

⇒ x2 – 6x + 9 = 0 

⇒ (x - 3)2 = 0 

⇒ x = 3 

Thus, the root of the given equation is x = 3

362.

Find two consecutive numbers whose squares have the sum of 85.

Answer»

Let the two consecutive be considered as (x) and (x +1) respectively.

Given that,

The sum of their squares is 85.

Expressing the same by equation we have,

x+ (x + 1)= 85

⇒ x+ x+ 2x + 1 = 85

⇒ 2x+ 2x + 1 – 85 = 0

⇒ 2x+ 2x – 84 = 0

⇒ 2(x+ x – 42) = 0

Solving for x by factorization method, we get

x+ 7x – 6x – 42 = 0

⇒ x(x + 7) – 6(x + 7) = 0

⇒ (x – 6)(x + 7) = 0

Now, either, x – 6 = 0  ⇒ x = 6

Or, x + 7 = 0 ⇒ x = -7

Thus, the consecutive numbers whose sum of squares can be (6, 7) or (-7, -6).

363.

Find two consecutive numbers whose squares have the sum of 85

Answer»

Let the consecutive numbers be ‘a’ and a + 1. 

Given, sum of squares is 85 

⇒ a2 + (a+ 1)2 = 85 

⇒ a2 + a2 + 2a + 1 = 85 

⇒ a2 + a – 42 = 0 

⇒ a2 + 7a – 6a – 42 = 0 

⇒ a(a + 7) – 6(a + 7) = 0 

⇒ (a – 6)(a + 7) = 0 

⇒ a = 6, -7 

Numbers are, 6, 7 or -7, -6

364.

The length of a hall is 5 m more than its breath. If the area of the floor of the hall is 84 m2, what are the length and the breadth of the hall ?

Answer»

Let the breadth of the hall be x metres

Then the length of the ball is (x + 5) metres.

The area of the floor = x(x + 5) m2

Therefore, x(x + 5) = 84 or x2 + 5x - 84 = 0

or (x + 12) (x - 7) = 0 This given x = 7 or x = - 12.

Since, the breadth of the hall cannot be negative, we reject x = - 12 and take x = - only.

Thus, breadth of the hall = 7 metres, and length of the hall = (7 + 5), i.e., 12 metres.

365.

Divide 29 into two parts so that the sum of the squares of the parts is 425.

Answer»

Let’s assume that one part is (x), so the other part will be (29 – x).

From the question, the sum of the squares of these two parts is 425.

Expressing the same by equation we have,

x2 + (29 – x)2 = 425

⇒ x+ x+ 841 + -58x = 425

⇒ 2x– 58x + 841 – 425 = 0

⇒ 2x– 58x + 416 = 0

⇒ x– 29x + 208 = 0

Solving for x by factorization method, we get

x– 13x – 16x + 208 = 0

⇒ x(x – 13) – 16(x – 13) = 0

⇒ (x – 13)(x – 16) = 0

Now, either x – 13 = 0 ⇒ x = 13

Or, x – 16 = 0 ⇒ x = 16

Thus, the two parts whose sum of the squares is 425 are 13 and 16 respectively.

366.

Divide 29 into two parts so that the sum of the squares of the parts is 425.

Answer»

Let one of the number be ‘a’. 

Given, sum of two numbers is 29 and the sum of their squares is 425 

⇒ a2 + (29 – a)2 = 425 

⇒ a2 + 841 + a2 – 58a = 425 

⇒ a2 – 29a + 416 = 0 

⇒ a2 – 16a – 13a + 208= 0 

⇒ a(a – 16) – 13(a – 16) = 0 

⇒ (a – 13)(a – 16) = 0 

⇒ a = 13, 16

367.

The sum of two numbers is 48 and their product is 432. Find the numbers.

Answer»

Let the numbers be ‘a’ and ‘b’. 

Given, sum of two numbers is 48 and their product is 432. 

⇒ a + b = 48 ⇒ a = 48 – b 

Also, 

ab = 432 

⇒ 48b – b2 = 432 

⇒ b2 – 48b + 432 = 0 

⇒ b2 – 36b – 12b + 432 = 0 

⇒ b(b – 36) – 12(b – 36) = 0 

⇒ (b – 12)(b – 36) = 0 

⇒ b = 12, 36

368.

