Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

The points with position vectors `alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk` are coplanar ifA. `(1-alpha)(1+beta)=0`B. `(1-alpha)(1-beta)=0`C. `(1+alpha)(1+beta)=0`D. `(1+alpha)(1-beta)=0`

Answer» Correct Answer - A
Let `P,Q,R` and `S` be the given points with position vectors `alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk` and `hati+hatj+betahatk` respectively. Then,
`vec(QP)=(alpha-1)hati+2hatj+2hatk, vec(QR)=0hati+3hatj+0hatk`
and `vec(QS)=0hati+2hatj+(beta+1)hatk` are coplanar.
`:.[vec(QP),vec(QR),vec(QS)]=0`
`implies|(alpha-1,2,2),(0,3,0),(0,2,beta+1)|=0`
`implies (alpha-1)(beta+1)=0implies(1-alpha)(1+beta)=0`
2.

The value of `veca.(vecb+vecc)xx(veca+vecb+vecc)`, isA. `2[veca vecb vecc]`B. `[veca vecb vecc]`C. 0D. None of these

Answer» Correct Answer - C
We have
`veca+vecb+vecc=veca+(vecb+vecc)`
`implies veca, vecb+vecc` and `veca+vecb+vecc` are coplanar
`impliesveca.(vecb+vecc)xx(veca+vecb+vecc)=0` i.e. `[(veca, vecb+c, veca+vecb+vecc)]=0`
3.

Let `veca=2hati+3hatj-hatk` and `vecb=hati-2hatj+3hatk`. Then , the value of `lamda` for which the vector `vecc=lamdahati+hatj+(2lamda-1)hatk` is parallel to the plane containing `veca` and `vecb`. IsA. `1`B. `0`C. `-1`D. `2`

Answer» Correct Answer - B
We are given that `vecc` is parallel to the plane containing `veca` and `vecb`
`impliesvecc_|_(vecaxxvecb)impliesvecc.(vecaxxvecb)=0implies[(veca, vecb, vecc)]=0`
`implies |(2,3,-1),(1,-2,3),(lamda, 1, 2lamda-1)|=0implieslamda=0`
4.

If `veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk` and `vecc=rhati+hatj+(2r-1)hatk` are three vectors such that `vecc` is parallel to the plane of `veca` and `vecb` then`r` is equal to,A. `1`B. `0`C. `2`D. `-1`

Answer» Correct Answer - B
It is given `vecc` is parallel to the plane of `veca` and `vecb`
`:.vecc_|_vecaxxvecb`
`impliesvecc(vecaxxvecb)=0implies[(veca, vecb, vecc)]=0`
`implies|(1,-2,3),(2,3,-1),(4,1,2r-1)|=0`
`implies(6r-2)+2(5r-2)+(6-9r)=0implies7r=0impliesr=0`.
5.

Let `vecr, veca, vecb` and `vecc` be four non-zero vectors such that `vecr.veca=0, |vecrxxvecb|=|vecr||vecb|,|vecrxxvecc|=|vecr||vecc|` then `[(veca, vecb, vecc)]=`A. `-1`B. `0`C. `1`D. `2`

Answer» Correct Answer - B
We have
`{:(vecr.veca=0impliesvecr_|_veca),(|vecrxxvecb|=|vecr||vecb|impliesvecr_|_vecb),("and"|vecrxxvecr|=|vecr||vecc|impliesvecr_|_vecc):}}impliesveca, vecb vecc` are coplanar.
Hence `[(veca, vecb, vecc)]=0`
6.

Statement 1: Let `vecr` be any vector in space. Then, `vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk` Statement 2: If `veca, vecb, vecc` are three non-coplanar vectors and `vecr` is any vector in space then `vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc`A. `1`B. `2`C. `3`D. `4`

