1.

If in a triangle `A B C ,cosA+2cosB+cosC=2`prove that the sides of the triangle are in `AP`

Answer» `cosA+2cosB+cosC = 2`
`=>cosA+cosC = 2(1-cosB)`
`=>2cos((A+C)/2)cos((A-C)/2) = 2(2sin^2(B/2))`
`=>2cos((pi-B)/2)cos((A-C)/2) = 2(2sin^2(B/2))`
`=>sin(B/2)cos((A-C)/2) = 2sin^2(B/2)`
`=>cos((A-C)/2) = 2sin(B/2)`
`=>cos(B/2)cos((A-C)/2) = 2sin(B/2)cos(B/2)`
`=>cos((pi-(A+C))/2)cos((A-C)/2) = sinB`
`=>sin((A+C)/2)cos((A-C)/2) = sinB`
`=>2sin((A+C)/2)cos((A-C)/2) = 2sinB`
`=>sinA+sinC = 2sinB->(1)`
Now, from sine rule,
`sinA/a = sinB/b = sinC/c = k`
`=>sinA = ka, sinB = kb,sinC = kc`
So, (1) becomes,
`=>ka +kc = 2kb`
`=>(a+c)/2 = b`
So, sides of the triangle are in A.P.


Discussion

No Comment Found