1.

If any triangle `A B C`, that:`(asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)`

Answer» From sine law, we have,
`a/sinA = b/sinB = c/sinC = k`
`=> a = ksinA, b = ksin B, c = ksinC`
Now, `(asin(B-C))/(b^2-c^2) = (ksinAsin(B-C))/(k^2(sin^2B-sin^2C))`
`= sin(pi-(B+C)sin(B-C))/(k(sin^2B-sin^2C))`
`= (sin(B+C)sin(B-C))/(k(sin^2B-sin^2C))`
We know, `sin(B+C)sin(B-C) = sin^2B-sin^2C`
So, it becomes,
`=1/k(sin^2B-sin^2C)/(sin^2B-sin^2C) = 1/k`
`:. (asin(B-C))/(b^2-c^2) = 1/k`
Now, `(bsin(C-A))/(c^2-a^2) = (ksinBsin(C-A))/(k^2(sin^2C-sin^2A))`
`= (sin(pi-(C+A))sin(C-A))/(k(sin^2C-sin^2A))`
`= (sin(C+A)sin(C-A))/(k(sin^2C-sin^2A))`
`=1/k(sin^2C-sin^2A)/(sin^2C-sin^2A) = 1/k`
`:.(bsin(C-A))/(c^2-a^2) = 1/k`
Now, `(csin(A-B))/(a^2-b^2) = (ksinCsin(a-b))/(k^2(sin^2A-sin^2B))`
`= (sin(pi-(A+B))sin(A-B))/(k(sin^2A-sin^2B))`
`= (sin(A+B)sin(A-B))/(k(sin^2A-sin^2B))`
`=1/k(sin^2A-sin^2B)/(sin^2A-sin^2B) = 1/k`
`:.(csin(A-B))/(a^2-b^2) = 1/k`
`:. (asin(B-C))/(b^2-c^2) = (bsin(C-A))/(c^2-a^2) =(csin(A-B))/(a^2-b^2) = 1/k`


Discussion

No Comment Found