Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Which term of G.P. 3, 3√3,9, …………….. equals to 243? A) 6 B) 7 C) 8 D) 9

Answer»

Correct option is (D) 9

Given G.P. is \(3, 3 \sqrt3,9,.......\)

\(\therefore a_1=3,a_2=3\sqrt3\)

\(\therefore\) Common ratio is r \(=\frac{a_2}{a_1}\)

\(=\frac{3\sqrt3}3=\sqrt3\)

Let \(a_n=243\)

\(\therefore ar^{n-1}=243\)       \((\because a_n=ar^{n-1})\)

\(\Rightarrow3(\sqrt3)^{n-1}=243\)

\(\Rightarrow3\frac{n-1}2=\frac{243}3\)

\(=81=3^4\)

\(\Rightarrow\frac{n-1}2=4\)

\(\Rightarrow n-1=8\)

\(\Rightarrow n=8+1=9\)

Hence, \(9^{th}\) term of given G.P. equals to 243.

Correct option is D) 9

102.

If 2nd term of a G.P is 24 and 5th term is 81, then first term is A) 16B) 20 C) 3/2D) 3

Answer»

Correct option is (A) 16

In G.P., \(a_2=24\;\&\;a_5=81\)

Let first term and common difference of G.P. be a and r.

\(\therefore ar=24\)        ______________(1)  \((\because a_2=ar)\)

and \(ar^4=81\)   ______________(2)  \((\because a_5=ar^4)\)

Divide equation (2) by (1), we get

\(\frac{ar^4}{ar}=\frac{81}{24}\)

\(\Rightarrow r^3=\frac{27}8\)

\(=\frac{3^3}{2^3}=(\frac32)^3\)

\(\Rightarrow\) \(r=\frac32\)

Put \(r=\frac32\) in equation (1), we get

\(\frac32a=24\)

\(\Rightarrow a=24\times\frac23=16\)

Hence, first term of G.P. is 16.

Correct option is A) 16

103.

If a, b, c are in geometric progression then a/b = A) c/bB) b/cC) b/aD) a/c

Answer»

Correct option is (B) b/c

a, b, c are in G.P.

\(\therefore b=ar\)

and \(c=ar^2\)

\(\Rightarrow r=\frac ba\)

and \(\frac cb=\frac{ar^2}{ar}=r=\frac ba\)

\(\therefore\) \(\frac{a}{b}\) = \(\frac{b}{c}\)

Correct option is B) b/c

104.

Which term of the AP 64, 60, 56, 52, 48, …. is 0?

Answer»

To Find: we need to find n when an = 0

Given: The series is 64, 60, 56, 52, 48, … and an = 0

a1 = 64, a2 = 60 and d = 60 – 64 = –4

(Where a = a1 is first term, a2 is second term, an is nth term and d is common difference of given AP)

Formula Used: an = a + (n - 1)d

an = 0 = a1 + (n –1)(– 4)

0 – 64 = (n –1)(– 4) [subtract 64 on both sides]

– 64 = (n –1)(– 4)

64 = (n –1)4 [Divide both side by '–']

16 = (n –1) [Divide both side by 4]

n = 17th [add 1 on both sides]

The 17th term of this AP is equal to 0.

105.

If x, 2x + 2, 3x + 3 are in G.P. then 4th term is A) -27 B) 13.5 C) 27 D) -13.5

Answer»

Correct option is (D) -13.5

Given that x, 2x+2, 3x+3 are in G.P.

\(\therefore(2x+2)^2=x(3x+3)\)

\(\Rightarrow4x^2+8x+4=3x^2+3x\)

\(\Rightarrow x^2+5x+4=0\)

\(\Rightarrow(x+1)(x+4)=0\)

\(\Rightarrow x+1=0\;or\;x+4=0\)

\(\Rightarrow x=-1\;or\;x=-4\)

Case I :-

If x = -1, then

\(2x+2=-2+2=0\)

\(3x+3=-3+3=0\)

\(\because-1,0,0\) are not in G.P.

but x, 2x+1, 3x+3 are not in G.P. which is contradiction.

Case II :-

If x = -4

Then \(2x+2=-8+2=-6\)

\(3x+3=-12+3=-9\)

\(\because-4,-6,-9\) are in G.P. which is required.

\(\therefore r=\frac{-6}{-4}=\frac32\)

Next term \(=-9r=-9\times\frac32\)

\(=\frac{-27}2=-13.5\)

Hence, \(4^{th}\) term is -13.5

Correct option is D) -13.5

106.

If the common difference of an A.P is 1 and 6th term is \(\cfrac{(4cos^2α+1)}{cos^2α}\) , then first term isA) cot2 α B) cosec2 α C) tan2 α D) sec2 α

Answer»

Correct option is (C) tan2 α

We have common difference = d = 1

\(6^{th}\) term \(=a_6=\frac{4\,cos^2\alpha+1}{cos^2\alpha}\)

Let a be the first term of A.P.

