Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Translate each of the following algebraic expressions:(i) 4b – 3(ii) 8(m+5)(iii) 7/(8-x)(iv) 17(16/w)

Answer»

(i) 4b – 3

Three subtracted from four times b.

(ii) 8(m+5)

Eight times the sum of m and 5.

(iii) 7/(8-x)

Quotient on dividing seven by the difference of eight and x(x<8).

(iv) 17(16/w)

Seventeen times quotient of sixteen divided by w.

2.

In the following expressions, write the number of terms and identify numerical and algebraic expressions in them. (i) 8p(ii) 5c + s – 7(iii) – 6(iv) (2 + 1) – 6(v) 9t + 15

Answer»

In the following expressions, write the number of terms and identify numerical and algebraic expressions in them. 

(i) 8p = 1 term – Algebraic expression

(ii) 5c + s – 7 = 3 terms – Algebraic expression

(iii) – 6 = 1 term – Numerical expression

(iv) (2 + 1) – 6 = 2 terms – Numerical expression

(v) 9t + 15 = 2 terms – Algebraic expression

3.

Select the like terms in the following :3pq, -5p, 6q + 5, -8pq, p2 + q, qp

Answer»

3pq, – 8pq and qp are like terms in these there is no effects on multiplication pq = qp therefore these are like terms where as – 5p, 6p+ 5 and p2 + q, are unlike terms.

4.

1010 × 990 = ………………..A) 999900 B) 99099 C) 99000 D) 98900

Answer»

Correct option is  A) 999900

Correct option is (A) 999900

1010 \(\times\) 990 = (1000+10) (1000-10)

\(=(1000)^2-10^2\)

= 10,00,000 - 100

= 9,99,900

5.

Solve the question (i) 9982(ii) (5.2)2 (iii) 297 × 303

Answer»

(i) 9982 = (1000 − 2)2

= (1000)2 − 2(1000)(2) + (2)2 

= 1000000 − 4000 + 4 = 996004

Note : [(a − b)2 = a2 − 2ab + b2 ]

(ii) (5.2)2 = (5.0 + 0.2)2

= (5.0)2 + 2(5.0) (0.2) + (0.2)2

= 25 + 2 + 0.04 = 27.04

 Note : [(a + b)2 = a2 + 2ab + b2 ]

(iii) 297 × 303 = (300 − 3) × (300 + 3) 

= (300)2 − (3)2 

= 90000 − 9 = 89991

Note : [(a + b) (a − b) = a2 − b2] 

6.

How much does a2 − 3ab + 2b2 exceed 2a2 − 7ab + 9b2?

Answer»

By subtracting 2a− 7ab + 9bfrom a− 3ab + 2bwe get the required expression

Required expression = (a2– 3ab + 2b2) – (2a2 – 7ab + 9b2)

= a2– 3ab + 2b2 – 2a2 + 7ab – 9b2

Collecting positive and negative like terms together, we get

= a– 2a2 – 3ab + 7ab + 2b2 – 9b2   

= – a2 + 4ab – 7b2

7.

A pattern of letter ‘V’ IsA) n + 1B) 2n + 1C) 3nD) 2n

Answer»

Correct option is D) 2n

2 lines are needed to make a letter V.

\(\therefore\) A pattern of letter V is 2n where n is number of lines.

8.

A pattern of letter ‘z’ is?A) 2nB) 2n + 1C) 3nD) 3n + 1

Answer»

Correct option is  C) 3n

3 lines are needed to make a letter z.

\(\therefore\) A pattern of letter z is 3n where n is number of lines.

9.

(3a2 – 8ab – 2b2 ) – (3a2 – 4ab + 6b2 ) = …………….. A) – 4ab + 8b2B) 4ab + 8b2C) 4ab – 8b2D) -4ab - 8b2

Answer»

Correct option is D) -4ab - 8b2

(3a2 - 8ab - 2b2) - (3a2 - 4ab + 6b2)

 = 3a2 - 3a2 - 8ab - (-4ab) - 2b2 - 6b2

= -8ab + 4ab - 8b2

= -4ab - 8b2

10.

What should be subtracted from 2a + 8b + 10 to get -3a + 7b + 16 ?

