InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Solve: x(sinx – cosx). |
|
Answer» Let y = x(sinx – cosx); log y = (sin x – cos x) log x diff w.r.t x. \(\frac{1}{y}\frac{dy}{dx}\) = (sinx – cosx) .\(\frac{1}{x}\) + logx (cosx + sinx); \(\frac{dy}{dx}\) = y [\(\frac{sinx - cosx}{x}\) + log x.(cosx + sinx)] |
|
| 2. |
If x = acos4θ, y = asin4θ show that \(\frac{dy}{dx}\) = -tan2θ |
|
Answer» Given x = a cos4θ, y = a sin 4θ \(\frac{dx}{d\theta}\) = a(4cos3θ( – sinθ)) \(\frac{dy}{d\theta}\) = 4a sin3θcosθ ∴ \(\frac{dy}{dx}\) = \(\frac{4asin^3\theta cos\theta}{-4acos^3\theta sin\theta}\) = - tan2θ |
|
| 3. |
If y = sin mx, show that \(\frac{d^2y}{dx^2} + m^2y = 0\) |
|
Answer» Given y = sinmx \(\frac{dy}{dx}\) = -mcosmx \(\frac{d^2y}{dx^2}\) = m2sinmx = -m2y ∴ \(\frac{d^2y}{dx^2}\) + m2y = 0 |
|
| 4. |
Solve: (x + cosx) (x – tanx). |
|
Answer» Let y = (x + cos x)(x – tanx) \(\frac{dy}{dx}\)= (x + cosx)(1 – sec2x) + (xtanx)(1 – sinx). |
|
| 5. |
Solve: (sin x)x. |
|
Answer» Let y = (sin x)x , Taking logm logy = xlogsinx \(\frac{1}{y}\frac{dy}{dx}\)= x . \(\frac{1}{sinx}\). cosx + logsinx.1 \(\frac{dy}{dx}\)= y[xcotx + logsinx] |
|
| 6. |
Solve: xsinx |
|
Answer» Let y = xsinx, taking logm both sides log y = sinx log x, Diff w.r.t x \(\frac{1}{y}.\frac{dy}{dx}\)= sin x .\(\frac{1}{x}\) + log x . cos x \(\frac{dy}{dx}\) = y[\(\frac{sinx}{x}\) + log x . cos x] |
|
| 7. |
Differentiate sin2x w.r.t. x2 |
|
Answer» Let u = sin2x, v = x2 Differentiate both w.r.t. x \(\frac{du}{dx}\) = 2 sin x. cos x, \(\frac{dv}{dx}\) = 2x ∴ \(\frac{du}{dv}\) = \(\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2sinxcosx}{2x}\) = \(\frac{sinxcosx}{x}\) |
|
| 8. |
Solve: 7sin√x |
|
Answer» Let y = 7sin√x \(\frac{dy}{dx}\) = 7sin√x.log 7. cos√x . \(\frac{1}{2\sqrt x}\) |
|
| 9. |
Solve: sin x . sin 2x |
|
Answer» Let y = sin x . sin2x \(\frac{dy}{dx}\)= sinx(2cos2x) + sin2xcosx = 2sinxcos2x + cosx sin2x |
|
| 10. |
Solve: y = 4x+y |
|
Answer» Given y = 4x+y, diff. w r.t. x \(\frac{dy}{dx}\) = 4x + ylog4(1 + \(\frac{dy}{dx}\)) = 4x + y \(\frac{dy}{dx}\)(1 - 4x + ylog4) = 4x + y log4 ∴ \(\frac{dy}{dx}\) = \(\frac{4^{x + y}.log4}{1 - 4^{x + y}.log4}\) |
|
| 11. |
If y = eax + e-ax, Show that y2 – a2y = 0 |
|
Answer» y = eax + e-ax y1 = aeax – ae-ax y2 = a2eax + a2e-ax = a2 (eax + e-ax) = a2y ∴ y2 – a2y = 0. |
|
| 12. |
Solve: log ex |
|
Answer» Let y = loge e (constant) \(\frac{dy}{dx} = 0\) |
|
| 13. |
Solve: 5ex – log x – 3√x |
|
Answer» Let y = 5ex – log x – 3√x \(\frac{dy}{dx} = 5e^x - \frac{1}{x} - 3\frac{1}{2\sqrt x}\) |
|
| 14. |
Find the radius of curvature for the curve x3 + y3 = 3axy on the point (3a/2, 3a/2). |
|