In a class of 60 students, each boy contributed rupees equal to the number of girls and each girl contributed rupees equal to the number of boys. If the total money then collected was Rs. 1600, how many boys are there in the class?

Answer»

Let the number of boys in the class = x 

Then number of girls in the class = 60 – x [∵ total students = 60] 

Money contributed by the boys = x(60 – x) = 60x – x2 [∵ given] 

Money contributed by the girls = (60 – x)x = 60x – x2 

∴ Money contributed by the class = 120x – 2x2

By problem 120x -2x2 = 1600 

⇒ 2x2 – 120x + 1600 = 0 

⇒ x2 – 60x + 800 = 0 

⇒ x2 – 40x – 20x + 800 = 0 

⇒ x(x – 40) – 20 (x – 40) = 0 

⇒ (x – 40) (x – 20) = 0 

⇒ x = 40 (or) 20 

∴ Boys = 40 or 20 Girls = 20 or 40.

369.

If x = \(\sqrt{1+\sqrt{1+\sqrt{1 \,+............}}}\) thenA) 1 &lt; x &lt; 2 B) x = 1 C) 0 &lt; x &lt; 1 D) x is infinite

Answer»

Correct option is (A) 1 < x < 2

We have \(x=\sqrt{1+\sqrt{1+\sqrt{1\,+......}}}\)

\(\Rightarrow\) \(x=\sqrt{1+x}\)

\(\Rightarrow x^2=1+x\)     (By squaring both sides)

\(\Rightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{-(-1)\pm\sqrt{(-1)^2-4\times1\times-1}}2\)

\(=\frac{1\pm\sqrt5}2\)

\(=\frac{1+\sqrt5}2\) or \(\frac{1-\sqrt5}2\)

\(\because\) \(x=\sqrt{1+\sqrt{1+\sqrt{1\,+......}}}\)

\(\Rightarrow\) x > 1

but \(\frac{1-\sqrt5}2<0<1\)

\(\therefore\) \(x\neq\frac{1-\sqrt5}2\)

Therefore, \(x=\frac{1+\sqrt5}2=\frac{1+2.236}2\)

\(=\frac{3.236}2\)

= 1.618 which is lie between 1 & 2.

\(\therefore\) \(1<x<2\)

Correct option is A) 1 < x < 2

370.

In the orange garden of Mr. Madhusudan there are 150 orange trees. The number of trees in each row is 5 more than that in each column. Find the number of trees in each row and each column with the help of following flow chart.

Answer»

i. Number of trees in a column is x. 

ii. Number of trees in a row = x + 5 

iii. Total number of trees = x x (x + 5) 

iv. According to the given condition,

x(x + 5) = 150 

∴ x2 + 5x = 150 

∴ x2 + 5x – 150 = 0

v. x2 + 15x – 10x – 150 = 0

∴ x(x+ 15) – 10(x + 15) = 0

∴ (x + 15)(x – 10) = 0

By using the property, if the product of two numbers is zero, then at least one of them is zero, we get

∴ x + 15 = 0 or x – 10 = 0 

∴ x = -15 or x = 10

But, number of trees cannot be negative.

∴ x = 10

vi. Number of trees in a column is 10. 

vii. Number of trees in a row = x + 5 = 10 + 5 = 15 

∴ Number of trees in a row is 15.

371.

Which of the following equation has 1/5 as a root ? A) 2x2 – 7x + 6 = 0 B) 35x2 – 12x + 1 = 0 C) 35x2 + 12x - 1 = 0 D) 10x2 – 3x – 1 = 0

Answer»

 Correct option is (B) \(35x^2-12x+1=0\)

The equation which is satisfied by \(x=\frac15\) has a root \(x=\frac15.\)

(A) \(2x^2-7x+6=0\)

\(\Rightarrow\) \(2(\frac15)^2-\frac{7}5+6=0\)

\(\Rightarrow\frac{2-35+150}{25}=0\)

\(\Rightarrow\frac{117}{25}=0\)          (Not satisfy)

Hence, \(x=\frac15\) is not a root of equation \(2x^2-7x+6=0.\)

(B) \(35x^2-12x+1=0\)