Answer»

= (2a + 8b + 10) – (-3a + 7b + 16)

= 2a + 8b+ 10 + 3a – 7b – 16

= 2a + 3a + 8b – 7b + 10 – 16

(re-arranging the terms)

= 5a + b – 6

∴ (5a + b – 6) 

should be subtracted from 2a + 8b +10 to get -3a + 7b + 16.

11.

Complete the table....First expressionSecond ExpressionProduct(i)ab + c + d...(ii)x + y -55 xy...(iii)p6p2 - 7p + 5..(iv)4p2q2p2 - q2-(v)a + b + cabc.

Answer»

The table can be completed as follows.

....First expressionSecond ExpressionProduct
(i)ab + c + dab + ac + ad
(ii)x + y -55 xy5x2y + 5xy2 − 25xy
(iii)p6p2 - 7p + 56p3 − 7p2 + 5p
(iv)4p2q2p2 - q24p4q2 − 4p2q4
(v)a + b + cabca2bc + ab2c + abc2
12.

Simplify the algebraic expressions by removing grouping symbols.3x + 2y – {x – (2y – 3)}

Answer»

Given 3x + 2y – {x – (2y – 3)}

First, we have to remove the parentheses. Then, we have to remove the braces.

Then we get,

= 3x + 2y – {x – 2y + 3}

= 3x + 2y – x + 2y – 3

On simplifying, we get

= 2x + 4y – 3

13.

Simplify the algebraic expressions by removing grouping symbols.-2(x2 – y2 + xy) – 3(x2 +y2 – xy)

Answer»

Given – 2(x2 – y2 + xy) – 3(x2 +y2 – xy)

Since the ‘–’ sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

= -2x+ 2y2 – 2xy – 3x2 – 3y2 + 3xy

On rearranging,

= -2x2 – 3x2 + 2y2 – 3y– 2xy + 3xy

On simplifying, we get

= -5x– y2 + xy

14.

Simplify the algebraic expressions by removing grouping symbols.x2 – [3x + [2x – (x2 – 1)] + 2]

Answer»

Given x– [3x + [2x – (x– 1)] + 2]

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

= x2 – [3x + [2x – (x2 – 1)] + 2]

= x2 – [3x + [2x – x2 + 1] + 2]

= x2 – [3x + 2x – x2 + 1 + 2]

= x2 – [5x – x2 + 3]

On simplifying we get

= x2 – 5x + x2 – 3

= 2x2 – 5x – 3

15.

Simplify the algebraic expressions by removing grouping symbols.5 + [x – {2y – (6x + y – 4) + 2x} – {x – (y – 2)}]

Answer»

Given 5 + [x – {2y – (6x + y – 4) + 2x} – {x – (y – 2)}]

First we have to remove the parentheses, then remove braces, and then the square brackets.

Then we get,

= 5 + [x – {2y – (6x + y – 4) + 2x} – {x – (y – 2)}]

= 5 + [x – {2y – 6x – y + 4 + 2x} – {x – y + 2}]

= 5 + [x – {y – 4x + 4} – {x – y + 2}]

= 5 + [x – y + 4x – 4 – x + y – 2]

= 5 + [4x – 6]

= 5 + 4x – 6

= 4x – 1

16.

The perimeter of triangle is 6p2 – 4p + 9 and two of its sides are p2 – 2p + 1 and 3p2 – 5p + 3. Find the third side of the triangle.

Answer»

Perimeter of the triangle = 6p2 – 4p + 9

Two sides are;

Side one = p2 – 2p + 1 and

Side two = 3p2 – 5p + 3

Let’s take third side be = x

As we know perimeter of a triangle = sum of all the sides

So, we have

6p2 – 4p + 9 = {(p2 – 2p + 1) + (3p2 – 5p + 3) + (x)}

6p2 – 4p + 9 = p2 – 2p + 1 + 3p2 – 5p + 3 + x

6p2 – 4p + 9 - p2 + 2p – 1 - 3p2 + 5p - 3 = x

Let’s make the pairs;

(6p2 – p2 – 3p2) + (- 4p + 2p + 5p) + (9 – 1 – 3) = x

2p2 + 3p + 5 = x

The required side is 2p2 + 3p + 5.