Answer» According to question x3 + y3 = 3axy Thus at point (\(\frac{3a}{2}\), \(\frac{3a}{2}\)) Putting the coordinates in the equation \(\frac{27a^3}{8}\) + \(\frac{27a^3}{8}\) = \(\frac{54a^3}{4}\) \(\frac{27a^3 + 27a^3}{8}\) = \(\frac{54a^3}{4}\) \(\frac{54a^3}{8}\) = \(\frac{54a^3}{4}\) Thus a = \(\frac{1}{2}\) Thus the coordinates are (\(\frac{1}{2}\), \(\frac{1}{2}\)). Radius of curvatur=-3a/8√2 |
|
| 15. |
Differentiate tan2x w.r.t cos2x. |
|
Answer» Let u = tan2x, v = cos2x Differentiate both w.r.t x \(\frac{du}{dx}\) = 2tan x. sec2x, \(\frac{dv}{dx}\) = 2cosx(-sinx) ∴ \(\frac{du}{dv}\) = \(\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2tanx.sec^2x}{2sinx.cosx}\) = \(\frac{1}{sec^4x}\) |
|
| 16. |
Solve: \(\frac{4x^2 - 3x}{x}\) |
|
Answer» Let y = \(\frac{4x^2}{x} - \frac{3x}{x}\) = 4x – 3 ∴ \(\frac{dy}{dx}\) = 4(1) – 0 = 4 |
|
| 17. |
Solve: \(\Big(\sqrt x + \frac{1}{\sqrt x}\Big)^2\) |
|
Answer» Let y = \(\Big(\sqrt x + \frac{1}{\sqrt x}\Big)^2\) = x + \(\frac{1}{x}\) + 2 \(\frac{dy}{dx}\) = 1 - \(\frac{1}{x^2}\) + 0 = 1 - \(\frac{1}{x^2}\) |
|
| 18. |
If y = x + tan x. Show that cos2x . \(\frac{dy}{dx}\) = 2 – sin2x |
|
Answer» Given y = x + tan x \(\frac{dy}{dx}\) = 1 + sec2x = 1 + \(\frac{1}{cos^2x}\) = \(\frac{cos^2x + 1}{cos^2x}\) ∴ cos2x\(\frac{dy}{dx}\) = cos2x + 1 = 1 – sin2x + 1 = 2 – sin2x ∴ cos2x \(\frac{dy}{dx}\) = 2 – sin2x |
|
| 19. |
Solve: sin2x. |
|
Answer» Let y = (sin x)2 \(\frac{dy}{dx}\)= 2 sin x .(cosx) = sin2x |
|
| 20. |
Solve: (a2 – x2)10 |
|
Answer» Let y(a2 – x2)10 \(\frac{dy}{dx}\) = 10(a2 – x2)10 – 1 . \(\frac{dy}{dx}\)(a2 – x2) = 10(a2 – x2)9(-2x) = -20x(a2 – x2)9 |
|
| 21. |
Solve: (x – a)(x – b). |
|
Answer» Let y=(x – a) (x – b) \(\frac{dy}{dx}\) = (x – a) . 1 + (x – b) . 1 = x – a + x – b = 2x – a – b |
|
| 22. |
Solve: x5(3 – 6x-9). |
|
Answer» Let y = x5 (3 – 6x-9) \(\frac{dy}{dx}\) = x5(+54x-10) + (3 – 6x-9)(5x4) = 54x-5 + 15x4 – 30x-5 = 24x-5 + 15x4 |
|
| 23. |
Solve: log[log(log x)] |
|
Answer» Let y = log x (log log(x)) \(\frac{dy}{dx}\) = \(\frac{1}{log(logx)}.\frac{1}{logx}.\frac{1}{x}\) |
|
| 24. |
Solve: sin3√x |
|
Answer» Let y = sin3(√x) = (sin√x))3 \(\frac{dy}{dx}\) = 3.sin2 √x. cos√x .\(\frac{1}{2\sqrt x}\). |
|
| 25. |
Solve: x-3 (5 + 3x) |
|
Answer» Let y = x-3 (5 + 3x) \(\frac{dy}{dx}\)= x-3 (3) + (5 + 3x) (-3 . x-3-1 ) = 3x-3 – 15x-4 - 9x-3 = -15x-4 – 6x-3 = \(\frac{-3}{x^4}(2x + 5)\) |
|
| 26. |
Solve: log[log (tan x)] |
|
Answer» Let y = log(log (tan x)) \(\frac{dy}{dx}\) = \(\frac{1}{log(tanx)}.\frac{1}{tanx} . sec^2x\) |
|
| 27. |
Solve: (5x2 + 3x – 1) ( x – 1) |
|
Answer» Let y = (5x2 + 3x – 1) ( x – 1) \(\frac{dy}{dx}\)= (5x2 + 3x – 1) \(\frac{d}{dx}\)(x – 1) + (x – 1) \(\frac{d}{dx}\)(5x2 + 3x – 1) = (5x2 + 3x – 1) + (x – 1) (10x + 3) = 5x2 + 3x – 1 + 10x2 – 10x + 3x – 3 = 15x2 – 4x – 4 |
|
| 28. |
Solve: [log(cos x)]2 |
|
Answer» Let y = [log(cos x)]2 \(\frac{dy}{dx}\) = 2log(cos x). \(\frac{1}{cosx}\)(-sin x) = -2 tan x log(cos x) |