\(\Rightarrow\) \(35(\frac15)^2-\frac{12}5+1=0\)

\(\Rightarrow\frac{7}{5}-\frac{12}{5}+1=0\)

\(\Rightarrow\frac{-5}{5}+1=0\)

\(\Rightarrow\) -1+1 = 0

\(\Rightarrow\) 0 = 0

Hence, \(x=\frac15\) is a root of \(35x^2-12x+1=0.\)

(C) \(35x^2+12x-1=0\)

\(\Rightarrow\) \(35(\frac15)^2+\frac{12}5-1=0\)

\(\Rightarrow\frac{7}{5}+\frac{12}{5}-1=0\)

\(\Rightarrow\frac{19-5}{5}=0\)

\(\Rightarrow\frac{14}{5}=0\)         (Not satisfies)

Hence, \(x=\frac15\) is not a root of \(35x^2+12x-1=0.\)

(D) \(10x^2-3x-1=0\)

\(\Rightarrow\) \(10(\frac15)^2-\frac{3}5-1=0\)

\(\Rightarrow\frac{2}{5}-\frac{3}{5}-1=0\)

\(\Rightarrow-\frac{1}{5}-1=0\)

\(\Rightarrow\frac{-6}{5}=0\)         (Not satisfies)

Hence, \(x=\frac15\) is not a root of equation \(10x^2-3x-1=0.\) 

Correct option is B) 35x2 – 12x + 1 = 0

372.

If x = 1 is a common root of the equations ax2 + ax + 3 = 0 and x2 + x + b = 0, then the value of ab is : A) 3B) 6 C) 3.5 D) -3

Answer»

Correct option is (A) 3

Given that x = 1 is a root of equation \(ax^2+ax+3=0\)

\(\therefore a.1^2+a.1+3=0\)

\(\Rightarrow\) a+a+3 = 0

\(\Rightarrow\) 2a = -3

\(\Rightarrow a=\frac{-3}2\)

Also given that x = 1 is a root of equation \(x^2+x+b=0.\)

\(\therefore1^2+1+b=0\)

\(\Rightarrow b=-2\)

Now, ab \(=\frac{-3}2\times-2=3\)

Correct option is A) 3

373.

The roots of (x – a) (x – a – 1) + (x – a – 1) (x – a – 2) + (x – a) (x – a – 2) = 0, a ∈ R are always :(a) imaginary (b) real and distinct (c) equal (d) rational and equal

Answer»

(b) real and distinct

The equation is (x – a) (x – a –1) + (x – a – 1) (x – a – 2) + (x – a) (x – a – 2) = 0. 

Let (x – a) = y, then the equation becomes 

y (y – 1) + (y – 1) (y – 2) + y (y – 2) = 0 

⇒ y2 – y + y2 – 3y + 2 + y2 – 2y = 0 ⇒ 3y2 – 6y + 2 = 0

∴ Discriminant = D = b2 – 4ac = 36 – 4 × 3 × 2 

= 36 – 24 = 12 > 0

∴ Roots are real and distinct.

374.

If the sum as well as the product of roots of a quadratic equation is 9, then the equation is:(a) x2 + 9x – 18 = 0 (b) x2 – 18x + 9 = 0 (c) x2 + 9x + 9 = 0 (d) x2 – 9x + 9 = 0

Answer»

(d) x2 – 9x + 9 = 0.

Equation : x2 – (Sum of roots)x + Product of roots = 0 

x2 – 9x + 9 = 0.

375.

If one root of the equation ax2 + x – 3 = 0 is –1, then what is the other root ?(a) \(\frac14\)(b) \(\frac{1}{2}\)(c) \(\frac34\)(d) 1

Answer»

(c) \(\frac{3}{4}\)

Let the other root of the equation ax2 + x – 3 = 0 be α. 

As (–1) is a root of the given equation, it satisfies the given equation, i.e., a (–1)2 + (–1) –3 = 0 ⇒ a – 1 – 3 = 0 ⇒ a = 4. 

∴ The equation becomes 4x2 + x – 3 = 0. 

Now, product of roots = α x (–1) = – \(\frac{3}{4}\) 

∴ α = 3 .

376.

