1.

In any triangle `A B C ,`prove that:`a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3a b c`

Answer» From sine law, we have,
`a/sinA = b/sinB = c/sinC = k`
`=> a = ksinA, b = ksin B, c = ksinC`
Now,
`L.H.S. = a^3cos(B-C)+b^3os(C-A)+c^3cos(A-B)`
`=a^2(ksinAcos(B-C))+b^2(ksinBcos(C-A))+c^2(ksinCcos(A-B))`
`=a^2(ksin(pi-(B+C))cos(B-C))+b^2(ksin(pi-(C+A))cos(C-A))+c^2(ksin(pi-(A+B))cos(A-B))`
`=k/2[a^2(2sin(B+C)cos(B-C))+b^2(2sin(C+A)sin(C-A))+c^2(2sin(A+B)cos(A-B))]`
`=k/2[a^2(sin2B+sin2C)+b^2(sin2C+sin2A)+c^2(sin2A+sin2B]`
`=k/2[a^2(2sinBcosB+2sinCcosC)+b^2(2sinCcosC+2sinAcosA)+c^2(2sinAcosA+2sinBcosB]`
`=[a^2(ksinBcosB+ksinCcosC)+b^2(ksinCcosC+ksinAcosA)+c^2(ksinAcosA+ksinBcosB]`
`=[a^2(bcosB+c cosC)+b^2( c cosC+acosA)+c^2(acosA+bcosB]`
`=[a^2bcosB+a^2c cosC+ b^2c cosC+b^2a cosA+c^2a cosA+c^2bcosB]`
`=ab(acosB+bcosA)+bc(bcosC+c cosB) + ac(acosC + c cosA)`
Using projection formulas,
`=ab(c)+bc(a)+ac(b)`
`=3abc = R.H.S.`


Discussion

No Comment Found