17.

No. of terms in the product of a binomial and a trinomial are ………………… A) 10B) 9 C) 6 D) 7

Answer»

Correct option is  C) 6

Correct option is (C) 6

Let \(ax_1+bx_2\) is a binomial and \(cy_1+dy_2+ey_3\) is a trinomial.

Then their product \(=(ax_1+bx_2)\) \((cy_1+dy_2+ey_3)\) \(=acx_1y_1+adx_1y_2+aex_1y_3\) \(+bcx_2y_1+bdx_2y_2+bex_2y_3\)

\(\therefore\) No. of terms in the product = 6.

18.

(5x + 6y) (3x – 2y) = …………………… A) 8x2 – 8 xy B) 15x2 + 3xy C) 15x2 – xy D) 15x2 + 8xy – 12y2

Answer»

D) 15x2 + 8xy – 12y2

Correct option is (D) 15x2 + 8xy – 12y2

(5x + 6y) (3x – 2y) \(=5x\times3x+5x\times-2y+6y\times3x+6y\times-2y\)

\(=(5\times3)x^2+(5\times-2)xy+(6\times3)xy+(6\times-2)y^2\)

\(=15x^2-10xy+18xy-12y^2\)

\( 15x^2+8xy-12y^2\).

19.

Find: (5m + 7n)2

Answer»

 (5m + 7n)2 is in the form of (a + b)2.

(a + b)2 = a2 + 2ab + b2   [a = 5m, b = 7n]

(5m + 7n)2 = (5m)2 + 2 × 5m × 7n + (7n)2

= (5m × 5m) + 70 mn + 7n × 7n

= 25m2 + 70mn + 49n2

20.

Find:(i)(9m – 2n)2(ii) (6pq – 7rs)2(iii) (5x2 – 6y2)2

Answer»

i) (9m – 2n)2 is in the form of (a – b)2.

(a – b)2 = a2 – 2ab + b2

(9m – 2n)2 = (9m)2 – 2 × 9m × 2n + (2n)2

= (9m × 9m) – 36mn + (2n × 2n)

= 81m2 – 36mn + 4n2

ii) (6pq – 7rs)2

a = 6pq, b = 7rs

(6pq – 7rs)2 = (6pq)2 – 2 × 6pq × 7rs + (7rs)2

= (6pq × 6pq) – 84pqrs + (7rs × 7rs)

= 36p2q2 – 84pqrs + 49r2s2

iii) (5x2 – 6y2)2 = (5x2)2 – 2 × 5x2 × 6y2 + (6y2)2

= (5x2 × 5x2) – 60x2y2 + (6y2 × 6y2)

= 25x4 – 60x2y2 + 36y4

21.

Find:(6m + 7n) (6m – 7n)

Answer»

(6m + 7n) (6m -,7n) is in the form of 

(a + b) (a – b) . (a + b) (a – b) = a2 – b2,

here a = 6m, b = 7n

(6m + 7n) (6m – 7n) = (6m)2 – (7n)2

= 6m × 6m – 7n × 7n

= 36m2 – 49n2

22.

Find:i) 2922 ii) 8972 iii) 7942

Answer»

i) (292)2 = (300 – 8)2

a = 300, b = 8

∴ (300 – 8)2 = (300)2 – 2 × 300 × 8 + (8)2 

= (300 × 300) – 4800 + (8 × 8)

= 90,000 – 4800 + 64

= 90,064 – 4800

= 85,264

ii) (897)2 = (900 – 3)2

= (900)2 – 2 × 900 × 3 + (3)2

= 8,10,000 – 5400 + 9

= 8,10,009 – 5400

= 8,04,609

iii) (794)2 = (800 – 6)2

= (800)2 – 2 × 800 × 6 + (6)2

= 6,40,000 – 9600 + 36

= 6,40,036 – 9600

= 6,30,436

23.

