1.

In a triangle `A B C`, if `cos A=(sinB)/(2sinC)`, show that the triangle is isosceles.

Answer» `cos A = sinB/(2sinC)`
`=>sinB = 2sinCcosA`
As, `A+B+C = pi =>B = pi-(A+C)`
`=>sin(pi-(A+C)) = 2sinCcosA`
`=>sin(A+C) = 2sinCcosA`
`=>sinAcosC +cosAsinC = 2sinCcosA`
`=>sinAcosC -cosAsinC`
`=>sin(A-C) = 0`
`=>sin(A-C) =sin 0^@`
`=>A-C = 0`
`=> A= C`
As, two of the angles of the triangle are equal, it means `Delta ABC` is an isoceles triangle.


Discussion

No Comment Found