Then a+5d \(=\frac{4\,cos^2\alpha+1}{cos^2\alpha}\)    \((\because a_6=a+5d)\)

\(\Rightarrow\) \(a=\frac{4\,cos^2\alpha+1}{cos^2\alpha}-5d\)

\(=\frac{4\,cos^2\alpha+1}{cos^2\alpha}-5\)                \((\because d=1)\)

\(=\frac{4\,cos^2\alpha+1-5\,cos^2\alpha}{cos^2\alpha}\)

\(=\frac{1-cos^2\alpha}{cos^2\alpha}=\frac{sin^2\alpha}{cos^2\alpha}=tan^2\alpha\)     \((\because1-cos^2\alpha=sin^2\alpha)\)

Hence, first term of A.P. is \(tan^2 \alpha.\)

Correct option is C) tan2 α 

107.

Sum of 10 arithmetic means between 3, 10 is A) 65 B) 130 C) 0 D) 60

Answer»

Correct option is (A) 65

Let 10 arithmetic means between 3 & 10 are a+d, a+2d, a+3d, ........, a+10d.

\(\therefore\) 3, a+d, a+2d, a+3d, ........, a+10d, 10 will form an A.P.

\(\therefore a=3\;\&\;a+11d=10\)

\(\Rightarrow 11d=10-a\)

\(=10-3=7\)

\(\Rightarrow d=\frac7{11}\)

Now, sum of 10 arithmetic means

= (a+d) + (a+2d) + (a+3d) + ........ + (a+10d)

\(=10a+d\,(1+2+3+.......+10)\)

\(=10a+\frac{10\times11}2\,d\)          \((\because1+2+3+........+n=\frac{n(n+1)}2)\)

\(=10a+55d\)

\(=10\times3+55\times\frac7{11}\)          \((\because a=3\;\&\;d=\frac7{11})\)

\(=30+35=65\)

Hence, sum of 10 arithmetic means between 3 & 10 is 65.

Correct option is A) 65

108.

If n arithmetic means are inserted between a and b, then the common difference is ……………….A) a + b/n + 1B) n + 1/b + aC) n + 1/b - aD) b - a/n + 1

Answer»

Correct option is (D) b-a/n+1

Let a+d, a+2d, .........., a+nd are n arithmetic means inserted between a and b.

\(\therefore\) a, a+d, a+2d, .........., a+nd, b will form an A.P.

\(\therefore\) \(a+(n+1)d=b\)

\(\Rightarrow(n+1)d=b-a\)

\(\Rightarrow\) \(d=\frac{b-a}{n+1}\)

\(\therefore\) Common difference is \(d=\frac{b-a}{n+1}.\)

Correct option is D) b - a/n + 1

109.

One of the 5 geometric means between 1/3 and 243 is A) 81 B) 80 C) 79 D) 82

Answer»

Correct option is (A) 81

Let \(ar,ar^2,ar^3,ar^4,ar^5\) are 5 geometric means between \(\frac{1}{3}\) and 243.

\(\therefore\) \(\frac13,ar,ar^2,ar^3,ar^4,ar^5,243\) will form a G.P.

\(\therefore a=\frac13\;\&\;ar^6=243\)

\(\Rightarrow r^6=\frac{243}a=\frac{243}{\frac13}\)

\(=243\times3=729\)

\(\Rightarrow r^6=3^6\)

\(\Rightarrow r=3\)

\(\therefore\) \(ar=\frac13\times3=1,\)

\(ar^2=\frac13\times9=3,\)

\(ar^3=\frac13\times27=9,\)

\(ar^4=\frac13\times81=27,\)

\(ar^5=\frac13\times243=81\)

Hence, 1, 3, 9, 27 and 81 are 5 geometric means.

Hence, one of the 5 geometric mean is 81.

Correct option is A) 81

110.

Geometric mean of 6 and 24 is A) 13 B) 30 C) 12 D) 15

Answer»

Correct option is (C) 12

Geometric mean of 6 and 24 \(=(ab)^\frac12\)

\(=(6\times24)^\frac12\)

\(=(2\times3\times2\times4\times3)^\frac12\)

\(=(2^2\times2^2\times3^2)^\frac12\)

\(=(12^2)^\frac12\) = 12

Hence, geometric mean of 6 and 24 is 12.

Correct option is C) 12

correct answer is option c)12 


111.

nth term of -3 + 6 – 12 + 24 – 48 + …………… is A) 2.3n - 1B) 3.2n + 1 C) (-1)n - 1 . 3.2n - 1 D) (-1)n . 3.2n - 1

Answer»

Correct option is (D) \( (-1)^n . 3.2^{n-1}\)

Given sequence is -3, 6, -12, 24, -48, .........

