

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
Translate each of the following algebraic expressions:(i) 4b – 3(ii) 8(m+5)(iii) 7/(8-x)(iv) 17(16/w) |
Answer» (i) 4b – 3 Three subtracted from four times b. (ii) 8(m+5) Eight times the sum of m and 5. (iii) 7/(8-x) Quotient on dividing seven by the difference of eight and x(x<8). (iv) 17(16/w) Seventeen times quotient of sixteen divided by w. |
|
2. |
In the following expressions, write the number of terms and identify numerical and algebraic expressions in them. (i) 8p(ii) 5c + s – 7(iii) – 6(iv) (2 + 1) – 6(v) 9t + 15 |
Answer» In the following expressions, write the number of terms and identify numerical and algebraic expressions in them. (i) 8p = 1 term – Algebraic expression (ii) 5c + s – 7 = 3 terms – Algebraic expression (iii) – 6 = 1 term – Numerical expression (iv) (2 + 1) – 6 = 2 terms – Numerical expression (v) 9t + 15 = 2 terms – Algebraic expression |
|
3. |
Select the like terms in the following :3pq, -5p, 6q + 5, -8pq, p2 + q, qp |
Answer» 3pq, – 8pq and qp are like terms in these there is no effects on multiplication pq = qp therefore these are like terms where as – 5p, 6p+ 5 and p2 + q, are unlike terms. |
|
4. |
1010 × 990 = ………………..A) 999900 B) 99099 C) 99000 D) 98900 |
Answer» Correct option is A) 999900 Correct option is (A) 999900 1010 \(\times\) 990 = (1000+10) (1000-10) \(=(1000)^2-10^2\) = 10,00,000 - 100 = 9,99,900 |
|
5. |
Solve the question (i) 9982(ii) (5.2)2 (iii) 297 × 303 |
Answer» (i) 9982 = (1000 − 2)2 = (1000)2 − 2(1000)(2) + (2)2 = 1000000 − 4000 + 4 = 996004 Note : [(a − b)2 = a2 − 2ab + b2 ] (ii) (5.2)2 = (5.0 + 0.2)2 = (5.0)2 + 2(5.0) (0.2) + (0.2)2 = 25 + 2 + 0.04 = 27.04 Note : [(a + b)2 = a2 + 2ab + b2 ] (iii) 297 × 303 = (300 − 3) × (300 + 3) = (300)2 − (3)2 = 90000 − 9 = 89991 Note : [(a + b) (a − b) = a2 − b2] |
|
6. |
How much does a2 − 3ab + 2b2 exceed 2a2 − 7ab + 9b2? |
Answer» By subtracting 2a2 − 7ab + 9b2 from a2 − 3ab + 2b2 we get the required expression Required expression = (a2– 3ab + 2b2) – (2a2 – 7ab + 9b2) |
|
7. |
A pattern of letter ‘V’ IsA) n + 1B) 2n + 1C) 3nD) 2n |
Answer» Correct option is D) 2n 2 lines are needed to make a letter V. \(\therefore\) A pattern of letter V is 2n where n is number of lines. |
|
8. |
A pattern of letter ‘z’ is?A) 2nB) 2n + 1C) 3nD) 3n + 1 |
Answer» Correct option is C) 3n 3 lines are needed to make a letter z. \(\therefore\) A pattern of letter z is 3n where n is number of lines. |
|
9. |
(3a2 – 8ab – 2b2 ) – (3a2 – 4ab + 6b2 ) = …………….. A) – 4ab + 8b2B) 4ab + 8b2C) 4ab – 8b2D) -4ab - 8b2 |
Answer» Correct option is D) -4ab - 8b2 (3a2 - 8ab - 2b2) - (3a2 - 4ab + 6b2) = 3a2 - 3a2 - 8ab - (-4ab) - 2b2 - 6b2 = -8ab + 4ab - 8b2 = -4ab - 8b2 |
|
10. |
What should be subtracted from 2a + 8b + 10 to get -3a + 7b + 16 ? |
Answer» = (2a + 8b + 10) – (-3a + 7b + 16) = 2a + 8b+ 10 + 3a – 7b – 16 = 2a + 3a + 8b – 7b + 10 – 16 (re-arranging the terms) = 5a + b – 6 ∴ (5a + b – 6) should be subtracted from 2a + 8b +10 to get -3a + 7b + 16. |
|
11. |
Complete the table....First expressionSecond ExpressionProduct(i)ab + c + d...(ii)x + y -55 xy...(iii)p6p2 - 7p + 5..(iv)4p2q2p2 - q2-(v)a + b + cabc. |
||||||||||||||||||||||||
Answer» The table can be completed as follows.
