1.

If in a ` A B C ,(a^2-b^2)/(a^2+b^2)=(sin(A-B))/(sin(A+B)`, prove that it is either a right angled or an isosceles triangle.

Answer» `(a^2-b^2)/(a^2+b^2) = (sin(A-B))/(sin(A+B))`
`=>(a^2+b^2)/(a^2-b^2) = (sin(A+B))/(sin(A-B))`
Using componendo and dividendo,
`=>(2a^2)/(2b^2) = (sin(A+B)+sin(A-B))/(sin(A+B)-sin(A-B))`
`=>a^2/b^2 = (2sinAcosB)/(2sinBcosA)`
`=>a^2/b^2 = (sinAcosB)/(sinBcosA)`
Now, from sine law,
`a/sinA = b/sinB = c/sinC = k`
`=> a = ksinA, b = ksin B, c = ksinC`
So, our equation becomes,
`a^2/b^2 = (akcosB)/(bkcosA)`
`=>cosB/cosA = a/b`
`=>bcosB = acosA`
`=>b((a^2+c^2-b^2)/(ac)) = a((b^2+c^2-a^2)/(bc))`
`=>b^2a^2+b^2c^2-b^4 = a^2b^2+a^2c^2-a^4`
`=>c^2(b^2-a^2) = b^4-a^4`
`=>c^2(b^2-a^2) -(b^2+a^2)(b^2-a^2) = 0`
`=>(b^2-a^2)(c^2-(b^2+a^2)) = 0`
`=>(b^2-a^2) = 0 or (c^2-(b^2+a^2)) = 0`
`=> b^2 = a^2 or c^2= (b^2+a^2)`
`=>b = a or c^2= (b^2+a^2)`
It means, either the `Delta ABC` is a right angle triangle or a isoceles triangle.


Discussion

No Comment Found