\(\Rightarrow-1\times3,(-1)^2\times3\times2,(-1)^3\times3\times2^2,\) \((-1)^4\times3\times2^3,(-1)^5\times3\times2^4,.......\)

\(\therefore n^{th}\) term of given sequence is \( (-1)^n\times3\times2^{n-1}\)

Correct option is D) (-1)n . 3.2n - 1

112.

nth term of 4 + 9 + 14 + …………….. is A) 5n +1 B) 4n – 1 C) 5n – 1 D) 4n + 1

Answer»

Correct option is (C) 5n – 1

Let \(a_1=4,a_2=9,a_3=14\)

\(\because\) \(a_2-a_1\) \(=9-4=5\)

and \(a_3-a_2\) \(=14-9=5\)

\(\because\) \(a_3-a_2\) \(=a_2-a_1\)

\(\therefore\) 4, 9, 14, ......... will form an A.P. whose first term is \(a=a_1=4\) & common difference is \(d=a_2-a_1=9-4=5\)

\(\therefore\) \(n^{th}\) term of A.P. is \(a_n=a+(n-1)d\)

\(=4+(n-1)5\)

\(=4+5n-5\)

\(=5n-1\)

Hence, \(n^{th}\) term of 4+9+14+..….. is \(5n – 1.\)

Correct option is C) 5n – 1

113.

Find three arithmetic means between 6 and - 6.

Answer»

let the three AM be x1,x2,x3.

So new AP will be

6,x1,x2,x3, - 6

Also - 6 = 6 + 4d

d = - 3

x1 = 3

x2 = 0

x3 = - 3

114.

The sum of first q terms of an A.P. is 162. The ratio of its 6th term to its 13th term is 1: 2. Find the first and 15th term of the A.P.

Answer»

Let a be the first term and d be the common difference.

And we know that, sum of first n terms is:

Sn = \(\frac{n}{2}\)(2a + (n − 1)d)

Also, nth term is given by an = a + (n – 1)d

From the question, we have

Sq = 162 and a: a13 = 1 : 2

So,

2a= a13

⟹ 2 [a + (6 – 1d)] = a + (13 – 1)d

⟹ 2a + 10d = a + 12d

⟹ a = 2d  …. (1)

And, S9 = 162

⟹ S9 = \(\frac{9}{2}\)(2a + (9 − 1)d)

⟹ 162 = \(\frac{9}{2}\)(2a + 8d)

⟹ 162 × 2 = 9[4d + 8d]  [from (1)]

⟹ 324 = 9 × 12d

⟹ d = 3

⟹ a = 2(3) [from (1)]

⟹ a = 6

Hence, the first term of the A.P. is 6

For the 15th term, a15 = a + 14d = 6 + 14 × 3 = 6 + 42

Therefore, a15 = 48

115.

If 5th term of a G.P is 32 and common ratio 2, then the sum of 14 terms is A) 64,432 B) 16,383C) 32,766 D) 8,194

Answer»

Correct option is (C) 32,766

Let a & r be the first term & common difference of G.P.

\(\therefore\) r = common difference = 2

and \(a^5=32\)

\(\Rightarrow ar^4=32\)

\(\Rightarrow a=\frac{32}{r^4}=\frac{32}{2^4}\)

\(=\frac{32}{16}=2\)

\(\therefore\) Sum of 14 terms is \(S_{14}=\frac{a(r^{14}-1)}{r-1}\)

\(=\frac{2(2^{14}-1)}{2-1}\)

\(=2(16384-1)\)

\(=2\times16383=32766\)

Hence, sum of 14 terms in G.P. is 32766.

Correct option is C) 32,766

116.

The sum of even numbers between 100, 200 is A) 7650B) 6750 C) 5670 D) 7350

Answer»

Correct option is (D) 7350

First & last even numbers between 100 & 200 are 102 & 198 respectively.

\(\therefore a_1=a=10^2\;\&\;d=2,a_n=198\)

\(\because a_n=a+(n-1)d\)

\(\Rightarrow198=102+(n-1)2\)

\(\Rightarrow2(n-1)=198-102=96\)

\(\Rightarrow n-1=\frac{96}2=48\)

\(\Rightarrow n=48+1=49\)

\(\therefore\) Sum of even numbers between 100 & 200 is

\(S_n=\frac n2[a+a_n]\)

\(=\frac{49}2(102+198)\)

\(=\frac{49}2\times300\)

\(=49\times150=7350\)

Correct option is D) 7350

117.

Find whether 55 is a term of the AP, 7, 10, 13, … or not. If yes, find which term it is.

Answer»

Let the first term, common difference of an AP are a and d respectively.

a = 7

d = a2 - a1 = 10 - 7 = 3

Let the nth term of this AP is 55

Then

an = 55

a + (n - 1)d = 55

7 + (n - 1)3 = 55

3(n - 1) = 48

n - 1 = 16

n = 17

So the 55 is a term of given AP and 55 is the 17th term of given AP.

118.

The 9th term of an AP is 0. Prove that its 29th term is double the 19th term.