If one root of the equation \(\frac{x^2}{a}+\frac{1}{b}+\frac{1}{c}=0\) = 0 is reciprocal of the other, then which of the following is correct ?(a) a = b (b) b = c (c) ac = 1 (d) a = c

Answer»

(d) a = c

The equation can be written as \(\frac{1}{a}x^2+\frac{1}{b}x+\frac{1}{c}=0\)

i.e., bcx2 + acx + ab = 0. 

Let a, \(\frac{1}{α}\) be the roots of the given equation, then 

product of roots = α x \(\frac{1}{α}\) = \(\frac{ab}{bc}\) ⇒ \(\frac{ab}{bc}\) = 1 ⇒ a = c.

377.

For what values of K will the quadratic (4x+1)x2+(k+1)x+1=0 have equal roots.

Answer»

Given quadratic equation:

(k+4)x2+(k+1)x+1=0.

Since the given quadratic equation has equal roots, its discriminant should be zero.

∴ D = 0

⇒ (k+1)2−4 × (k+4) × 1=0

⇒ k2+2k+1−4k−16=0

⇒ k2−2k−15=0

⇒k2−5k+3k−15=0

⇒(k−5)(k+3)=0

⇒k−5=0 or k+3=0

⇒k=5 or −3

Thus, the values of k are 5 and −3.

For k = 5:

(k+4)x2+(k+1) x+1=0

⇒ 9x2+6x+1=0

⇒ (3x)2+2(3x)+1=0

⇒ (3x+1)2=0

⇒ x=−1/3, −1/3

For k = −3:

(k+4)x2+(k+1)x+1=0

⇒ x2−2x+1=0

⇒ (x−1)2=0

⇒ x=1,1

Thus, the equal root of the given quadratic equation is either 1 or −13.

378.

Which of the following are quadratic equations?(i) \(x^{2}+6x-4=0\) (ii) \(\sqrt{3}x^{2}-2x+\frac{1}{2}=0\) (iii) \(x^{2}+\frac{1}{x^{2}}=5\) (iv) \(x-\frac{3}{x}=x^{2}\)(v) \(2x^{2}-\sqrt{3x}+9=0\)(vi) \(x^{2}-2x-\sqrt{x}-5=0\)(vii) \(3x^{2}-5x+9=x^{2}-7x+3\) (viii) \(x+\frac{1}{x}=1\) 

Answer»

A polynomial equation is a quadratic equation, if it is of the form ax2 + bx + c = 0 such that a ≠ 0

(i) \(x^{2}+6x-4=0\)

It is a quadratic equation.

(ii) \(\sqrt{3}x^{2}-2x+\frac{1}{2}\)

It is a quadratic equation.

(iii) \(x^{2}+\frac{1}{x^{2}}=5\) 

⇒ x4 -5x2 + 1 = 0

It is not a quadratic equation as the highest power of x is ‘4’

(iv) \(x-\frac{3}{x}=x^{2}\) 

⇒ x2 – 3 = x3

It is not a quadratic equation.

(v) \(2x^{2}-\sqrt{3x}+9=0\)

It is not a quadratic equation as √x is present instead of ‘x’.

(vi) \(x^{2}-2x-\sqrt{x}-5=0\) 

It is not a quadratic equation as an additional √x term is present.

(vii) \(3x^{2}-5x+9=x^{2}-7x+3\) 

⇒ 2x2 + 2x + 6 = 0

It is a quadratic equation.

(viii) \(x+\frac{1}{x}=1\)

⇒ x2 + 1 – x = 0

It is a quadratic equation.

379.

Find the solutions of the quadratic equation x2 + 6x + 5 = 0.

Answer»

The quadratic polynomial x2 + 6x + 5 can be facorised as follows :-

x2 + 6x + 5 = x2 + 5x + x + 5

= x(x + 5) + 1 (x + 5) = (x + 5) (x + 1)

Therefore the given quadratic equation becomes (x + 5) (x + 1) =

This gives x = - 5 or = - 1

Therefore, x = - 1 are the required solutions of the given equation.

380.

Solve : 2x/x-3+ 1/2x+3+ 3x+9/((x-3)(2x+3))=0

Answer»

Obviously, the given equation is valid if x - 30 and 2x + 30.