|
| 29. |
Solve: cos x3 |
|
Answer» Let y = cosx3 \(\frac{dy}{dx}\)= -sinx3 .3x2 |
|
| 30. |
Solve: 3x2 .log x. |
|
Answer» Let y = 3x2 .logx. \(\frac{dy}{dx}\) = 3x2 .\(\frac{1}{x}\) + logx . 3x2 . loge3 . 2x |
|
| 31. |
Solve: sinxy = cos(x + y). |
|
Answer» Given sin xy = cos(x + y), diff w.r.t x. cos(xy) \(\Big[x\frac{dy}{dx} + y\Big]\) \(\frac{dy}{dx}\)[sin(x + y) + xcos (xy)] = -sin(x + y) – ycos(xy) \(\frac{dy}{dx} = \frac{-\Big[sin(x + y) + cosxy\Big]}{\Big(sin(x + y) + xcosxy\Big)}\) |
|
| 32. |
Solve: cos 3x . sin 5x |
|
Answer» Let y = cos3x . sin5x (Trans using formula) sy = 2[sin8x – sin(-2x)] = 2 [sin8x] + 2sin2x \(\frac{dy}{dx}\) = 16cos8x + 4cos2x OR Let y = cos 3x . sin 5x \(\frac{dy}{dx}\) = cos3x(5cos5x) + sin5x(-3sin3x) = 5cos3x sin5x – 3sin5x.sin3x. |
|
| 33. |
Solve: cos5x . cos(x5). |
|
Answer» Let y = cos5x . cos(x5) \(\frac{dy}{dx}\) = cos5x(-sin(x5)5x4) + cos(x5).5cos4x.(-sinx) = – cos5x sin(x5) 5x4 – 5 cos(x5) . cos4x . sinx |
|
| 34. |
Solve: e2x . sin3x. |
|
Answer» Let y = e2x.sin3x \(\frac{dy}{dx}\) = e2x(3cos3x) + sin3x(2e2x) |
|
| 35. |
Differentiate the following with respect to x. (i) sin2 x (ii) cos2 x (iii) cos3 x |
|
Answer» For the following problems chain rule to be used: \(\frac{d}{dx}\)f(g(x)) = f'(g(x)).g'(x) \(\frac{d}{dx}\)[f(x)]n = n[f(x)]n - 1 x \(\frac{d}{dx}\)f(x) (i) Let y = sin2 x = (sin x)2 \(\frac{dy}{dx}\) = 2(sin x)2-1 \(\frac{d}{dx}\)(sin x) = 2 sin x (cos x) = sin 2x (ii) y = cos2 x = (cos x)2 \(\frac{dy}{dx}\) = 2(cos x)2-1 \(\frac{d}{dx}\)(cos x) = 2 cos x (-sin x) = -2 sin x cos x = -sin 2x (iii) y = cos3 x y = (cos x)3 \(\frac{dy}{dx}\) = 3(cos x)3 - 1 \(\frac{d}{dx}\)(cos x) = 3 cos2 x (-sin x) = -3 cos2 x sin x = -3 cos x (sin x cos x) [Multiply and divide by 2] = \(\frac{-3}{2}\) cos x (2 sin x cos x) = \(\frac{-3}{2}\) cos x sin 2x |
|
| 36. |
The graph of f(x) = ex is identical to that of:(a) f(x) = ax, a > 1 (b) f(x) = ax, a < 1 (c) f(x) = ax, 0 < a < 1 (d) y = ax + b, a ≠ 0 |
|
Answer» (a) f(x) = ax, a > 1 |
|
| 37. |
\(\lim\limits_{\theta \to 0}\frac{tan\theta}{\theta}\) = (a) 1(b) ∞(c) -∞ (d) θ |
|
Answer» (a) 1 (By formula) |
|
| 38. |
The graph of y = ex intersect the y-axis at: (a) (0, 0) (b) (1, 0) (c) (0, 1) (d) (1, 1) |
|
Answer» (c) (0, 1) y = ex Put x = 0, we get y = e0 = 1. ∴ The graph intersects the y-axis at (0, 1) |
|
| 39. |
If f(x) = x3 - \(\frac{1}{x^3}\), then show that f(x) + f(\(\frac{1}{x}\)) = 0 |
|
Answer» f(x) = x3 - \(\frac{1}{x^3}\) ... (1) f(\(\frac{1}{x}\)) = (\(\frac{1}{x}\))3 - \(\frac{1}{(\frac{1}{x})^3}\) = \(\frac{1}{x^3}\) - x3 ... (2) (1) + (2) gives f(x) + f(\(\frac{1}{x}\)) = x3 - \(\frac{1}{x^3}+\frac{1}{x^3}-x^3\) = 0 Hence Proved. |
|
| 40. |