Answer»

Given: 9th term is 0

To prove: 29th term is double the 19th term

a + 8d = 0

a = - 8d

29th term is

a + 28d

⟹ 20d

19th term is

a + 18d

⟹ 10d

Hence proved 29th term is double the 19th term

119.

If the common difference of an AP is 5, then what is a18 – a13?(A) 5 (B) 20 (C) 25 (D) 30

Answer»

(C) 25

Explanation:

Given, the common difference of AP i.e., d = 5

Now,

As we know, nth term of an AP is

an = a + (n – 1)d

where a = first term

an is nth term

d is the common difference

a18 -a13 = a + 17d – (a + 12d)

= 5d

= 5(5)

= 25

120.

The 8th term of an AP is 17 and its 14th term is 29. The common difference of the AP is (a) 3 (b) 2 (c) 5 (d) -2

Answer»

The correct option is (b) 2.

Explanation:

T8 = a + 7d = 17 ...(i) 

T14 = a + 13d = 29 ...(ii) 

On subtracting (i) from (ii), we get: 

⇒ 6d = 12 

⇒ d = 12/6

⇒ d = 2

Hence, the common difference is 2.

121.

Given a = 7, a13 = 35, find d and S13.

Answer»

Given: a = 7; 

a13 = a + 12d = 35 

⇒ 7 + 12d = 35 

⇒ 12d = 35 – 7 

⇒ n = \(\frac{28}{12}\)\(\frac{7}{3}\)

Now, Sn = \(\frac{n}{2}\)(a + l) 

S13 = \(\frac{13}{2}\)(7 + 35) 

= \(\frac{13}{2}\) × 42 

= 13 × 21 

= 273

122.

The general term of a sequence is given by an = -4n + 15. Is the sequence an A.P.? If so, find its 15th term and the common difference.

Answer»

Given, an = -4n + 15

Now putting n = 1, 2, 3, 4 we get,

a1 = -4(1) + 15 = -4 + 15 = 11

a2 = -4(2) + 15 = -8 + 15 = 7

a3 = -4(3) + 15 = -12 + 15 = 3

a4 = -4(4) + 15 = -16 + 15 = -1

We can see that,

a2 – a= 7 – (11) = -4

a3 – a= 3 – 7 = -4

a4 – a= -1 – 3 = -4

Since the difference between the terms is common, we can conclude that the given sequence defined by an = -4n + 15 is an A.P with common difference of -4.

Hence, the 15th term will be

a15 = -4(15) + 15 = -60 + 15 = -45

123.

If d = 2 and 8th term of an A.P is 15, then the sum of 15 terms is ………………A) (225)/2B) 0 C) 15 D) 225

Answer»

Correct option is (D) 225

We have d = 2 & \(a_8=15\)

\(\therefore a+7d=15\)        \((\because a_8=a+(8-1)d=a+7d)\)

\(\Rightarrow a+7\times2=15\)

\(\Rightarrow a=15-14=1\)

\(\therefore\) Sum of 15 terms is \(S_{15}=\frac{15}2[2a+(15-1)d]\)

\(=\frac{15}2[2\times1+14\times2]\)         \((\because a=1\;\&\;d=2)\)

\(=\frac{15}2(2+28)\)

\(=\frac{15}2\times30\)

\(=15\times15=225\)

Correct option is D) 225

124.

Show that the sequence defined by an = 5n – 7 is an A.P., find its common difference.

Answer»

Given, an = 5n – 7

Now putting n = 1, 2, 3, 4 we get,

a1 = 5(1) – 7 = 5 – 7 = -2

a2 = 5(2) – 7 = 10 – 7 = 3

a3 = 5(3) – 7 = 15 – 7 = 8

a4 = 5(4) – 7 = 20 – 7 = 13

We can see that,

a2 – a= 3 – (-2) = 5

a3 – a= 8 – (3) = 5

a4 – a= 13 – (8) = 5

Since the difference between the terms is common, we can conclude that the given sequence defined by an = 5n – 7 is an A.P with common difference 5.

125.

If 5th term of a G.P is 32 and common ratio 2, then the sum of 14 terms isA) 32,766 B) 16,388 C) 64,432 D) 30,746

Answer»

Correct option is (A) 32,766

Let first term of G.P. be a.

Given that common ratio is r = 2.

\(\therefore5^{th}\) term of G.P. is \(a_5=ar^4\)       \((\because a_n=ar^{n-1})\)

\(\Rightarrow ar^4=32\)

\(\Rightarrow a.2^4=32\)

\(\Rightarrow a=\frac{32}{2^4}=\frac{32}{16}=2\)

Sum of first 14 terms is \(S_{14}=\frac{a(r^{14}-1)}{r-1}\)    \(\left(\because S_{n}=\frac{a(r^{n}-1)}{r-1}\right)\)

\(=\frac{2(2^{14}-1)}{2-1}\)                 \((\because a=2\;\&\;r=2)\)

= 2 (16384 - 1)           \((\because2^{14}=16384)\)

= 32766

Correct option is A) 32, 766

126.