Answer» Correct Answer - A
Since `veca,vecb, vecc` are non coplanar vectors.
Therefore, there exists scalars x,y,z such that
`vecr=xveca+yvecb+zvecc`……………..i
Taking dot products with `vecbxxvecc, veccxxveca` and `vecaxxvecb` successively, we get
`vecr.(vecbxxvecc)=(xveca+yvecb+zvecc).(vecbxxvecc)`
`vecr.(veccxxveca)=(xvecaxxyvecb+zvecc).(veccxxveca)`
`vecr.(vecaxxvecb)=(xveca+yvecb+zvecc).(vecaxxvecb)`
`implies[(vecr, vecb, vecc)]=x[(veca, vecb, vecc)]`
`=[(vecr, vecc, veca)]=y[(vecb, vecc, veca)]`
and `[(vecr, veca, vecb)]=z[(vecc, veca, vecb)]`
`impliesx=([(vecr, vecb, vecc)])/([(veca, vecb, vecc)]),y=([(vecy, vecc, veca)])/([(veca, vecb, vecc)])` and `z=([(vecr, veca, vecb)])/([(veca, vecb, vecc)])`
Substituting the alues of `x,y,z` in (i) we get
`vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vec)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca,vecb, vecc)])}vecc`
So, statement 2 is true.
On replacing `veca, vecb,` and `vecc` by `hati, hatj` and `hatk` respectively in statement -2 we obtain statement-1.
So, statement 1 is true and statement -2 is a correct explanation for statement -1
7.

A solution of the vector equation `vecrxxvecb=vecaxxvecb`, where `veca, vecb` are two given vectors is where `lamda` is a parameter.A. `vecr=lamdavecb`B. `vecr=veca+lamdavecb`C. `vecr=vecb+lamdaveca`D. `vecr=lamdaveca`

Answer» Correct Answer - B
We have
`vecrxxvecb=vecaxxvecb`
`impliesvecrxxvecb-vecaxxvecb=vec0`
`impliesvecrdxvecb-vecaxxvecb=vec0`
`implies (vecr-veca)xxvecb=vec0`
`impliesvecr-veca` is aparallel to `vecb`.
`impliesvecr-veca=lamdavecb` for some scalar `lamda`
`impliesvecr=veca+lamdavecb` is the required solution.
8.

If `veca, vecb, vecc` are three non-zero non-null vectors are `vecr` is any vector in space then `[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc` is equal toA. `2[(veca, vecb, vecc)]vecr`B. `3[(veca, vecb, vecc)]vecr`C. `[(veca, vecb, vecc)]`D. None of these

Answer» Correct Answer - C
We have `vecr=xveca+yvecb+zvecc`………………i
Taking product successively with `vecbxxvecc, veccxxveca` and `vecaxxvecb` we obtain
`x=([(vecb, vecc, vecr)])/([(veca, vecb, vecc)]),y=([(vecc, veca, vecr)])/([(veca, vecb, vecc)]),z=([(veca, vecb, vecr)])/([(veca, vecb, vecc)])`
Substituting the values of `x,y,z` in (i) we get
`[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]=vecc=[(veca, vecb, vecc)]vecr`
9.

Which of the following expressions are meaningful?A. `vecu.(vecvxxvecw)`B. `(vecu.vecv).vecw`C. `(vecu.vecv)vecw`D. `vecuxx(vecv.vecw)`

Answer» Correct Answer - A::C
Since `vecvxxvecw` is a vector. Therefore `vecu.(vecvxxvecw)` is a scalar quantity.
As `(vecu.vecv)` is a scalar. Therefore `(vecu.vecv).vecw` is not meaningful.
But`(vecu.vecv)vecw` is a scalar multiple of `vecw`. So it is meaningful.
Since `vecv.vecw` is a scalar. So `vecuxx(vecvxxvecw)` is not meaningful.
10.

The number of distinct values of `lamda`, for which the vectors `-lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk` and `hati+hatj-lamda^(2)hatk` are coplanar, is

Answer» Correct Answer - C
Given vectors will be coplanar if
`|(-lamda^(2),1,1),(1,-lamda^(2),1),(1,1,-lamda^(2))|=0`
`implieslamda^(6)-3lamda^(2)-2=0implies(1+lamda^(2))^(2)(lamda^(2)-2)=0implieslamda=+-sqrt(2)`
11.