If \(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥2 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\), then f(0) is (a) 2 (b) 5 (c) -1 (d) 0 |
|
Answer» (a) 2 \(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥0 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\) f(0) = 0 + 2 = 2 [For x = 0 take f(x) = x + 2] |
|
| 41. |
\(\lim\limits_{x \to 0}\frac{e^x-1}{x}\) =(a) e (b) nxn - 1 (c) 1 (d) 0 |
|
Answer» (c) 1 (By formula) |
|
| 42. |
\(\frac{d}{dx}({\frac{1}{x}})\) is equal to: (a) \(-\frac{1}{x^2}\)(b) \(-\frac{1}{x}\)(c) log x (d) \(\frac{1}{x^2}\) |
|
Answer» (a) \(-\frac{1}{x^2}\) |
|
| 43. |
Let f be defined by f(x) = x3 - kx2 + 2x, x ∈ R. Find k, if 'f' is an odd function. |
|
Answer» For a polynomial function to be an odd function each term should have odd powers pf x. Therefore there should not be an even power of x term. ∴ k = 0. |
|
| 44. |
For what value of x, f(x) = \(\frac{x+2}{x-1}\) is not continuous? (a) -2 (b) 1 (c) 2 (d) -1 |
|
Answer» (b) 1 When x = 1, \(\frac{x+2}{x-1}\) is not defined. |
|
| 45. |
If \(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥2 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\), then f(5) is (a) -1 (b) 2 (c) 5 (d) 7 |
|
Answer» (c) 5 \(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥2 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\) f(5) = 52 – 4(5) = 25 – 20 = 5 [For x = 5 take f(x) = x2 – 4x] |
|
| 46. |
If f(x) = x2 – x + 1 then f(x + 1) is: (a) x2 (b) x (c) 1 (d) x2 + x + 1 |
|
Answer» (d) x2 + x + 1 f(x) = x2 – x + 1 f(x + 1) = (x + 1)2 – (x + 1) + 1 = x2 + 2x + 1 – x – 1 + 1 = x2 + x + 1 |
|
| 47. |
The range of f(x) = |x|, for all x ∈ R is: (a) (0, ∞)(b) [0, ∞) (c) (-∞, ∞) (d) [1, ∞) |
|
Answer» (b) [0, ∞) [0, ∞) since in this interval 0 is included and f(0) = 0. |
|
| 48. |
f(x) = -5, for all x ∈ R is a: (a) an identity function (b) modulus function (c) exponential function(d) constant function |
|
Answer» (d) constant function |
|
| 49. |
If y = sin(log x), then show that x2 y2 + xy1 + y = 0. |
|
Answer» y = sin(log x) y1 = cos(log x) \(\frac{d}{dx}\)(log x) y1 = cos(log x).\(\frac{1}{x}\) ∴ xy1 = cos(log x) Differentiating both sides with respect to x, we get xy2 + y1(1) = -sin(log x).\(\frac{1}{x}\) ⇒ x[xy2 + y1] = -sin(log x) ⇒ x2 y2 + xy1 = -y ⇒ x2 y2 + xy1 + y = 0 |
|
| 50. |
If \(\lim\limits_{x \to a}\frac{x^9-a^9}{x-a}\) = \(\lim\limits_{x \to 3}(x+6)\), find the value of a. |
|
Answer» \(\lim\limits_{x \to a}\frac{x^9-a^9}{x-a}\) = \(\lim\limits_{x \to 3}(x+6)\) 9.a9 - 1 = 3 + 6 9.a8 = 9 a8 = 1 Taking squareroot on bothsides, we get \((a^8)^{\frac{1}{2}}\)= ±1 a4 = ±1 But a4 = -1 is imposssible. ∴ a4 = 1 Again taking squareroot, we get \((a^4)^{\frac{1}{2}}\)= ±1 a2 = ±1 a2 = -1 is imposssible ∴ a2 = 1 Again taking positive squareroot, a = ±1 |
|