How many terms are there in the AP 13, 16, 19, …., 43?

Answer»

To find: number of terms in AP

Also

d = 16 – 13

d = 3

Also

43 = 13 + n × 3 – 3

So

n = 11

127.

How many 2 - digit numbers are divisible by 7?

Answer»

The first 2 digit number divisible by 7 is 14, and the last 2 digit number divisible by 7 is 98, so it forms AP with common difference 7

14,…,98

98 = 14 + (n - 1) × 7

n = 22

128.

The 8th term of an AP is 17 and its 14th term is 29. The common difference of the AP is (a) 3 (b) 2 (c) 5 (d) -2

Answer»

Correct answer is (b) 2

T8 = a + 7d = 17     .......(i)

T14 = a + 13d = 29    ........(ii)

On subtracting (i) from (ii), we get:

\(\Rightarrow\) 6d = 12

\(\Rightarrow\) d = 12

Hence, the common difference is 2.

129.

If the sum of n terms of an A.P is 4n2 + 5n, then common difference is A) 8 B) 0 C) 4 D) 6

Answer»

Correct option is (A) 8

Given that sum of n terms of an A.P. is \(4n^2+5n.\)

\(\therefore\) \(S_n=4n^2+5n\)

\(\therefore a_1=S_1=4.1^2+5.1\)

\(=4+5=9\)

\(\&\;S_2=4.2^2+5.2\)

\(=16+10=26\)

\(\Rightarrow a_1+a_2=26\)       \((\because S_2=a_1+a_2)\)

\(\Rightarrow a_2=26-a_1\)

\(=26-9=17\)

Now, \(d=a_2-a_1\)

\(=17-9=8\)

Hence, common difference of given A.P. is 8.

Correct option is A) 8

130.

Write the sequence with nth term:(i) an = 3 + 4n(ii) an = 5 + 2n(iii) an = 6 - n(iv) an = 9 - 5nShow that all of the above sequences form A.P.

Answer»

(i) Put n = 1

A= 3 + 4(1) = 7

Put n = 2

A= 3 + 4(2) = 11

Put n = 3

A= 3 + 4(3) = 15

Common difference,

d= a2 – a1 = 11 – 7 = 4

Common difference,

d= a3 – a2 = 15 – 11 = 4

Since,

d1 = d2

Therefore, it’s an A.P. with sequence 7, 11, 15,… 

(ii) Put n = 1

A= 5 + 2(1) = 7

Put n = 2

A= 5 + 2(2) = 9

Put n = 3

A= 5 + 2(3) = 11

Common difference,

d= a2 – a1= 9 – 7 = 2

Common difference,

d= a3 – a2= 11 – 9 = 2

Since,

d1 = d2

Therefore, it’s an A.P. with sequence 7, 9, 11,… 

(iii) Put n = 1

A= 6 – 1 = 5

Put n = 2

A= 6 – 2 = 4

Put n = 3

A= 6 – 3 = 3

Common difference,

d= a2 – a1= 4 – 5 = -1

Common difference,

d2 = a- a2= 3 – 4 = -1

Since,

d= d2

Therefore, it’s an A.P. with sequence 5, 4 , 3,… 

(iv) Put n = 1

A= 9 – 5(1) = 4

Put n = 2

A= 9 – 5(2) = -1

Put n = 3

A= 9 – 5(3) = -6

Common difference,

d= a2 – a1 = -1 – 4 = -5

Common difference,

d= a3 – a2 = - 6 – (-1) = - 5

Since,

d= d2

Therefore, it’s an A.P. with sequence 4, -1, -6,…

131.

Find the 8th term from the end of the AP 7, 9, 11, …., 201.

Answer»

To find: 8th term from the end

d = 9 - 7

d = 2

Also

201 = 7 + n × 2 – 2

n = 98

So 8th term from end will be

7 + 90 × 2

⟹ 187

132.

If the numbers n – 2, 4n – 1 and 5n + 2 are in AP, find the value of n.

Answer»

As n – 2, 4n – 1, 5n + 2 are in AP, 

so (4n – 1) – (n – 2) = (5n + 2) – (4n – 1) 

i.e, 3n + 1 = n + 3 

i.e, n = 1

133.

Find the value of the middle most term (s) of the AP : –11, –7, –3,..., 49.

Answer»

Here, a = –11, d = –7 – (–11) = 4, an = 49 

We have an = a + (n – 1) d 

So, 49 = –11 + (n – 1) × 4 

i.e., 60 = (n – 1) × 4 

i.e., n = 16 

As n is an even number, there will be two middle terms which are 16/2th and (16/2 + 1)th, i.e., the 8th term and the 9th term.

a8 = a + 7d = –11 + 7 × 4 = 17 

a9 = a + 8d = –11 + 8 × 4 = 21 

So, the values of the two middle most terms are 17 and 21, respectively.

134.