Multiplying throughout by (x - 3) (2x - 3), we get

2x(2x + 3) + 1(x - 3) + 3x + 9 = 0

or 4x2 + 10 + 6 = 0 

or 2x2 + 5x + 3 = 0 

or (2x + 3) (x + 1) = 0

But 2x + 3 0, so we get x + 1 = 0. 

This gives x = - 1 as the only solution of the given equation.

381.

If x =2/3 and x =-3 are the roots of the equation ax2+7x+b=0, find the values of a and b.

Answer»

Answer is.....

a=3,b=-6

382.

Solve the quadratic equation.3x2 - 2x - 1 = 0

Answer»

3x2 - 2x - 1 = 0

3x2 -3x + x - 1 = 0

3x(x -1 ) + 1(x - 1) = 0

(x - 1) (3x + 1) = 0

Either, x - 1 = 0, then x = 1

or 3x + 1 = 0, then x = -1/3

x = 1 or -1/3.

383.

Find whether the following quadratic equations have a repeated root :9x2 + 4x + 6 = 0

Answer»

Repeated roots mean d = 0.

d = b2 – 4ac

d = (4)2 – 4 (9) (6)

d = 16 – 216

d = –200

∴ roots are not repeated.

384.

Find whether the following quadratic equations have a repeated root :y2 - 6y + 6 = 0

Answer»

Repeated roots mean d = 0.

d = b2 – 4ac

d = (–6)2 – 4(1)(6)

d = 36 – 24

d = 12

∴ roots are not repeated.

385.

Find whether the following quadratic equations have a repeated root :16y2 - 40y + 25 = 0

Answer»

Repeated roots mean d = 0.

d = b2 – 4ac

d = (–40)2 – 4 (16) (25)

d = 1600 – 1600

d = 0

∴ roots are repeated.

386.

Find whether the following quadratic equations have a repeated root :9x2 - 12x + 4 = 0

Answer»

Repeated roots mean d = 0.

d = b2 – 4ac

d = (–12)2 – 4(9)(4)

d = 144 – 144

d = 0

Yes, roots are repeated.

387.

Solve the quadratic equations by factorization method only:x2 + 2x + 2 = 0

Answer»

Given as x2 + 2x + 2 = 0

x2 + 2x + 1 + 1 = 0

x2 + 2(x)(1) + 12 + 1 = 0

(x + 1)2 + 1 = 0 [∵ (a + b)2 = a2 + 2ab + b2]

As we know, i2 = –1 ⇒ 1 = –i2

On substituting 1 = –i2 in the above equation, we get

(x + 1)2 + (–i2) = 0

(x + 1)2 – i2 = 0

(x + 1)2 – (i)2 = 0

[On using the formula, a2 – b2 = (a + b) (a – b)]

(x + 1 + i) (x + 1 – i) = 0

x + 1 + i = 0 or x + 1 – i = 0

x = –1 – i or x = –1 + i

x = -1 ± i

∴ The roots of the given equation are -1 ± i

388.

Solve the quadratic equations by factorization method only:x2 + x + 1 = 0

Answer»

Given as x2 + x + 1 = 0

x2 + x + 1/4 + 3/4 = 0

x2 + 2 (x) (1/2) + (1/2)2 + 3/4 = 0

(x + 1/2)2 + 3/4 = 0 [Since, (a + b)2 = a2 + 2ab + b2]

(x + 1/2)2 + 3/4 × 1 = 0

As we know, i2 = –1 ⇒ 1 = –i2

On substituting 1 = –i2 in the above equation, we get

(x + 1/2)2 + 3/4 (-1)2 = 0

(x + 1/2)2 + 3/4 i2 = 0

(x + 1/2)2 – (3i/2)2 = 0

[On using the formula, a2 – b2 = (a + b) (a – b)]

(x + 1/2 + 3i/2) (x + 1/2 – 3i/2) = 0

(x + 1/2 + 3i/2) = 0 or (x + 1/2 – 3i/2) = 0

x = -1/2 – 3i/2 or x = -1/2 + 3i/2

∴ The roots of the given equation are -1/2 + 3i/2, -1/2 – 3i/2

389.