|
|||||||||||||||||||||||||
12. |
Simplify the algebraic expressions by removing grouping symbols.3x + 2y – {x – (2y – 3)} |
Answer» Given 3x + 2y – {x – (2y – 3)} First, we have to remove the parentheses. Then, we have to remove the braces. Then we get, = 3x + 2y – {x – 2y + 3} = 3x + 2y – x + 2y – 3 On simplifying, we get = 2x + 4y – 3 |
|
13. |
Simplify the algebraic expressions by removing grouping symbols.-2(x2 – y2 + xy) – 3(x2 +y2 – xy) |
Answer» Given – 2(x2 – y2 + xy) – 3(x2 +y2 – xy) Since the ‘–’ sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have = -2x2 + 2y2 – 2xy – 3x2 – 3y2 + 3xy On rearranging, = -2x2 – 3x2 + 2y2 – 3y2 – 2xy + 3xy On simplifying, we get = -5x2 – y2 + xy |
|
14. |
Simplify the algebraic expressions by removing grouping symbols.x2 – [3x + [2x – (x2 – 1)] + 2] |
Answer» Given x2 – [3x + [2x – (x2 – 1)] + 2] First we have to remove the parentheses, then remove braces, and then the square brackets. Then we get, = x2 – [3x + [2x – (x2 – 1)] + 2] = x2 – [3x + [2x – x2 + 1] + 2] = x2 – [3x + 2x – x2 + 1 + 2] = x2 – [5x – x2 + 3] On simplifying we get = x2 – 5x + x2 – 3 = 2x2 – 5x – 3 |
|
15. |
Simplify the algebraic expressions by removing grouping symbols.5 + [x – {2y – (6x + y – 4) + 2x} – {x – (y – 2)}] |
Answer» Given 5 + [x – {2y – (6x + y – 4) + 2x} – {x – (y – 2)}] First we have to remove the parentheses, then remove braces, and then the square brackets. Then we get, = 5 + [x – {2y – (6x + y – 4) + 2x} – {x – (y – 2)}] = 5 + [x – {2y – 6x – y + 4 + 2x} – {x – y + 2}] = 5 + [x – {y – 4x + 4} – {x – y + 2}] = 5 + [x – y + 4x – 4 – x + y – 2] = 5 + [4x – 6] = 5 + 4x – 6 = 4x – 1 |
|
16. |
The perimeter of triangle is 6p2 – 4p + 9 and two of its sides are p2 – 2p + 1 and 3p2 – 5p + 3. Find the third side of the triangle. |
Answer» Perimeter of the triangle = 6p2 – 4p + 9 Two sides are; Side one = p2 – 2p + 1 and Side two = 3p2 – 5p + 3 Let’s take third side be = x As we know perimeter of a triangle = sum of all the sides So, we have 6p2 – 4p + 9 = {(p2 – 2p + 1) + (3p2 – 5p + 3) + (x)} 6p2 – 4p + 9 = p2 – 2p + 1 + 3p2 – 5p + 3 + x 6p2 – 4p + 9 - p2 + 2p – 1 - 3p2 + 5p - 3 = x Let’s make the pairs; (6p2 – p2 – 3p2) + (- 4p + 2p + 5p) + (9 – 1 – 3) = x 2p2 + 3p + 5 = x The required side is 2p2 + 3p + 5. |
|
17. |
No. of terms in the product of a binomial and a trinomial are ………………… A) 10B) 9 C) 6 D) 7 |