If `veca, vecb, vecc` are three non-coplanar vectors, then a vector `vecr` satisfying `vecr.veca=vecr.vecb=vecr.vecc=1`, isA. `vecaxxvecb+vecbxxvecc+veccxxveca`B. `1/([(veca, vecb, vecc)]){vecaxxvecb+vecbxxvec+veccxxveca}`C. `[(veca, vecb, vecc)]{vecaxxvecb+vecbxxvecc+vecxxveca}`D. none of these

Answer» Correct Answer - B
Since `veca, vecb, vecc` are three non-coplanar vectors.
Therefore `vecaxxvecb, vecbxxvecc` and `veccxxveca` are also non coplanar vectors.
Let `vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)`. Then,
`vecr.veca=1implies1=y{((vecbxxvecc).veca)}impliesy=1/([(veca, vecb, vecc)])`
Similarly `vecr.vecb=1` and `vecr.vecc=1` will give
`z=1/([(veca, vecb, vecc)])` and `x=1/([(veca, vecb, vecc)])`
Hence `vecr=1/([(veca, vecb, vecc)]){vecaxxvecb+vecbxxvecc+veccxxveca}` is the required solution.
12.

If `veca, vecb` and `vecc` are unit coplanar vectors, then`[(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]`

Answer» Correct Answer - A
Since `veca,vecb,vecc`are coplanar vectors. Therefore,
`2veca-3vecb,7vecb-9vecc` and `12vecc-23veca` are also coplanar vectors.
Hence `[(2veca-3vecb, 7vecb-9vecc,12vecc-23veca)]=0`
13.

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If `veca, vecb, vecc` are three non-coplanar vectors and `vecr` is any vector in space then `[(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr`A. 1B. 2C. 3D. 4

Answer» Correct Answer - B
Clearly statemnet -1 is true
We have `vecr=xveca+yvecb+zvecc` ……………..i
Taking product successively with `vecbxxvecc, veccxxveca` and `vecaxxvecb`, we obtain
`x=([(vecb, vecc,vecr)])/([(veca, vecb, vecc)]),y=([(vecc, veca, vecr)])/([(veca, vecb, vecc)]),z=([(veca, vecb, vecr)])/([(veca, vecb, vecc)])`
Substituting the values of `x,y,z` in (i) we get
`[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecr=[(veca, vecb, vecc)]vecr`
So Statement 2 is true. But, statement2 is not a correct explanation for statement -1
14.

For any three vectors `veca, vecb, vecc` the value of `[(veca+vecb,vecb+vecc,vecc+veca)]` isA. `0`B. `2[(veca, vecb, vecc)]`C. `[(veca, vecb, vecc)]`D. `-[(veca, vecb, vecc)]`

Answer» Correct Answer - B
Let `vec(alpha)=veca+vecb, vecbeta=vecb+vecc`, and `vec(gamma)=vecc+veca`.
Then
`vec(alpha)=veca+vecb+0vecc,vec(beta)=0veca+vecb+vecc` and `vec(gamma)=veca+0vecb+vecc`
`[(vec(alpha), vec(beta), vec(gamma))]=|(1,1,0),(0,1,1),(1,0,1)|[(veca, vecb, vecc)]`
`implies[(vec(alpha), vec(beta),vec(gamma))]=2[(veca, vecb, vecc)]`
15.

For any three vectors `veca, vecb, vecc` the value of `[(veca-vecb, vecb-vecc, vecc-veca)]`, isA. `0`B. `[(veca, vecb, vecc)]`C. `-[(veca, vecb, vecc)]`D. `-2[(veca, vecb, vecc)]`

Answer» Correct Answer - A
Let `vec(alpha)=veca-vecb, vec(beta)=vecb-vecc` and `vec(gamma)=vecc-veca`
or `vec(alpha)=veca-vecb+0vecc, vec(beta)=0veca+vecb-vecc` and `vec(gamma)=-veca+0vecb+vecc`
Then
`[(vec(alpha), vec(beta), vec(gamma))]=|(1,-1,0),(0,1,-1),(-1,0,1)|[(veca, vecb, vecc)]`
`implies[(vec(alpha),vec(beta),vec(gamma))]=0[(veca, vecb, vecc)]=0`
Alter 1 We have
`vec(alpha)+vec(beta)+vec(gamma)=veca-vecb+vecb-vecc+vecc-veca=vec0`
`impliesvec(alpha),vec(beta),vec(gamma)` are coplanar.
`implies[(vec(alpha), vec(beta), vec(gamma))=0` or `[(veca-vecb,vecb-vecc, vecc-veca)]=0`
16.

