Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Solve: x(sinx – cosx).

Answer»

Let y = x(sinx – cosx); log y = (sin x – cos x) 

log x diff w.r.t x. 

\(\frac{1}{y}\frac{dy}{dx}\) = (sinx – cosx) .\(\frac{1}{x}\) + logx (cosx + sinx); 

\(\frac{dy}{dx}\) = y [\(\frac{sinx - cosx}{x}\) + log x.(cosx + sinx)]

2.

If x = acos4θ, y = asin4θ show that \(\frac{dy}{dx}\) = -tan2θ

Answer»

Given x = a cos4θ, y = a sin 4θ 

\(\frac{dx}{d\theta}\) = a(4cos3θ( – sinθ)) \(\frac{dy}{d\theta}\) = 4a sin3θcosθ

∴ \(\frac{dy}{dx}\) = \(\frac{4asin^3\theta cos\theta}{-4acos^3\theta sin\theta}\) = - tan2θ

3.

If y = sin mx, show that \(\frac{d^2y}{dx^2} + m^2y = 0\)

Answer»

Given y = sinmx 

\(\frac{dy}{dx}\) = -mcosmx 

\(\frac{d^2y}{dx^2}\) = m2sinmx = -m2y

∴ \(\frac{d^2y}{dx^2}\) + m2y = 0

4.

Solve: (x + cosx) (x – tanx).

Answer»

Let y = (x + cos x)(x – tanx) 

\(\frac{dy}{dx}\)= (x + cosx)(1 – sec2x) + (xtanx)(1 – sinx).

5.

Solve: (sin x)x.

Answer»

Let y = (sin x)x , Taking logm 

logy = xlogsinx

\(\frac{1}{y}\frac{dy}{dx}\)= x . \(\frac{1}{sinx}\). cosx + logsinx.1 

\(\frac{dy}{dx}\)= y[xcotx + logsinx]

6.

Solve: xsinx

Answer»

Let y = xsinx, taking logm both sides 

log y = sinx log x, Diff w.r.t x 

\(\frac{1}{y}.\frac{dy}{dx}\)= sin x .\(\frac{1}{x}\) + log x . cos x 

\(\frac{dy}{dx}\) = y[\(\frac{sinx}{x}\) + log x . cos x]

7.

Differentiate sin2x w.r.t. x2

Answer»

Let u = sin2x, v = x2 

Differentiate both w.r.t. x 

\(\frac{du}{dx}\) = 2 sin x. cos x, 

\(\frac{dv}{dx}\) = 2x

∴ \(\frac{du}{dv}\) = \(\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2sinxcosx}{2x}\)

\(\frac{sinxcosx}{x}\)

8.

Solve: 7sin√x

Answer»

Let y = 7sin√x

\(\frac{dy}{dx}\) = 7sin√x.log 7. cos√x . \(\frac{1}{2\sqrt x}\)

9.

Solve: sin x . sin 2x

Answer»

Let y = sin x . sin2x 

\(\frac{dy}{dx}\)= sinx(2cos2x) + sin2xcosx = 2sinxcos2x + cosx sin2x

10.

Solve: y = 4x+y

Answer»

Given y = 4x+y, diff. w r.t. x

\(\frac{dy}{dx}\) = 4x + ylog4(1 + \(\frac{dy}{dx}\)) = 4x + y

\(\frac{dy}{dx}\)(1 - 4x + ylog4) = 4x + y log4

∴ \(\frac{dy}{dx}\) = \(\frac{4^{x + y}.log4}{1 - 4^{x + y}.log4}\)

11.

If y = eax + e-ax, Show that y2 – a2y = 0

Answer»

y = eax + e-ax 

y1 = aeax – ae-ax 

y2 = a2eax + a2e-ax 

= a2 (eax + e-ax) = a2

∴ y2 – a2y = 0.

12.

Solve: log ex

Answer»

Let y = loge e (constant)

\(\frac{dy}{dx} = 0\)

13.

Solve: 5ex – log x – 3√x

Answer»

Let y = 5ex – log x – 3√x

\(\frac{dy}{dx} = 5e^x - \frac{1}{x} - 3\frac{1}{2\sqrt x}\)

14.

Find the radius of curvature for the curve x3 + y3 = 3axy on the point (3a/2, 3a/2).