If a + b+ c = 0, then what is the value of (a + b – c)3 + (c + a – b)3 + (b + c – a)3 ?(a) -8 (a3 + b3 + c3)(b) a3 + b3 + c3(c) 24 abc (d) – 24 abc

Answer»

(d) - 24 abc

a + b + c = 0 ⇒ a + b = -c,  c + a = - b, b + c = – a

∴ (a + b – c)3 + (c + a – b)3 + (b + c – a)3

= (– c – c)3 + (– b – b)3 + (– a– a)3

= (– 2c)3 + (– 2b)3 + (– 2a)3

= – 8c3  –  8b3  – 8a

= – 8 (a3 + b3 + c3)

= – 8 x 3 abc = - 24 abc.

24.

If a2 + b2 = 117 and ab = 54, then (a + b)/(a - b) is(a) 3 (b) 5 (c) 6 (d) 4

Answer»

(b) 5

(a + b)2 = a2 + b2 + 2ab = 117 + 108 = 225

⇒ a + b = 15

(a + b)2 = a2 + b2 + 2ab = 117 - 108 = 9

⇒ a - b = 3

∴ \(\frac{a+b}{a-b} = \frac{15}{3}=5.\)

25.

If \(x=3^{\frac13}+3^{\frac{-1}{3}},\) then 3x3 - 10 is equal to :(a) – 3x (b) 3x (c) – 9x (d) 9x

Answer»

(d) 9x

\(x=3^{\frac13}+3^{\frac{-1}{3}}\) ⇒ \(x-3^{\frac13}=3^{\frac{-1}{3}}\)

⇒ \((x-3^{\frac13})^3\) = \((x-3^{\frac{-1}3})^3\)

⇒ \(x^3 - 3.x.3^{\frac13}(x-3^{\frac13})-(3^{\frac13})^3=3^{-1}\)

⇒ \(x^3 - 3.x.3^{\frac13}.3^{\frac{-1}3}-3 =\frac13\) ⇒ \(x^3-3x=3+\frac13\)

⇒ \(3x^3 - 9x = 10 \) ⇒ \(3x^3 - 10 = 9x \)

26.

If \(a^\frac13+b^\frac13+c^\frac13=0,\) then the value of (a + b + c)3 will be :(a) 9 a2b2c2(b) 3abc (c) 6abc (d) 27abc

Answer»

(d) 27 abc

\(a^\frac13+b^\frac13+c^\frac13=0,\)

\((a^\frac13)^3+(b^\frac13)^3+(c^\frac13)^3\) = \(3\,a^\frac13+b^\frac13+c^\frac13\)

⇒ a + b + c = \(3(abc)^\frac13\) ⇒ (a + b + c)= 27 abc.

27.

The value of \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)}\) is(a) 1 (b) 3 (c) \(\frac13\)(d) zero

Answer»

(b) 3

Since (a-b) + (b-c) + (c-a) = 0

∴ (a-b)3 + (b-c)3 + (c-a)= 3(a-b)(b-c)(c-a)

⇒ \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)}\) = \(\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}\) = 3.

28.

What is the value of the following expression ?(1 + x)(1 + x2)(1 + x4)(1 + x8)(1 - x)(a) 1 + x16(b) 1 - x16(c) x16 - 1(d) x8 + 1

Answer»

(b) 1 + x16

(1 + x)(1 + x2)(1 + x4)(1 + x8)(1 - x)

= (1 + x)(1 - x)(1 + x)(1 + x2)(1 + x4)(1 + x8)

= (1 - x2)(1 + x2)(1 + x4)(1 + x8)

= (1 - x4)(1 + x4)(1 + x8)

= (1 - x8)(1 + x8) = (1 + x16)

29.

If a + b + c = 11 and ab + bc + ca = 20, then the value of the expression a3 + b3 + c3 - 3abc will be(a) 121 (b) 341 (c) 671 (d) 781

Answer»

(c) 671

(a+ b + c)2 = a2 + b2 + c2 = 112 -2 x 20 = 121 - 40 = 81

Also, we know that

(a+ b + c) = (a2 + b2 + c2 - ab - bc -ca) = a3 + b3 + c3 - 3abc

⇒ a3 + b3 + c3 - 3abc = 11 x (80-20)

⇒ a3 + b3 + c3 - 3abc = 11 x 61 = 671.

30.