Let `veca,vecb` and `vecc` be three vectors. Then scalar triple product `[veca vecb vecc]` is equal toA. `[(vecb, veca, vecc)]`B. `[veca vecc vecb]`C. `[vecc vecb veca]`D. `[vecb vecc veca]`

Answer» Correct Answer - D
We have
`[veca vecb vecc]=[vecb vecc veca]-[vecc veca vecb]`
So option d is correct.
17.

If `vecu, vecv, vecw` are three non-coplanar vectors, the `(vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)` equalsA. `vecu.(vecvxxvecw)`B. `vecu.(vecwxxvecv)`C. `3vecu.(veccxxvecw)`D. 0

Answer» Correct Answer - A
We have
`(vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)`
`=[(vecu+vecv-vecw,vecu-vecv,vecv-vecw)]`
`=[(vecu+vecv-vecw,vecu-vecv+0vecw,0vecu+vecv-vecw)]`
`=|(1,1,-1),(1,-1,0),(0,1,-1)|[(vecu, vecv, vecw)]`
`=[(vecu, vecv, vecw)]=vecu.(vecvxxvecw)`
18.

If `[veca vecb vecc]=1` then value of `(veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca)` isA. `3`B. `1`C. `-1`D. None of these

Answer» Correct Answer - A
`(veca.(vecbxxvecc))/((veccxxveca).vecb)+(vecb(veccxxveca))/((vecaxxvecb).vecc)+(vecc.(vecaxxvecb))/((vecbxxvecc).veca)`
`=([veca vecb vecc])/([vecc veca vecb])+([vecc veca vecb])/[(vecb vecc veca])=1/1+1/1+1/1=3`
19.

If `vecu, vecv, vecw` are three vectors such that `[vecu vecv vecw]=1`, then `3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=`

Answer» Correct Answer - D
`3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]`
`=3[vecu vecv vecw]-[vecu vecv vecw]+2[vecw vecu vecv]`
`=3[vecu vecv vecw]-[vecu vecv vecw]+2[vecu vecv vecw]`
`=4[vecu vecv vecw]=4xx1=4`
20.

If `veca, vecb, vecc` are non coplanar non null vectors such that `[(veca, vecb, vecc)]=2` then `{[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=`A. 4B. 16C. 8D. none of these

Answer» Correct Answer - B
We have
`{[(vecaxxvecb, vecbxxvecc, veccxxveca)]}={[(veca, vecb, vecc)]}^(4)=2^(4)=16`
21.

If `vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(vecc+veca)` Such that `x+y+z!=0` and `vecr.(veca+vecb+vecc)=x+y+z`, then `[veca vecb vecc]=`

Answer» Correct Answer - B
We have
`vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(vecc xxveca)`
`:.vecr.(veca+vecb+vecc)=x+y+z`
`implies{x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)}.(veca+vecb+vecc)=x+y+z`
`impliesy[vecb vecc veca]+z[vecc veca vecb]+x[veca vecb vecc]=x+y+z`
`implies (x+y+z)[veca vecb vecc]=x+y+z`
`implies [veca vecb vecc]=1`
22.

If `vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)` and `[veca vecb vecc]=1/8`, then `x+y+z=`A. `8vec(alpha).(veca+vecb+vecc)`B. `vec(alpha).(veca+vecb+vecc)`C. `8(veca+vecb+vecc)`D. None of these

Answer» Correct Answer - A
We have
`vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)`
Taking dot products with `veca, vecb` and `vecc` repectively, we get
`vec(alpha).veca=y[veca vecb vecc]impliesy=8(vec(alpha).veca)`
`vec(alpha).vecb=z[veca vecb vecc]impliesz=8(vec(alpha).vecb)`
and `vec(alpha).vecc=x[veca vecb vecc]=x=8(vec(alpha).vecc)`
`:.x+y+z=8vec(alpha).(veca+vecb+vecc)`
23.

