InterviewSolution
Saved Bookmarks
| 1. |
`a(cosC-cosB)=2(b-c)cos^2A/2` |
|
Answer» From sine law, we have, `a/sinA = b/sinB = c/sinC = k` `=> a = ksinA, b = ksin B, c = ksinC` Now, `L.H.S. = a(cosC-cosB) = ksinA(cosC-cosB)` `=k(2sin(A/2)cos(A/2))[2sin((B+C)/2)sin((B-C)/2)]` `=k(2sin(A/2)cos(A/2))[2sin((pi-A)/2)sin((B-C)/2)]...[As A+B+C = pi]` `=4ksin((pi-(B+C))/2)cos(A/2)cos(A/2)sin((B-C)/2)` `=4kcos^2(A/2)cos((B+C)/2)sin((B-C)/2)` `=2kcos^2(A/2)(2cos((B+C)/2)sin((B-C)/2))` `=2kcos^2(A/2)(sinB-sinC)` `=2kcos^2(A/2)(b/k-c/k)...[b = ksinB, c = ksinC]` `=2cos^(A/2)(b-c) = R.H.S.` |
|