An expression, which when divided by (x +1) gives (x2 – x + 1) as quotient and 3 as remainder is equal to :(a) x3 - 2(b) x3 - 1 (c) x3 + 2(d) (x3 + 4)

Answer»

(d) (x3 + 4)

Dividend = Divisor × Quotient + Remainder

= (\(x\) + 1) x (\(x^2 - x+1\)) +3

\(x\) (\(x^2 - x+1\)) +  (\(x^2 - x+1\)) + 3

Now solve.

31.

Simplify: (x + y)3 + (x - y)3 + 6x(x2 - y2)

Answer»

Let (x + y) = a and (x - y) = b

Then, (x + y)3 + (x - y)3 + 6x(x2 - y2) = (x + y)+ (x - y)+ 3 x 2\(x\) x (x + y)(x - y)

= (x + y)3 + (x - y)- 3 x [(x + y) + (x - y)] x (x + y) + (x - y)

= a3 + b3 + 3ab(a + b)

= (a + b)3 = (x + y + x - y)= (2x)3 = 8x3.

32.

Find the products: (x + 6) (x +6)

Answer»

Given that (x + 6) (x +6)

But we can write the given expression as (x + 6) (x +6) = (x + 6)2

But we have (a + b)2=a2+2ab+b2

On applying above identity in the given expression we get,

(x + 6)2= x2+2 x (6) + 62

(x + 6)2= x2+12 x + 36

33.

Divide: 12x2 + 8x3-6x2 by -2x2

Answer»

Given 12x+ 8x3-6x2 by -2x2

⇒12x+ 8x3-6x2/ (-2x2)

On dividing polynomial by a monomial we have divide every variables of polynomial

By monomial

On simplifying we get

⇒-6x2 -4x + 3

34.

Factorised form of 23xy – 46x + 54y – 108 is(a) (23x + 54) (y – 2) (b) (23x + 54y) (y – 2)(c) (23xy + 54y) (– 46x – 108) (d) (23x + 54) (y + 2)

Answer»

(a) (23x + 54) (y – 2)

Factorised form of 23xy – 46x + 54y – 108 is = 23xy – (2 × 23x) + 54y – (2 × 54)

Take out the common factors,

= 23x (y – 2) + 54 (y – 2)

Again take out the common factor,

= (y – 2) (23x + 54)

35.

Like term as 4m3n2 is(a) 4m2n2 (b) – 6m3n2 (c) 6pm3n2 (d) 4m3n

Answer»

(b) – 6m3n2

Like terms are formed from the same variables and the powers of these variables are also the same. But coefficients of like terms need not be the same.

36.

Find the product -3y (xy+y2) and find its value for x = 4 and y = 5

Answer»

-3y (xy + y2)

= -3xy2 – 3y3

According to question:

When x = 4 and y = 5

= - 3xy2 – 3y3

= - 3 (4) (5)2 – 3 (5)3

= - 300 – 375

= - 675

37.

What is the value of mn – nm if m = 3, n = 2?A) 0B) 2C) 1D) 5

Answer»

Correct option is  C) 1

We have m = 3 and n = 2

\(\therefore\) mn - nm = 32 - 23 = 9 - 8 = 1

38.

Find the product: (3x + 2y) (3y – 4x)

Answer»

(3x + 2y) (3y – 4x) 

= 3x(3y – 4x) + 2y(3y – 4x)

= 9xy – 12x2 + 6y2 – 8xy

= xy – 12x2 + 6y2

39.

Evaluate these using identity :55 × 45

Answer»

55 × 45 = (50 + 5) (50 – 5) 

Identity (a + b)(a – b) = a2 – b2 

Here a = 50,b=5 

(50 + 5)(50 – 5) = (50)2 – 52 

= 2500 – 25 

55 × 45 = 2475

40.

If \(x+\frac{1}{x}=12\) find the value of \(x-\frac{1}{x}\).

Answer»

Given that,

x + \(\frac{1}{x}\) = 12

Squaring both sides, we get

(x + \(\frac{1}{x}\) )2 = 122

x2 + (\(\frac{1}{x}\))2 + 2 × x × \(\frac{1}{x}\) = 144

x2\(\frac{1}{x^2}\) = 142

Subtract 2 from both sides, we get

x2\(\frac{1}{x\times x}\) - 2 × x × \(\frac{1}{x}\) = 142 – 2

(x - \(\frac{1}{x}\))2 = 140

x - \(\frac{1}{x}\)\(\sqrt{140}\)

41.