Statement 1: For any three vectors `veca,vecb,vecc` `[(vecaxxvecb,vecbxxvecc,veccxxveca)]=0` Statement 2: If `vecp,vecq,vecr` are linear dependent vectors then they are coplanar.A. 1B. 2C. 3D. 4

Answer» Correct Answer - D
If `vecp,vecq,vecr` are linearly independent vectors, then there exist scalars `x,y,z` not all zero such that
`xvecp+yvecq+zvecr=vec0`
`impliesvecp=(-y/x)vecq+((-z)/x)vecr`
`impliesvecp,vecq,vecr` are coplanar.
So, statement 2 is true.
We know that `[(vecpxxvecb,vecbxxvecc,veccxxveca)]=[(veca,vecb,vecc)]!=0` unless `veca,vecb,vecc` are coplanar.
So, statement -2 is not true.
24.

The three vectors `hati+hatj, hatj+hatk, hatk+hati` taken two at a time form three planes. The three unit vectors drawn perpendicular to these three planes form a parallelopiped of volume.A. `1/3`B. `4`C. `(3sqrt(3))/4`D. `4/(3sqrt(3))`

Answer» Correct Answer - B
Let `veca=hati+hatj, vecb=hatj+hatk, vecc=hatk+hati`
Let `vecn_(1),vecn_(2),vecn_(3)` be the normals to the given planes. Then,
`vecn_(1)=vecaxxvecb, vecn_(2)=vecbxxvecc` and `vecn_(3)=veccxxveca`
`:.` Volume of the given parallelopiped is given by
`[(vecn_(1), vecn_(2), vecn_(3))]=[(veca, vecb, vecc)]^(2)=|(1, 1, 0),(0, 1,1),(1,0, 1)|^(2)=4`
25.

Let `veca, vecb, vecc` be three non-zero non coplanar vectors and `vecp, vecq` and `vecr` be three vectors given by `vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc` and `vecr=veca-4vcb+2vecc` If the volume of the parallelopiped determined by `veca, vecb` and `vecc` is `V_(1)` and that of the parallelopiped determined by `veca, vecq` and `vecr` is `V_(2)`, then `V_(2):V_(1)=`A. `3:1`B. `7:1`C. `11:1`D. `15:1`

Answer» Correct Answer - D
We have `V_(1)=[(veca, vecb, vecc)]` and `V_(2)=[(vecp, vecq, vecr)]`
Now,
`V_(2)=[(vecp, vecp, vecr)]`
`impliesV_(2)=|(1,1,-2),(3,-2,1),(1,-4,2)|[(veca, vecb, vecc)]`
`impliesV_(2)=15V_(1)impliesV_(2):V_(1)=15:1`
26.

If the vectors `veca` and `vecb` are perpendicular to each other then a vector `vecv` in terms of `veca` and `vecb` satisfying the equations `vecv.veca=0, vecv.vecb=1` and `[(vecv, veca, vecb)]=1` isA. `(vecb)/(|vecb|^(2))+(vecaxxvecb)/(|vecaxxvecb|^(2))`B. `(vecb)/(|vecb|)+(vecaxxvecb)/(|vecaxxvecb|^(2))`C. `(vecb)/(|vecb|^(2))+(vecaxxvecb)/(|vecaxxvecb|)`D. none of these

Answer» Correct Answer - A
If `veca, vecb, vecc` are three non coplanar vectors, then any vector `vecr` can be expressed as
`vecr={(vecr.veca)/(|veca|^(2))}veca+{(vecr.vecb)/(|vecb|^(2))}+vecb+{(vecr.vecc)/(|vecc|^(2))}vecc`
Clearly `veca, vecb` and `vecaxxvecb` are three non-coplanar vectors.
`:.vecv={(vecv.veca)/(|veca|^(2))}veca+{(vecv.vecb)/(|vecb|^(2))}vecb+{(vecv.(vecaxxvecb))/(|vecaxxvecb|^(2))}(vecaxxvecb)`
`implies vecv=0veca+1/(|vecb|^(2)).vecb+1/(|vecaxxvecb|^(2)).(vecaxxvecb)`
27.