Is -150 a term of the AP 11, 8, 5, 2,…?

Answer»

Given AP is AP 11, 8, 5, 2,…

Here a = 11, d = 8-11= -3

Let -150 be the nth term of the AP

an = a + (n – 1)d

-150 = 11 +(n-1)(-3)

or n = 164/3

Which is a fraction.

Therefore, -150 is not a term of the given AP.

135.

Find the middle term of the AP 10, 7, 4, ………. (-62).

Answer»

AP is 10, 7, 4, …..…, (-62)

a = 10,

d = 7 – 10 = -3, and

l = -62

Now, an = l = a + (n – 1)d

-62 = 10 + (n – 1) x (-3)

-62 – 10 = -3(n- 1)

-72 = -3(n – 1)

Or n = 24 + 1 = 25

Middle term = (25 + 1)/2 th = 13th term

Find the 13th term using formula, we get

a13 = 10 + (13 – 1)(-3) 

= 10 – 36 

= -26

136.

Find the 8th term from the end of the AP 7, 10, 13, ……, 184.

Answer»

Here, a = 7 and d = (10 - 7) = 3, l = 184 and n = 8th from the end.

Now, nth term from the end = \([I-(n\,-1)d]\)

8th term from the end = \([184-(8\,-1)\times3]\)

\([184-(7\times3)]=(184\,-\,21)=163\)

Hence, the 8th term from the end is 163.

137.

Find the 8th term from end of the A.P. 7, 10, 13, ..., 184.

Answer»

Here, a = 7, d = 10 – 7 = 3 and l = 184

where l = a + (n – 1)d

Now, to find the 8th term from the end, we will find the total number of terms in the AP.

So, 184 = 7 + (n – 1)(3)

⇒ 184 = 7 + 3n – 3

⇒ 184 = 4 + 3n

⇒ 180 = 3n

⇒ n = 60

So, there are 60 terms in the given AP.

Last term = 60th

Second last term = 60 – 1 = 59th

Third last term = 60 – 2 = 58th

And so, on

So, the 8th term from the end = 60 – 7 = 53th term

So, an = a + (n – 1)d

⇒ a53 = 7 + (53 – 1)(3)

⇒ a53 = 7 + 52 × 3

⇒ a53 = 7 + 156

⇒ a53 = 163

138.

Find the 8th term from the end of the AP 7, 10, 13, ……, 184.

Answer»

Given: AP is 7, 10, 13,…, 184

a = 7, d = 10 – 7 = 3 and l = 184

nth term from the end = l – (n – 1)d

Now,

8th term from the end be

184 – (8 – 1)3 

= 184 – 21

= 163

139.

Is 184 a term of the AP 3, 7, 11, 15, …..?

Answer»

Given AP is 3, 7, 11, 15, …

a = 3, d = 7 – 3 = 4

Let 184 be the nth term of the AP

an = a + (n – 1)d

184 = 3 + (n – 1) x 4

184 – 3 = (n – 1) x 4

181 /4 = n – 1

n = 181 /4 + 1 = 185/4 (Which is in fraction)

Therefore, 184 is not a term of the given AP.

140.

If the sum of the three numbers in a G.P is 26 and the sum of products taken two at a time is 156, then the numbers are A) 1, 4, 16B) 2, 6, 18 C) 1, 5, 25 D) 1, 8, 64

Answer»

Correct option is (B) 2, 6, 18

Let required three numbers in G.P. are a, ar & \(ar^2.\)

\(\therefore\) Their sum \(=a+ar+ar^2\)

\(\therefore\) \(a+ar+ar^2=26\)              (Given)

\(\Rightarrow a(1+r+r^2)=26\)     ______________(1)

Also \(a.ar+ar.ar^2+a.ar^2=156\)     (Given)

\(a^2r(1+r+r^2)=156\)    ______________(2)

Divide equation (2) by (1), we get

\(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}\)

\(\Rightarrow ar=6\)                     ______________(3)

Then from (1), we have

\(a+ar+ar.r=26\)

\(\Rightarrow a+6+6r=26\)         \((\because ar=6)\)

\(\Rightarrow a+6r=26-6=20\)

\(\Rightarrow ar+6r^2=20r\)

\(\Rightarrow6+6r^2=20r\)          \((\because ar=6)\)

\(\Rightarrow6r^2-20r+6=0\)

\(\Rightarrow3r^2-10r+3=0\)

\(\Rightarrow3r^2-9r-r+3=0\)

\(\Rightarrow3r(r-3)-1(r-3)=0\)

\(\Rightarrow(r-3)(3r-1)=0\)

\(\Rightarrow r-3=0\;or\;3r-1=0\)

\(\Rightarrow r=3\;or\;r=\frac13\)

From (3), we have

\(a=\frac6r=\frac63=2\) or

\(a=\frac6r=\frac6{\frac13}=18\)

If r = 3 then a = 2

or if \(r=\frac13\) then a = 18

Case I :-

r = 3 & a = 2

\(\therefore ar=2\times3=6\)

\(ar^2=2\times9=18\)

Hence, required number are 2, 6 and 18.