Solve the quadratic equations by factorization method only:x2 – 4x + 7 = 0

Answer»

Given as x2 – 4x + 7 = 0

x2 – 4x + 4 + 3 = 0

x2 – 2(x) (2) + 22 + 3 = 0

(x – 2)2 + 3 = 0 [Since, (a – b)2 = a2 – 2ab + b2]

(x – 2)2 + 3 × 1 = 0

As we know, i2 = –1 ⇒ 1 = –i2

On substituting 1 = –i2 in the above equation, we get

(x – 2)2 + 3(–i2) = 0

(x – 2)2 – 3i2 = 0

(x – 2)2 – (3i)2 = 0

[On using the formula, a2 – b2 = (a + b) (a – b)]

(x – 2 + 3i) (x – 2 – 3i) = 0

(x – 2 + 3i) = 0 or (x – 2 – 3i) = 0

x = 2 – 3i or x = 2 + 3i

x = 2 ± 3i

∴ The roots of the given equation are 2 ± 3i

390.

Solve the quadratic equations by factorization method only:4x2 + 1 = 0

Answer»

Given as 4x2 + 1 = 0

As we know, i2 = –1 ⇒ 1 = –i2

On substituting 1 = –i2 in the above equation, we get

4x2 – i2 = 0

(2x)2 – i2 = 0

[On using the formula, a2 – b2 = (a + b) (a – b)]

(2x + i) (2x – i) = 0

2x + i = 0 or 2x – i = 0

2x = –i or 2x = i

x = -i/2 or x = i/2

∴ The roots of the given equation are i/2, -i/2

391.

Solve the quadratic equations by factorization method only:4x2 – 12x + 25 = 0

Answer»

Given as 4x2 – 12x + 25 = 0

4x2 – 12x + 9 + 16 = 0

(2x)2 – 2(2x)(3) + 32 + 16 = 0

(2x – 3)2 + 16 = 0 [Since, (a + b)2 = a2 + 2ab + b2]

(2x – 3)2 + 16 × 1 = 0

As we know, i2 = –1 ⇒ 1 = –i2

On substituting 1 = –i2 in the above equation, we get

(2x – 3)2 + 16(–i2) = 0

(2x – 3)2 – 16i2 = 0

(2x – 3)2 – (4i)2 = 0

[On using the formula, a2 – b2 = (a + b) (a – b)]

(2x – 3 + 4i) (2x – 3 – 4i) = 0

2x – 3 + 4i = 0 or 2x – 3 – 4i = 0

2x = 3 – 4i or 2x = 3 + 4i

x = 3/2 – 2i or x = 3/2 + 2i

∴ The roots of the given equation are 3/2 + 2i, 3/2 – 2i

392.

A plane left 40 minutes late due to bad weather and in order to reach its destination, 1600 km away in time, it had to increase its speed by 400 km / hr from its usual speed. Find the usual speed of the plane.

Answer»

Time = distance/speed 

Given, plane left 40 minutes late due to bad weather and in order to reach its destination, 1600 km away in time, it had to increase its speed by 400 km / hr from its usual speed. 

Let the usual speed be ‘a’.

\(\frac{1600}a{}-\frac{1600}{a\,+\,400}=\frac{40}{60}\)

⇒ 3(1600 × 400) = 2(a2 + 400a)

⇒ a2 + 400a – 960000 = 0

⇒ a2 + 1200a – 800a – 960000 = 0 

⇒ a(a + 1200) – 800(a + 1200) = 0 

⇒ (a + 1200)(a – 800) = 0 

⇒ a = 800 km/hr

393.

Solve the following quadratic equations by factorization:\(x-\frac{1}{x-3}=3,x\neq0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(x-\frac{1}{x-3}=3,x\neq0\)

⇒ x2 – 3x – 1 = 3x – 9 

⇒ x2 – 6x + 8 = 0 

⇒ x2 – 4x – 2x + 8 = 0 

⇒ x(x – 4) – 2(x – 4) = 0 

⇒ (x – 2)(x – 4) = 0 

⇒ x = 2, 4

394.

Solve the following quadratic equations by factorization:\(a^2b^2x^2+b^2x-a^2x-1=0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(a^2b^2x^2+b^2x-a^2x-1=0\)

⇒ b2x(a2x + 1) – (a2x + 1) = 0 

⇒ (b2x – 1)(a2x + 1) = 0 

⇒ x = -1/a2, 1/b2

395.