Statement 1: Let `veca, vecb, vecc` be three coterminous edges of a parallelopiped of volume 2 cubic units and `vecr` is any vector in space then `|(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecc.vecc)(vecaxxvecb|=2|vecr|` Statement 2: Any vector in space can be written as a linear combination of three non-coplanar vectors.A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
Clearly, statement -2 is true
We have `|[(veca, vecb, vecc)]|=2`
`:.[(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca,vecb, vecc)]^(2)=4!=0`
`implies vecaxxvecb, vecbxxvecc, veccxxveca` are non coplanar.
Using statement -2 we have
`vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)`...............i
Taking dot products with `veca,vecb` and `vecc` respectively, we get
`vecr.veca=y[(veca, vecb, vecc)],vecr.vecb=z[(veca, vecb, vecc)]` and `vecr.vecc=x[(veca,vecb,vecc)]`
Substituting the values of `x,y` in i we get
`vecr[(veca, vecb,vecc)]=(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecr.vecc)(vecaxxvecb)`
`implies|(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecr.veca)(vecaxxvecb)|`
`=|vecr||(veca, vecb,vecc)|`
`implies|(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecr.vecc)(vecaxxvecb)|=2|vecr|`
28.

Let `vecx, vecy` and `vecz` be three vectors each of magnitude `sqrt(2)` and the angle between each pair of them is `pi/3`. If `veca` is a non-zero vector perpendicular to `vecx` and `vecyxxvecz` and `vecb` is a non zero vector perpendicular to `vecy` and `veczxxvecx` thenA. `vecb=(vecb.vecz)(vecz-vecx)`B. `veca=(veca.vecy)(vecy-vecz)`C. `veca.vecb=-(veca.vecy)(vecb.vecz)`D. `veca=(veca.vecy)(vecz-vecy)`

Answer» Correct Answer - A::B::C
We have `|vecx|=|vecy|=|vecz|=sqrt(2)`
`vecx.vecy=|vecx||vecy|"cos"(pi)/3=1,vecy.vecz=1` and `vecz.vecx=1`
It is given that `veca` is perpendicular to `vecx` and `vecyxxvecz` and `vecb` is perpendicular to `vecy` and `veczxxvecx`. Therefore
`veca||vecx xx (vecyxxvecz)` and `vecb||vecyxx(veczxxvecx)`
`veca=lamda_(1){vecxxx(vecyxxvecz)}` and `vecb=lamda_(2){vecyxx(veczxx vecx)}`
for scalar `lamda_(1)` and `lamda_(2)`
`implies veca=lamda_(1){(vecx.vecz)vecy-(vecx.vecy)vecz}`
and `vecb=lamda_(2){(vecy.vecx)vecz-(vecy.zvecz)vecx}`
`impliesveca=lamda_(1)(vecy-vecz)` and `vecb=lamda_(2)(vecz-vecx)`
`impliesveca.vecy=lamda_(1)(vecy.vecy-vecy.vecz)` and `vecb.vecz=lamda_(2)(vecz.vecz-vecx.vecz)`
`impliesveca.vecy=lamda_(1)(2-1)` and `vecb.vecz=lamda_(2)(2-1)`............i
`implies lamda_(1)=veca.vecy` and `lamda_(2)=vecb.vecz`
Sunstituting the values of `lamda_(1)` and `lamda_(2)` in i we get
`impliesveca=(veca.vecy)(vecy-vecz)` and `vecb=(vecb.vecz)(vecz-vecx)`
Thus option b and c are correct.
Now `veca.vecb=(veca.vecy)(vecy-vecz).(vecb.vecz)(vecz-vecx)`
`impliesveca.vecb=(veca.vecy)(vecb.vecz){(vecy-vecz).(vecz-vecx)}`
`impliesveca.vecb=(veca.vecy(vecb.vecz)){(vecy.vecz-vecy.vecx-vecz.vecz+vecz.vecx)}`
`implies veca.vecb=(veca.vecy(vecb.vecz)(1-1-2+1)`
`implies veca.vecb=-(veca.vecy)(vecb.vecz)`
so option c is correct.
29.

