1.

With usual notations, if in a triangle `A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13)`, then prove that:`(cosA)/7=(cosB)/(19)=(cosC)/(25)`

Answer» Let `(b+c)/11 = (c+a)/12 = (a+b)/13 = k`
`=>b+c = 11k->(1)`
`=>c+a = 12k->(2)`
`=>a+b = 13k->(3)`
Solving (1),(2) and (3), we get,
`a = 7k, b = 6k, c = 5k`
Now, `cosA = (b^2+c^2-a^2)/(2bc) = (36k^2+25k^2-49k^2)/(60k^2) = 1/5`
`cosB = (a^2+c^2-b^2)/(2ac) = (49k^2+25k^2-36k^2)/(70k^2) = 38/70 = 19/35`
`cos C = (a^2+b^2-c^2)/(2ab) = (49k^2+36k^2-25k^2)/(84k^2) = 60/84 = 5/7`
`:. cosA:cosB:cosC = 1/5:19/35:5/7 = 7:19:25`
`:. cosA/7 = cosB/19 = cosC/25.`


Discussion

No Comment Found