Case II :-

If \(r=\frac13\) & a = 18

\(\therefore ar=\frac{18}3=6\)

\(ar^2=\frac{18}9=2\)

Hence, required numbers in G.P. are 2, 6 & 18 or 18, 6, 2.

Alternate :-

Let \(a,ar,ar^2\) be required three numbers in G.P.

\(\therefore a+ar+ar^2=26\)

\(\Rightarrow a(1+r+r^2)=26\)         _______________(1)

And \(a.ar+ar.ar^2+ar^2.a=156\)

\(\Rightarrow a^2r(1+r+r^2)=156\)    _______________(2)

Divide equation (2) by (1), we get

\(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}=6\)

\(\Rightarrow ar=6\)            _______________(3)

Put ar = 6 in equation (1), we get

\(a+6+6r=26\)

\(\Rightarrow a+6r=26-6=20\)

\(\Rightarrow ar+6r^2=20r\)       (Multiply both sides by r)

\(\Rightarrow6+6r^2-20r=0\)

\(\Rightarrow3r^2-10r+3=0\)

\(\Rightarrow3r^2-9r-r+3=0\)

\(\Rightarrow3r(r-3)-1(r-3)=0\)

\(\Rightarrow(r-3)(3r-1)=0\)

\(\Rightarrow r-3=0\;or\;3r-1=0\)

\(\Rightarrow r=3\;or\;r=\frac13\)

Case I :-

r = 3 then \(a=\frac6r\)

\(=\frac63=2\)

\(\therefore ar=2\times3=6\)

\(ar^2=2\times9=18\)

Case II :-

\(r=\frac13\) then \(a=\frac6r=\frac6{\frac13}\)

\(=6\times3=18\)

\(\therefore ar=18\times\frac13=6\)

and \(ar^2=18\times\frac19=2\)

Hence, required numbers are 2, 6, 18.

Correct option is B) 2, 6, 18

141.

The sum to n terms of the series 0.5 + 0.55 + 0.555 + …………………… isA) \(\cfrac{5n}9\) - \(\cfrac{5}{81}\) \((1-\cfrac{1}{10^n})\)B)  \(\cfrac{5n}9\) + \(\cfrac{5}{81}\) \((1+\cfrac{1}{10^n})\) C)  \(\cfrac{5n}9\) - \(\cfrac{5}{81}\) \((\cfrac{1}{10^n}-1)\) D)  \(\cfrac{5n}9\) + \(\cfrac{5}{81}\) \((1-\cfrac{1}{10^n})\) 

Answer»

Correct option is A) \(\cfrac{5n}9\) - \(\cfrac{5}{81}\) \((1-\cfrac{1}{10^n})\)

142.

If sum of n terms of an AP is 5n2-3n, then sum of its 100th term is 

Answer»

\(\sum_{i=1}^n \) ai = 5n2 - 3n

= 5n2 + 5n - 8n

= 10\(\big(\frac{n^2+n}{2}\big)\)- 8n

=10 \(\sum_{i=1}^n \) i - 8 \(\sum_{i=1}^n \)1

\(\sum_{i=1}^n \)(10 i -8)

ith term of sequence = 10i - 8

100th term of sequence = 1000-8 = 992

Sum of digits = 9 + 9 + 2 = 20

143.

Which term of the A.P. 84, 80, 76,… is 0?

Answer»

Given,

A.P is 84, 80, 76,… 

Here, 

a1 = a = 84, 

a2 = 88 

Common difference, 

d = a2 – a1 

= 80 – 84 

= -4 

We know, 

an = a + (n – 1)d 

Where a is first term or a1 and d is common difference 

∴ an = 84 + (n – 1)-4 

⇒ an = 84 – 4n + 4 

⇒ an = 88 – 4n 

Now, 

To find which term of A.P is 0 

Put an = 0 

∴ 88 – 4n = 0 

⇒ -4n = -88

⇒ n = \(\frac{-88}{-4}\)

⇒ n = 22 

Hence, 

22th term of given A.P is 0.

144.

Which term of the A.P. 3, 8, 13,… is 248?

Answer»

Given,

A.P is 3, 8, 13,… 

Here, 

a1 = a = 3, 

a2 = 8 

Common difference, 

d = a2 – a1 

= 8 – 3 

= 5 

We know, 

an = a + (n – 1)d 

Where a is first term or a1 and d is common difference 

∴ an = 3 + (n – 1)5 

⇒ an = 3 + 5n – 5 

⇒ an = 5n – 2 

Now, 

To find which term of A.P is 248 

Put an = 248 

∴ 5n – 2 = 248 

⇒ 5n = 248 + 2 

⇒ 5n = 250 

⇒ n = \(\frac{250}{5}\)

⇒ n = 50 

Hence, 

50th term of given A.P is 248.