Let `G_(1),G_(2),G_(3)` be the centroids of the triangular faces `OBC, OCA, OAB` of a tetrahedron `OABC`. If `V_(1)` denote the volume of the tetrahedron `OABC` and `V_(2)` that of the parallelopiped with `OG_(1),OG_(2),OG_(3)` as three concurrent edges, thenA. `4V_(1)=9V_(2)`B. `9V_(1)=4V_(2)`C. `3V_(1)=2V_(2)`D. `3V_(2)=2V_(1)`

Answer» Correct Answer - A
Taking `O` as the origin let the position vectors of `A,B` and `C` be `veca,vecb` and `vecc` respectively. Thenthe position vectors of `G_(1),G_(2)` and `G_(3)` are `(vecb+vecc)/3,(vecc+veca)/3` and `(veca+vecb)/3` respectively.
`:.V_(1)=1/6[(veca,vecb, vecc)]` and `V_(2)=[(vec(OG_(1)),vec(OG_(2)),vec(OG_(3)))]`
`V_(2)=[(vec(OG_(1)),vec(OG_(2)),vec(OG_(3)))]`
`implies V_(2)=[((vecb+vecc)/3,(vecc+veca)/3,(veca+vecb)/3)]`
`impliesV_(2)=1/27[(vecb+vecc,vecc+veca,veca+vecb)]`
`impliesV_(2)=2/27[(veca,vecb,vecc)]impliesV_(2)=2/27xx6V_(1)=9V_(2)=4V_(1)`
30.

If the acute angle that the vector `alphahati+betahatj+gammahatk` makes with the plane of the two vectors `2hati+3hatj-hatk` and `hati-hatj+2hatk` is `tan^(-1)1/(sqrt(2))` thenA. `alpha(beta+gamma)=beta gamma`B. `beta(gamma+alpha)=gamma alpha`C. `gamma(alpha+beta)=alpha beta`D. `alpha beta =beta gamma +gamma alpha =0`

Answer» Correct Answer - A
Let `theta` be the angle between `vecr=alpha hati+beta hatj+gammahatk` and the plane containig the vectors `veca=2hati+hatj-hatk` and `vecb=hati-hatj+2hatk`. Then `(pi//2-theta)` is the angle between `vecr` and `vecaxxvecb`.
`:.cos((pi)/2-theta)=(vecr.(vecaxxvecb))/(|vecr||vecaxxvecb|)`
`impliessin theta=([(vecr, veca, vecb)])/(|vecr||vecaxxvecb|)`
`implies1/(sqrt(3))=([(vecr, veca, vecb)])/(|vecr|(5sqrt(3))) [ :. tan theta=1/(sqrt(2))impliessin theta=1/(sqrt(3), and vecaxxvecb=5hati-5hatj-5hatk]`
`implies5|vecr|=[(vecr, veca, vecb)]`
`implies5|vecr|=5(alpha-beta-gamma)`
`implies|vecr|=alpha-beta-gamma`
`impliessqrt(alpha^(2)+beta^(2)+gamma^(2))=alpha-beta-gamma`
`impliesbeta gamma=alpha gamma +alpha betaimpliesbeta gamma=alpha (beta+gamma)`
31.

The volume of the tetrahedron whose vertices are the points `hati, hati+hatj, hati+hatj+hatk` and `2hati+3hatj+lamdahatk` is `1//6` units, Then the values of `lamda`A. does not existB. is 7C. is -1D. is any real value

Answer» Correct Answer - D
Let ABCD be the given tetradehron. Then
`vec(AB)=hatj,vec(AC)=hatj+hatk` and `vec(AD)=hati+3hatj+lamdahatk`
`:.` volume `=1/6`
`implies1/6[(vec(AB), vec(AC),vec(AD))]=1/6`
`implies[(vec(AB),vec(AC),vec(AD))]=1`
`=(vec(AB)xxvec(AC).vec(AD))=1`
`implieshati.(hati+K3hatj+lamda hatk)=1`, which is true for all values of `lamda`
32.

The volume of the tetrahedron whose vertices are the points with positon vectors `hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+hatk` and `7hati-4hatj+7hatk` is 11 cubic units if the value of `lamda` isA. `-1,7`B. `1,7`C. `-7`D. `-1,-7`

Answer» Correct Answer - B
Let A,B, C and D be the points with the given position vectors. Then
`vec(AB)=-2hati+3hatj-3hatk, vec(AC)=4hati+5hatj+(lamda-10)hatk`
and `vec(AD)=6hati+2hatj-3hatk`
`:.` Volume `=11` cubic units.
`=1/6[(vec(AB), vec(AC), vec(AD))]=+-11`
`implies1/6|(-2, 3, -3),(4,5,lamda-10),(6,2,-3)|=+-11`
`implies-88+22lamda=+-66implieslamda=1` or `lamda=7`