Find the products:(-3/14)xy4 × (7/6)x3y

Answer»

(-3/14)xy4 × (7/6)x3y

The coefficient of the product of two monomials is equal to the product of their coefficients.

The variable part in the product of two monomials is equal to the product of the variables in the given monomials.

Then,

= [(-3/14) × (7/6)] × (x × x3) × (y4 × y)

= [(-3×7)/ (14×6)] × (x1+3) × (y4+1) … [∵ am × an = am+n]

= [(-1×1)/ (2×2)] × (x4) × (y5)

= (-1/4)x4y5

42.

What is the value of xy + 3y – 9 when x = 1, y = 2 is ……………. A) 1B) -1C) 0D) 12

Answer»

Correct option is B) -1

We have x = 1, y = 2

\(\therefore\) xy + 3y - 9 = 1 x 2 + 3 x 2 - 9

 = 2 + 6 - 9

 = 8 - 9 = -1

43.

Find the product: (a – b) (2a + 4b)

Answer»

(a – b) (2a + 4b) 

= a(2a + 4b) – b(2a + 4b)

= (a × 2a + a × 4b) – (b × 2a + b × 4b)

= 2a2 + 4ab – (2ab + 4b2)

= 2a2 + 4ab – 2ab – 4b2

= 2a2 + 2ab – 4b2

44.

If 2x + 3y=14 and 2x - 3y=2, find value of xy. [Hint: Use (2x + 3y)2 – (2x - 3y)2 = 24xy]

Answer»

Given that,

2x + 3y = 14 ............... (1)

2x – 3y = 2 .................. (2)

Now, on squaring both the equation and subtracting (2) from (1), we get,

(2x + 3y)2 – (2x – 3y)2 = (14)2 – (2)2

4x2 + 9y2 + 12xy – 4x2 – 9y2 + 12xy = 196 – 4

(The positive and negative terms gets cancelled)

24 xy = 192

xy = 8

Therefore, the value of "xy" is 8.

45.

Use the identify (a + b) (a – b) = a2 – b2 to find the product.(2a + 4b) (2a – 4b)

Answer»

(a + b) (a – b) = a2 – b2 

Here a = 2a,b = 4b 

(2a + 4b)(2a-4b) = (2a)2 – (4b)2 

= 4a2 – 16b2

46.

Use the identify (a + b) (a – b) = a2 – b2 to find the product.(3x + 5) (3x – 5)

Answer»

(a + b) (a – b) = a2 – b2 

Here a = 3x, b = 5 

(3x + 5)(3x – 5) = (3x)2 – (5)2 

= 9x2 -25

47.

Use the identify (a + b) (a – b) = a2 – b2 to find the product.(x + 6) (x – 6)

Answer»

(a + b) (a – b) = a2 – b2 

Here a = x,b = 6 

(x + 6)(x – 6) = x2 – 62 

= x2 – 36

48.

Evaluate using the identify (a – b)2 = a2 – 2ab + b2.(198)2

Answer»

(198)2 = (200 – 2)2 

(a – b)2 = a2 – 2ab + b2 

Here a = 200, b = 2 

(200 – 2)2 = 200– (2)(200)(2) + 22 

= 40000 – 800 + 4 

(198)2= 39204

49.

Evaluate using the identify (a – b)2 = a2 – 2ab + b2.592

Answer»

592 = (60 – 1)2 (a – b)2 = a2 – 2ab + b2 

Here a = 60, b = 1 

(60 – 1)2 = 602 – (2)(60)(1) +12 

= 3600 – 120 + 1 592 =3481

50.

Evaluate using the identify (a – b)2 = a2 – 2ab + b2.(9.8)2

Answer»

(9.8)2 = (10 – 0.2)2 (a – b)2 

= a2 – 2ab + b2 

Here a = 10, b=0.2 

(10 – 0.2)2 = 102 – (2)(10)(0.2) + (0.2)2 

= 100 – 4 + 0.04 

(9.8)2 = 96.04