Answer» Correct option is C) 6 Correct option is (C) 6 Let \(ax_1+bx_2\) is a binomial and \(cy_1+dy_2+ey_3\) is a trinomial. Then their product \(=(ax_1+bx_2)\) \((cy_1+dy_2+ey_3)\) \(=acx_1y_1+adx_1y_2+aex_1y_3\) \(+bcx_2y_1+bdx_2y_2+bex_2y_3\) \(\therefore\) No. of terms in the product = 6. |
|
18. |
(5x + 6y) (3x – 2y) = …………………… A) 8x2 – 8 xy B) 15x2 + 3xy C) 15x2 – xy D) 15x2 + 8xy – 12y2 |
Answer» D) 15x2 + 8xy – 12y2 Correct option is (D) 15x2 + 8xy – 12y2 (5x + 6y) (3x – 2y) \(=5x\times3x+5x\times-2y+6y\times3x+6y\times-2y\) \(=(5\times3)x^2+(5\times-2)xy+(6\times3)xy+(6\times-2)y^2\) \(=15x^2-10xy+18xy-12y^2\) = \( 15x^2+8xy-12y^2\). |
|
19. |
Find: (5m + 7n)2 |
Answer» (5m + 7n)2 is in the form of (a + b)2. (a + b)2 = a2 + 2ab + b2 [a = 5m, b = 7n] (5m + 7n)2 = (5m)2 + 2 × 5m × 7n + (7n)2 = (5m × 5m) + 70 mn + 7n × 7n = 25m2 + 70mn + 49n2 |
|
20. |
Find:(i)(9m – 2n)2(ii) (6pq – 7rs)2(iii) (5x2 – 6y2)2 |
Answer» i) (9m – 2n)2 is in the form of (a – b)2. (a – b)2 = a2 – 2ab + b2 (9m – 2n)2 = (9m)2 – 2 × 9m × 2n + (2n)2 = (9m × 9m) – 36mn + (2n × 2n) = 81m2 – 36mn + 4n2 ii) (6pq – 7rs)2 a = 6pq, b = 7rs (6pq – 7rs)2 = (6pq)2 – 2 × 6pq × 7rs + (7rs)2 = (6pq × 6pq) – 84pqrs + (7rs × 7rs) = 36p2q2 – 84pqrs + 49r2s2 iii) (5x2 – 6y2)2 = (5x2)2 – 2 × 5x2 × 6y2 + (6y2)2 = (5x2 × 5x2) – 60x2y2 + (6y2 × 6y2) = 25x4 – 60x2y2 + 36y4 |
|
21. |
Find:(6m + 7n) (6m – 7n) |
Answer» (6m + 7n) (6m -,7n) is in the form of (a + b) (a – b) . (a + b) (a – b) = a2 – b2, here a = 6m, b = 7n (6m + 7n) (6m – 7n) = (6m)2 – (7n)2 = 6m × 6m – 7n × 7n = 36m2 – 49n2 |
|
22. |
Find:i) 2922 ii) 8972 iii) 7942 |
Answer» i) (292)2 = (300 – 8)2 a = 300, b = 8 ∴ (300 – 8)2 = (300)2 – 2 × 300 × 8 + (8)2 = (300 × 300) – 4800 + (8 × 8) = 90,000 – 4800 + 64 = 90,064 – 4800 = 85,264 ii) (897)2 = (900 – 3)2 = (900)2 – 2 × 900 × 3 + (3)2 = 8,10,000 – 5400 + 9 = 8,10,009 – 5400 = 8,04,609 iii) (794)2 = (800 – 6)2 = (800)2 – 2 × 800 × 6 + (6)2 = 6,40,000 – 9600 + 36 = 6,40,036 – 9600 = 6,30,436 |
|
23. |
If a + b+ c = 0, then what is the value of (a + b – c)3 + (c + a – b)3 + (b + c – a)3 ?(a) -8 (a3 + b3 + c3)(b) a3 + b3 + c3(c) 24 abc (d) – 24 abc |
Answer» (d) - 24 abc a + b + c = 0 ⇒ a + b = -c, c + a = - b, b + c = – a ∴ (a + b – c)3 + (c + a – b)3 + (b + c – a)3 = (– c – c)3 + (– b – b)3 + (– a– a)3 = (– 2c)3 + (– 2b)3 + (– 2a)3 = – 8c3 – 8b3 – 8a3 = – 8 (a3 + b3 + c3) = – 8 x 3 abc = - 24 abc. |
|
24. |
If a2 + b2 = 117 and ab = 54, then (a + b)/(a - b) is(a) 3 (b) 5 (c) 6 (d) 4 |