Solve the following quadratic equations by factorization:Solve for x: \(\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3},x\neq2,4\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3},x\neq2,4\)

⇒ 3(x– 1)(x – 4) + 3(x – 2)(x – 3) = 10(x – 2)(x – 4) 

⇒ 3x2 + 12 – 15x + 3x2 + 18 – 15x = 10x2 – 60x + 80 

⇒ 4x2 – 30x + 50 = 0 

⇒ 2x2 – 15x + 25 = 0 

⇒ 2x2 – 10x – 5x + 25 = 0 

⇒ 2x(x – 5) – 5(x – 5) = 0 

⇒ (2x – 5)(x – 5) = 0 

Thus, x = 5/2, 5

396.

Solve the following quadratic equations by factorization:\(\frac{1}{x-1}-\frac{1}{x+5}=\frac{6}{7},x\neq1,-5\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(\frac{1}{x-1}-\frac{1}{x+5}=\frac{6}{7},x\neq1,-5\)

⇒ 7(x + 5 – x + 1) = 6(x – 1)(x + 5) 

⇒ 42 = 6x2 + 24x – 30 

⇒ x2 + 4x – 12 = 0 

⇒ x2 + 6x – 2x – 12 = 0 

⇒ x(x + 6) – 2(x + 6) = 0 

⇒ (x – 2)(x + 6) = 0 

⇒ x = 2, -6

397.

Solve the following quadratic equations by factorization:\(3x^2-2\sqrt{6}x+2=0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(3x^2-2\sqrt{6}x+2=0\)

⇒ (√3x)2 – 2√6x + (√2)2 = 0 

⇒ (√3x - √2)2 = 0

⇒ x \(\frac{\sqrt{2}}{\sqrt{3}},\)\(\frac{\sqrt{2}}{\sqrt{3}}\)

398.

The set of all vales of m for which both the roots of the equation x2 - (m+1)x + m + 4 = 0 are real and negative, is A. (−,−3] [5, ∞)B. [−3, 5] C. (−4, −3] D. (−3, −1]

Answer»

For roots to be real its D ≥ 0

\(\sqrt{(m+1)^2 - 4(1)(m+4)}≥ 0\) 

(m + 1)2 – 4(m + 4) ≥ 0 

m2 – 2m – 15 ≥ 0 

(m – 1)2 – 16 ≥ 0 

(m – 1)2 ≥ 16

m – 1 ≤ -4 or m – 1 ≥ 4 

m ≤ -3 or m ≥ 5 

For both roots to be negative product of roots should be positive and sum of roots should be negative. 

Product of roots = m + 4 > 0 

⇒ m > -4 

Sum of roots = m + 1 < 0 

⇒ m < -1 

After taking intersection of D ≥ 0, Product of roots > 0 and sum of roots < 0. We can say that the final answer is 

m ∈ (-4, -3]

399.

The number of roots of the equation \(\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4} \)  isA. 0 B. 1 C. 2 D. 3

Answer»

Given, \(\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4} \) 

(x+2) (x-5) (x+4) = (x-2) (x-3) (x+6) 

x+ 4x- 5x- 20x + 2x+ 8x - 10x - 40 = x3+6x2-3x2-18x- 2x2 - 12x + 6x + 36 

x2- 22x - 40 = x- 24x + 36 

4x = 76 

x = 19 

hence the given equation has only one solution.

400.

If α and β are the roots of 4x2 + 3x + 7 = 0, then the value of  \(\frac{1}{α} + \frac{1}{β}\)  isA. \(\frac{4}{7}\) B. \(-\frac{3}{7}\) C.  \(\frac{3}{7}\)  D. \(-\frac{3}{4}\) 

Answer»

Given 4x2+ 3x + 7 = 0 

We know sum of the roots = \(\frac{-3}{4}\)

Product of the roots =  \(\frac{7}{4}\)

As given that α and β are roots then,

α + β  =  \(\frac{-3}{4}\) 

α β =  \(\frac{7}{4} \)  

Given \(\frac{1}{α} + \frac{1}{β}\) 

\(\frac{α+β}{αβ}\) 

= \(-\frac{3}{\frac{4}{\frac{7}{4}}}\) 

\(\frac{-3}{7}\)