Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

In any `DeltaABC`, prove that `(b^(2)-c^(2))cotA+(c^(2)+a^(2))cotB+(a^(2)-b^(2))cotC=0`.

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" "("sin A")/a=("sin B")/b=("sin C")/c="k (sky)"`
`rArr" "sinA=ka, sin B=kband sin C=kc.`
`:." "(b^(2)-c^(2))cot A=((b^(2)-c^(2))cosA)/("sin A")=((b^(2)-c^(2)))/("ka")((b^(2)+c^(2)-a^(2)))/("2ac")`
`=1/("2kabc")(b^(2)-c^(2)-a^(2))=((b^(4)-c^(4)-a^(2)b^(2)+a^(2)c^(2)))/("2kabc")`
Similarly, `(c^(2)-a^(2))cosB=((c^(4)-a^(4)-b^(2)c^(2)+a^(2)b^(2)))/("2kabc")`
`"And, "(a^(2)-b^(2))cotC=((a^(4)-b^(4)-a^(2)c^(2)+c^(2)c^(2)))/("2kabc")`
`:." LHS"=(b^(2)-c^(2))cotA+c^(2)-a^(2)cotB+(a^(2)-b^(2))cotC`
`=1/("2kabc")[(b^(4)-c^(4)-a^(2)b^(2)+a^(2)c^(2))+(c^(4)+a^(4)-b^(2)c^(2)+a^(2)b^(2))+(a^(4)-b^(4)-a^(2)c^(2)+b^(2)c^(2))]`
`=1/("2kabc")xx0=0="RHS".`
Hence, `(b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB(a^(2)-b^(2))cotC=0`.
2.

In any triangle `A B C ,`prove that: ` a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0`

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" "a=ksinA, b-ksinBandc=ksinC.`
`:." "a^(3)sin(B-C)=k^(3)sin^(3)Asin(B-C)`
`=k^(3)sin^(2)AsinAsin(B-C)`
`=k^(3)sin^(2)A[sin{pi-(B+C)}sin(B-C)]" "[becauseA+(B+C)=pi]`
`=k^(3)sin^(3)A[sin(B+C)sin(B-C)]`
`=k^(3)sin^(2)A(sin^(2)B-sin^(2)C).`
Similarly, `b^(3)sin(C-A)=k^(3)sin^(2)B(sin^(2)C-sin^(2)A)`.
And, `c^(3)sin(A-B)=k^(3)sin^(2)C(sin^(2)A-sin^(2)B).`
`:." "a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)`
`=k^(3)sin^(2)A(sin^(2)B-sin^(2)C)+k^(3)sin^(2)B(sin^(2)C-sin^(2)A)+k^(3)sin^(2)C(sin^(2)A-sin^(2)B)`
`=0`
3.

In any triangle `A B C ,`prove that: `(b-c)/(b+c)=(tan((b-C)/2))/(tan((B+C)/2))`

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" a=ksin A, b=k sin B and c = ksinC"`.
`:." LHS"=((b-c))/((b+c))=("k sin B-k sin C")/("k sin B+k sin C")=("k(sin B - sin C)")/("k(sin B + sin C)")`
`=("(sin B - sin C)")/("(sin B + sin C)")=("2cos"((B+C))/2"sin"((B-C))/2)/("2sin"((B+C))/2"cos"((B-C))/2)`
`=("tan"1/2(B-C))/("tan"1/2(B+C))="RHS"`.
`"Hence,"((b-c))/((b+c))=("tan"1/2(B-C))/("tan"1/2(B+C))`
4.

In any triangle `A B C ,`prove that:`(b-c)cot A/2+(c-a)cot B/2+(a-b)cot C/2`=0

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" "a=ksinA, b=ksin B and C=sinC.`
`:." "(b-c)cot""A/2=k(sinB-sinC)cot""A/2`
`=2kcos""((B+C))/2sin""((B-C))/2(cos(A/2))/(sin(A/2))`
`=2kcos(pi/2-A/2)sin""((B-C))/2(cos(A/2))/(sin(A/2))`
`=2ksin""A/2sin""((B-C))/2(cos(A/2))/(sin(A/2))`
`=2ksin""((B-C))/2cos""A/2`
`=2ksin((B-C))/2cos{pi/2-((B+C))/2}`
`=2ksin""((B-C))/2sin""((B+C))/2`
`=k(cosC-cosB)`.
Similarly, we have
`(c-a)cot""B/2=k(cosA-cosC)and (a-b)cos""C/2=k(cosB-cosA).`
`:." "(b-c)cos""A/2+(c+a)cos""B/2+(a-b)cot""C/2`
`=k[(cosC-cosB)+(cosA-cosC)+(cosB-cosA)]=0`.
5.

Solve the triangle in which a = 2 cm, b = 1 cm and `c=sqrt3`cm.

Answer» Correct Answer - `/_=90^(@),/_B=30" and "/_C=60^(@)`
6.

If in a ` A B C , /_A=45^0, /_B=60^0, a n d /_C=75^0`, find the ratio of its sides.

Answer» By the sine formula, we have
`a:b:c=sinA:sinB:sinC`
`=sin45^(@):sin60^(@):sin75^(@)`
`=1/sqrt2:sqrt3/2:((sqrt3+1))/(2sqrt2)=2:sqrt6:(sqrt3+1).`
7.

In a `DeltaABC," if "/_A=30^(@)"and "b : c =2: sqrt3, " find "/_B`.