Answer» (b) 5 (a + b)2 = a2 + b2 + 2ab = 117 + 108 = 225 ⇒ a + b = 15 (a + b)2 = a2 + b2 + 2ab = 117 - 108 = 9 ⇒ a - b = 3 ∴ \(\frac{a+b}{a-b} = \frac{15}{3}=5.\) |
|
25. |
If \(x=3^{\frac13}+3^{\frac{-1}{3}},\) then 3x3 - 10 is equal to :(a) – 3x (b) 3x (c) – 9x (d) 9x |
Answer» (d) 9x \(x=3^{\frac13}+3^{\frac{-1}{3}}\) ⇒ \(x-3^{\frac13}=3^{\frac{-1}{3}}\) ⇒ \((x-3^{\frac13})^3\) = \((x-3^{\frac{-1}3})^3\) ⇒ \(x^3 - 3.x.3^{\frac13}(x-3^{\frac13})-(3^{\frac13})^3=3^{-1}\) ⇒ \(x^3 - 3.x.3^{\frac13}.3^{\frac{-1}3}-3 =\frac13\) ⇒ \(x^3-3x=3+\frac13\) ⇒ \(3x^3 - 9x = 10 \) ⇒ \(3x^3 - 10 = 9x \) |
|
26. |
If \(a^\frac13+b^\frac13+c^\frac13=0,\) then the value of (a + b + c)3 will be :(a) 9 a2b2c2(b) 3abc (c) 6abc (d) 27abc |
Answer» (d) 27 abc \(a^\frac13+b^\frac13+c^\frac13=0,\) \((a^\frac13)^3+(b^\frac13)^3+(c^\frac13)^3\) = \(3\,a^\frac13+b^\frac13+c^\frac13\) ⇒ a + b + c = \(3(abc)^\frac13\) ⇒ (a + b + c)3 = 27 abc. |
|
27. |
The value of \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)}\) is(a) 1 (b) 3 (c) \(\frac13\)(d) zero |
Answer» (b) 3 Since (a-b) + (b-c) + (c-a) = 0 ∴ (a-b)3 + (b-c)3 + (c-a)3 = 3(a-b)(b-c)(c-a) ⇒ \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)}\) = \(\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}\) = 3. |
|
28. |
What is the value of the following expression ?(1 + x)(1 + x2)(1 + x4)(1 + x8)(1 - x)(a) 1 + x16(b) 1 - x16(c) x16 - 1(d) x8 + 1 |
Answer» (b) 1 + x16 (1 + x)(1 + x2)(1 + x4)(1 + x8)(1 - x) = (1 + x)(1 - x)(1 + x)(1 + x2)(1 + x4)(1 + x8) = (1 - x2)(1 + x2)(1 + x4)(1 + x8) = (1 - x4)(1 + x4)(1 + x8) = (1 - x8)(1 + x8) = (1 + x16) |
|
29. |
If a + b + c = 11 and ab + bc + ca = 20, then the value of the expression a3 + b3 + c3 - 3abc will be(a) 121 (b) 341 (c) 671 (d) 781 |
Answer» (c) 671 (a+ b + c)2 = a2 + b2 + c2 = 112 -2 x 20 = 121 - 40 = 81 Also, we know that (a+ b + c) = (a2 + b2 + c2 - ab - bc -ca) = a3 + b3 + c3 - 3abc ⇒ a3 + b3 + c3 - 3abc = 11 x (80-20) ⇒ a3 + b3 + c3 - 3abc = 11 x 61 = 671. |
|
30. |
An expression, which when divided by (x +1) gives (x2 – x + 1) as quotient and 3 as remainder is equal to :(a) x3 - 2(b) x3 - 1 (c) x3 + 2(d) (x3 + 4) |
Answer» (d) (x3 + 4) Dividend = Divisor × Quotient + Remainder = (\(x\) + 1) x (\(x^2 - x+1\)) +3 = \(x\) (\(x^2 - x+1\)) + (\(x^2 - x+1\)) + 3 Now solve. |
|
31. |
Simplify: (x + y)3 + (x - y)3 + 6x(x2 - y2) |
Answer» Let (x + y) = a and (x - y) = b Then, (x + y)3 + (x - y)3 + 6x(x2 - y2) = (x + y)3 + (x - y)3 + 3 x 2\(x\) x (x + y)(x - y) = (x + y)3 + (x - y)3 - 3 x [(x + y) + (x - y)] x (x + y) + (x - y) = a3 + b3 + 3ab(a + b) = (a + b)3 = (x + y + x - y)3 = (2x)3 = 8x3. |
