InterviewSolution
Saved Bookmarks
| 1. |
If in a triangle`A B C ,``(2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a)`, then prove that the triangle is right angled. |
|
Answer» `(2cosA)/a+(cosB)/b +(2cosC)/c = a/(bc)+b/(ca)` `=>2[cosA/a+cosC/c]+cosB/b = a/(bc)+b/(ca)` `=>2[(c cosA+ acosC)/(ac)]+cosB/b = a/(bc)+b/(ca)` From projection formula, `acosA + c cosA = b` So, our equation becomes, `(2b)/(ac)+cosB/b = a/(bc)+b/(ca)` `=>cosB/b = a/(bc)-b/(ca)` `=>(a^2+c^2-b^2)/(2abc) = (a^2-b^2)/(abc)` `=>a^2+c^2-b^2 = 2a^2-2b^2` `=>c^2-a^2+b^2 = 0` `=>b^2+c^2 = a^2` It means, it satisfies pythagoras theorem, so it is a right angle triangle. |
|