Answer» Let b = 2k and c `= sqrt3k`. Then,
`cosA=(b^(2)+c^(2)-a^(2))/(2bc)`
`rArr" "cos30^(@)=(4k^(2)+3k^(2)-a^(2))/(4sqrt3k^(2))`
`rArr" "sqrt3/2xx4sqrt3k^(2)=7k^(2)-a^(2)`
`rArr" "k^(2)=a^(2)rArrk=a.`
Thus, b = 2a and `c=sqrt3a`.
`"Now,"a/("sin A")=b/("sin B")=c/("sin C")=(2a)/("sin B")`
`rArr" "sinB=(2axx1/2xx1/a)=1`
`rArr" "B=90^(@)`.
8.

In any `DeltaABC`, prove that `((a-b))/c"cos"C/2="sin"((A-B))/2`

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k(sya)"`
`rArr" a=k sin A, b = k sin B and c = k sin C".`
`:." LHS"=((a-b))/c"cos"C/2`
`=(("k sin A-k sin B"))/(" sin C")"cos"C/2=("k(sin A-sinB)")/("k sin C")"cos"C/2`
`=("sin A - sin B")/("sin C")"cos"C/2=("2cos"((A+B))/2"sin"((A-B))/2)/("2sin"C/2"cos"C/2)"cos"C/2" "[because("sin C- sin D")="2cos"((C+D))/2"sin"((C-D))/2]`
`=("cos"(pi/2-C/2)"sin"((A-B))/2)/("sin"C/2)" "[because(A+B)/2=(pi/2-C/2)]`
`=("sin"C/2"sin"((A-B))/2)/("sin"C/2)="sin"((A-C))/2="RHS."`
`"Hence, "((a-b))/c"cos"C/2="sin"((A-B))/2.`
9.

In any triangle `A B C ,`prove that: `("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)`

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k(say)"`
`rArr" a=ksin A, b=ksin B and c=ksin C"`.
`:." RHS"=((b^(2)-c^(2)))/a^(2)=(k^(2)sin^(2)B-k^(2)sin^(2)C)/(k^(2)sin^(2)A)`
`=((sin^(2)B-sin^(2)C))/(sin^(2)A)=(sin(B+C)" sin "(B-C))/(sin^(2)(B+C))`
`[{:(because,(A+B+C=pirArrA=pi-(B+C))),(therefore,sin A =sin{pi-(B+C)}=sin(B+C)):}]`
`=("sin (B-C)")/("sin (B+C)")="LHS"`.
`:." RHS=LHS"`.
`"Hence, "("sin (B-C)")/("sin (B+C)")=((b^(2)-c^(2)))/a^(2)`
10.

In any `DeltaABC`, prove that `"a sin (B - C) + bsin(C - A) + csin(A - B)=0`.

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")`
`rArr" "("sin A")/a=("sin ")/b=("sin C")/c="k (say)"`
`rArr" sin A = ka, sin B = kb and sin C = kc"`.
Substituting the values of sin B and C and using cosine formulae, we have
`"a sin (B - C) = a(sin B cos C - cos B sin C)"`
`=a["kb"((a^(2)+b^(2)-c^(2)))/(2ab)"-kc"((c^(2)+a^(2)-b^(2)))/(2ac)]`
`=k/2[(a^(2)+b^(2)-c^(2))-(c^(2)+a^(2)-b^(2))=k(b^(2)-c^(2))]`.
Similarly, b `"sin(C - A)=b(sin C cos A - cos C sin A)"=k(c^(2)-a^(2))`.
`:." a sin(B - C)+b sin(C - A) + csin(A - B)"`
`=k(b^(2)-c^(2))+k(c^(2)+a^(2))+k(a^(2)-b^(2))`
`=k(b^(2)-c^(2)-a^(2)+a^(2)-b^(2))=kxx0=0`.
11.

At the foot of a mountain, the angle of elevation of its summit is `45^(@)`. After ascending 1 km towards the mountain up an incline of `30^(@)`, the elevatioon changes to `60^(@)` (as shown in the given figure). Find the height of the mountain. [Given: `sqrt3=1.73.`]

Answer» Correct Answer - `1.365 km`
`(SD)/(FD)=tan45^(@)=1rArrSD=FD=hkm`
`rArr" "/_FSD=/_SFD=45^(@)`
`/_ASC=180^(@)-(60^(@)+90^(@))=30^(@)`
`rArr/_FSA=(45^(@)-30^(@))=15^(@)and/_SFA=15^(@).`
By the sine formula on `DeltaSAF`, we have
`(AF)/(sin/_FSA)=(FS)/(sin/_FAS)rArr1/(sin15^(@))=(sqrt2h)/(sin15^(@))=(sqrt2h)/(sin150^(@))rArr(2sqrt2)/((sqrt3-1))=2sqrt2h[becauseFS=sqrt(h^(2)+h^(2))=sqrt2h"and sin"15^(@)=((sqrt3-1))/(2sqrt2)]`
`rArrh=1/((sqrt3-1))xx((sqrt3+1))/((sqrt3+1))=((sqrt3+1))/2=((1.73+1))/2=(2.73)/2=1.365km.`
12.

In a triangle `A B C ,`if `acosA=bcosB ,`show that the triangle is either isosceles or right angled.

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" "a=ksinAandb=ksinB`
`:." "acosA=bcosB`
`rArr" "ksinAcosA=ksinBcosB`
`rArr" "1/2(sin2A)=1/2(sin2B)`
`rArr" "sin2A=sin2B`
`rArr" "sin2A-sin2B=0`
`rArr" "2cos(A+B)sin(A-B)=0`
`rArr" "cos(A+B)=0orsin(A-B)=0`
rArr" "(A+B)=pi/2or(A-B)=0`
`rArr" "/_C=pi/2orA=B.`
Hence, `DeltaABC` is right-angled or isosceles.