|
32. |
Find the products: (x + 6) (x +6) |
Answer» Given that (x + 6) (x +6) But we can write the given expression as (x + 6) (x +6) = (x + 6)2 But we have (a + b)2=a2+2ab+b2 On applying above identity in the given expression we get, (x + 6)2= x2+2 x (6) + 62 (x + 6)2= x2+12 x + 36 |
|
33. |
Divide: 12x2 + 8x3-6x2 by -2x2 |
Answer» Given 12x2 + 8x3-6x2 by -2x2 ⇒12x2 + 8x3-6x2/ (-2x2) On dividing polynomial by a monomial we have divide every variables of polynomial By monomial On simplifying we get ⇒-6x2 -4x + 3 |
|
34. |
Factorised form of 23xy – 46x + 54y – 108 is(a) (23x + 54) (y – 2) (b) (23x + 54y) (y – 2)(c) (23xy + 54y) (– 46x – 108) (d) (23x + 54) (y + 2) |
Answer» (a) (23x + 54) (y – 2) Factorised form of 23xy – 46x + 54y – 108 is = 23xy – (2 × 23x) + 54y – (2 × 54) Take out the common factors, = 23x (y – 2) + 54 (y – 2) Again take out the common factor, = (y – 2) (23x + 54) |
|
35. |
Like term as 4m3n2 is(a) 4m2n2 (b) – 6m3n2 (c) 6pm3n2 (d) 4m3n |
Answer» (b) – 6m3n2 Like terms are formed from the same variables and the powers of these variables are also the same. But coefficients of like terms need not be the same. |
|
36. |
Find the product -3y (xy+y2) and find its value for x = 4 and y = 5 |
Answer» -3y (xy + y2) = -3xy2 – 3y3 According to question: When x = 4 and y = 5 = - 3xy2 – 3y3 = - 3 (4) (5)2 – 3 (5)3 = - 300 – 375 = - 675 |
|
37. |
What is the value of mn – nm if m = 3, n = 2?A) 0B) 2C) 1D) 5 |
Answer» Correct option is C) 1 We have m = 3 and n = 2 \(\therefore\) mn - nm = 32 - 23 = 9 - 8 = 1 |
|
38. |
Find the product: (3x + 2y) (3y – 4x) |
Answer» (3x + 2y) (3y – 4x) = 3x(3y – 4x) + 2y(3y – 4x) = 9xy – 12x2 + 6y2 – 8xy = xy – 12x2 + 6y2 |
|
39. |
Evaluate these using identity :55 × 45 |
Answer» 55 × 45 = (50 + 5) (50 – 5) Identity (a + b)(a – b) = a2 – b2 Here a = 50,b=5 (50 + 5)(50 – 5) = (50)2 – 52 = 2500 – 25 55 × 45 = 2475 |
|
40. |
If \(x+\frac{1}{x}=12\) find the value of \(x-\frac{1}{x}\). |
Answer» Given that, x + \(\frac{1}{x}\) = 12 Squaring both sides, we get (x + \(\frac{1}{x}\) )2 = 122 x2 + (\(\frac{1}{x}\))2 + 2 × x × \(\frac{1}{x}\) = 144 x2 + \(\frac{1}{x^2}\) = 142 Subtract 2 from both sides, we get x2 + \(\frac{1}{x\times x}\) - 2 × x × \(\frac{1}{x}\) = 142 – 2 (x - \(\frac{1}{x}\))2 = 140 x - \(\frac{1}{x}\) = \(\sqrt{140}\) |
|
41. |
Find the products:(-3/14)xy4 × (7/6)x3y |