145.

In an A.P., show that am+n + am–n = 2am.

Answer»

Let common difference of an A.P is d and first term is a 

We know, 

an = a + (n – 1)d 

Where a is first term or a1 and d is common difference.

Now, 

Take L.H.S.: 

am+n + am-n = a + (m + n – 1)d + a + (m - n – 1)d 

⇒ am+n + am-n = a + md + nd – d + a + md - nd – d 

⇒ am+n + am-n = 2a + 2md – 2d 

⇒ am+n + am-n = 2(a + md – d) 

⇒ am+n + am-n = 2[a + d(m – 1)] 

{∵ an = a + (n – 1)d} 

⇒ am+n + am-n = 2am 

Hence Proved.

146.

Kargil’s temperature was recorded in a week from Monday to Saturday. All readings were in A.P. The sum of temperatures of Monday and Saturday was 5°C more than sum of temperatures of Tuesday and Saturday. If temperature of Wednesday was -30° Celsius then find the temperature on the other five days.

Answer»

Let the temperatures from Monday to Saturday in A.P. be 

a, a + d, a + 2d, a + 3d, a + 4d, a + 5d. 

According to the first condition, 

(a) + (a + 5d) = (a + d) + (a + 5d) + 5° 

∴ d = -5° 

According to the second condition, 

a + 2d = -30° 

∴ a + 2(-5°) = -30° 

∴ a – 10° = -30° 

∴ a = -30° + 10° = -20° 

∴ a + d = -20° – 5° = – 25° 

a + 3d = -20° + 3(- 5°) = -20° – 15° = -35° 

a + 4d = -20° + 4(-5°) = -20° – 20° = -40°

a + 5d = -20° + 5(-5°) = -20° – 25° = -45° 

∴ The temperatures on the other five days are -20°C, -25° C, -35° C, -40° C and -45° C.

147.

Which term of the A.P. 3, 15, 27, 39,..... will be 120 more than its 21st term?

Answer»

a = 3, d = 15 – 3 = 12

Let last term be an

an = a + (n – 1) d

= 3 + (n – 1) 12

= 12n – 9 (i)

a21 = a + 20d

= 3 + 20(12) = 243

Now, the term is 120 more than the 21st term

an = 120 + a21

= 120 + 243

= 363

Putting this value in (i), we get

363 = 12n – 9

12n = 363 + 9

n = 31

Hence, 31st term of given A.P. is 120 more than its 21st term

148.

Which term of the G.P. 1/3 , 1/9 , 1/27 , ..............is 1/(2187)A) 5thB) 6th C) 7th D) 8th

Answer»

Correct option is (C) 7th

Given G.P. is \(\frac{1}{3},\frac{1}{9},\frac{1}{27},........\)

\(\therefore a_1=\frac13,a_2=\frac19\)

\(\therefore\) Common ratio = r

\(=\frac{a_2}{a_1}=\cfrac{\frac19}{\frac13}\)

\(=\frac19\times3=\frac13\)

Let \(a_n\) = \(\frac{1}{2187}\)

\(\Rightarrow\) \(ar^{n-1}\)\(\frac{1}{2187}\)     \((\because a_n=ar^{n-1}\) for GP)

\(\Rightarrow\) \(r^{n-1}\)\(\frac{1}{2187a}\)

\(\Rightarrow\) \(r^{n-1}\) \(=\frac{3}{2187}=\frac1{729}\)   \((\because a=\frac13)\)

\(\Rightarrow(\frac13)^{n-1}=(\frac13)^6\)     \((\because r=\frac13)\)

\(\Rightarrow n-1=6\)          (By comparing)

\(\Rightarrow n=6+1=7\)

Hence, \(\frac{1}{2187}\) is \(7^{th}\) term of given G.P.

Correct option is C) 7th

149.

The 21st term of an A.P., whose first two terms are -3 and 4 is ………………A) 143 B) -143C) 137 D) 17

Answer»

Correct option is (C) 137

\(\because a_1=-3\;\&\;a_2=4\)

\(\therefore d=a_2-a_1\)

= 4 - (-3)

= 4+3 = 7

\(\because a_n=a+(n-1)d\)

\(\Rightarrow a_{21}=a_1+(21-1)d\)       \((\because n=21)\)

\(=-3+20\times7\)         \((a_1=-3\;\&\;d=7)\)

= -3+140 = 137

Correct option is C) 137

150.

The common difference of an A.P. for which a18 – a14 = 32 is …………….. A) 8 B) -8 C) -4 D) 4

Answer»

Correct option is (A) 8

We have \(a_{18} - a_{14} =32\)

\(\Rightarrow(a+17d)-(a+13d)=32\)       \((\because a_n=a+(n-1)d)\)

\(\Rightarrow4d=32\)

\(\Rightarrow d=\frac{32}4=8\)

Hence, the common difference of given A.P. is 8.

Correct option is A) 8