Answer» (-3/14)xy4 × (7/6)x3y The coefficient of the product of two monomials is equal to the product of their coefficients. The variable part in the product of two monomials is equal to the product of the variables in the given monomials. Then, = [(-3/14) × (7/6)] × (x × x3) × (y4 × y) = [(-3×7)/ (14×6)] × (x1+3) × (y4+1) … [∵ am × an = am+n] = [(-1×1)/ (2×2)] × (x4) × (y5) = (-1/4)x4y5 |
|
42. |
What is the value of xy + 3y – 9 when x = 1, y = 2 is ……………. A) 1B) -1C) 0D) 12 |
Answer» Correct option is B) -1 We have x = 1, y = 2 \(\therefore\) xy + 3y - 9 = 1 x 2 + 3 x 2 - 9 = 2 + 6 - 9 = 8 - 9 = -1 |
|
43. |
Find the product: (a – b) (2a + 4b) |
Answer» (a – b) (2a + 4b) = a(2a + 4b) – b(2a + 4b) = (a × 2a + a × 4b) – (b × 2a + b × 4b) = 2a2 + 4ab – (2ab + 4b2) = 2a2 + 4ab – 2ab – 4b2 = 2a2 + 2ab – 4b2 |
|
44. |
If 2x + 3y=14 and 2x - 3y=2, find value of xy. [Hint: Use (2x + 3y)2 – (2x - 3y)2 = 24xy] |
Answer» Given that, 2x + 3y = 14 ............... (1) 2x – 3y = 2 .................. (2) Now, on squaring both the equation and subtracting (2) from (1), we get, (2x + 3y)2 – (2x – 3y)2 = (14)2 – (2)2 4x2 + 9y2 + 12xy – 4x2 – 9y2 + 12xy = 196 – 4 (The positive and negative terms gets cancelled) 24 xy = 192 xy = 8 Therefore, the value of "xy" is 8. |
|
45. |
Use the identify (a + b) (a – b) = a2 – b2 to find the product.(2a + 4b) (2a – 4b) |
Answer» (a + b) (a – b) = a2 – b2 Here a = 2a,b = 4b (2a + 4b)(2a-4b) = (2a)2 – (4b)2 = 4a2 – 16b2 |
|
46. |
Use the identify (a + b) (a – b) = a2 – b2 to find the product.(3x + 5) (3x – 5) |
Answer» (a + b) (a – b) = a2 – b2 Here a = 3x, b = 5 (3x + 5)(3x – 5) = (3x)2 – (5)2 = 9x2 -25 |
|
47. |
Use the identify (a + b) (a – b) = a2 – b2 to find the product.(x + 6) (x – 6) |
Answer» (a + b) (a – b) = a2 – b2 Here a = x,b = 6 (x + 6)(x – 6) = x2 – 62 = x2 – 36 |
|
48. |
Evaluate using the identify (a – b)2 = a2 – 2ab + b2.(198)2 |
Answer» (198)2 = (200 – 2)2 (a – b)2 = a2 – 2ab + b2 Here a = 200, b = 2 (200 – 2)2 = 2002 – (2)(200)(2) + 22 = 40000 – 800 + 4 (198)2= 39204 |
|
49. |
Evaluate using the identify (a – b)2 = a2 – 2ab + b2.592 |
Answer» 592 = (60 – 1)2 (a – b)2 = a2 – 2ab + b2 Here a = 60, b = 1 (60 – 1)2 = 602 – (2)(60)(1) +12 = 3600 – 120 + 1 592 =3481 |
|
50. |
Evaluate using the identify (a – b)2 = a2 – 2ab + b2.(9.8)2 |
Answer» (9.8)2 = (10 – 0.2)2 (a – b)2 = a2 – 2ab + b2 Here a = 10, b=0.2 (10 – 0.2)2 = 102 – (2)(10)(0.2) + (0.2)2 = 100 – 4 + 0.04 (9.8)2 = 96.04 |
|