Answer»

According to question

x3 + y3 = 3axy

Thus at point (\(\frac{3a}{2}\), \(\frac{3a}{2}\))

Putting the coordinates in the equation

\(\frac{27a^3}{8}\) + \(\frac{27a^3}{8}\) = \(\frac{54a^3}{4}\)

\(\frac{27a^3 + 27a^3}{8}\) = \(\frac{54a^3}{4}\)

\(\frac{54a^3}{8}\) = \(\frac{54a^3}{4}\)

Thus

a = \(\frac{1}{2}\)

Thus the coordinates are (\(\frac{1}{2}\), \(\frac{1}{2}\)).

Radius of curvatur=-3a/8√2
15.

Differentiate tan2x w.r.t cos2x.

Answer»

Let u = tan2x, v = cos2

Differentiate both w.r.t x 

\(\frac{du}{dx}\) = 2tan x. sec2x,

\(\frac{dv}{dx}\) = 2cosx(-sinx)

∴ \(\frac{du}{dv}\) = \(\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2tanx.sec^2x}{2sinx.cosx}\)

\(\frac{1}{sec^4x}\)

16.

Solve: \(\frac{4x^2 - 3x}{x}\)

Answer»

Let y = \(\frac{4x^2}{x} - \frac{3x}{x}\) = 4x – 3 

\(\frac{dy}{dx}\) = 4(1) – 0 = 4

17.

Solve: \(\Big(\sqrt x + \frac{1}{\sqrt x}\Big)^2\)

Answer»

Let y = \(\Big(\sqrt x + \frac{1}{\sqrt x}\Big)^2\)

= x + \(\frac{1}{x}\) + 2

\(\frac{dy}{dx}\) = 1  - \(\frac{1}{x^2}\) + 0 = 1 - \(\frac{1}{x^2}\)

18.

If y = x + tan x. Show that cos2x . \(\frac{dy}{dx}\) = 2 – sin2x

Answer»

Given y = x + tan x

\(\frac{dy}{dx}\) = 1 + sec2x = 1 + \(\frac{1}{cos^2x}\)

\(\frac{cos^2x + 1}{cos^2x}\)

∴ cos2x\(\frac{dy}{dx}\) = cos2x + 1 = 1 – sin2x + 1 

= 2 – sin2

∴ cos2x \(\frac{dy}{dx}\) = 2 – sin2x

19.

Solve: sin2x.

Answer»

Let y = (sin x)2 

\(\frac{dy}{dx}\)= 2 sin x .(cosx) = sin2x

20.

Solve: (a2 – x2)10

Answer»

Let y(a2 – x2)10

\(\frac{dy}{dx}\) = 10(a2 – x2)10 – 1 . \(\frac{dy}{dx}\)(a2 – x2)

= 10(a2 – x2)9(-2x) = -20x(a2 – x2)9

21.

Solve: (x – a)(x – b).

Answer»

Let y=(x – a) (x – b) 

\(\frac{dy}{dx}\) = (x – a) . 1 + (x – b) . 1 

= x – a + x – b 

= 2x – a – b

22.

Solve: x5(3 – 6x-9).

Answer»

Let y = x5 (3 – 6x-9)

\(\frac{dy}{dx}\) = x5(+54x-10) + (3 – 6x-9)(5x4

= 54x-5 + 15x4 – 30x-5 

= 24x-5 + 15x4

23.

Solve: log[log(log x)]

Answer»

Let y = log x (log log(x))

\(\frac{dy}{dx}\) = \(\frac{1}{log(logx)}.\frac{1}{logx}.\frac{1}{x}\)

24.

Solve: sin3√x

Answer»

Let y = sin3(√x) = (sin√x))3 

\(\frac{dy}{dx}\) = 3.sin2 √x. cos√x .\(\frac{1}{2\sqrt x}\).

25.

Solve: x-3 (5 + 3x)

Answer»

Let y = x-3 (5 + 3x) 

\(\frac{dy}{dx}\)= x-3 (3) + (5 + 3x) (-3 . x-3-1

= 3x-3 – 15x-4 - 9x-3 

= -15x-4 – 6x-3

\(\frac{-3}{x^4}(2x + 5)\)

26.

Solve: log[log (tan x)]

Answer»

Let y = log(log (tan x))

\(\frac{dy}{dx}\) = \(\frac{1}{log(tanx)}.\frac{1}{tanx} . sec^2x\)

27.

Solve: (5x2 + 3x – 1) ( x – 1)

Answer»

Let y = (5x2 + 3x – 1) ( x – 1) 

\(\frac{dy}{dx}\)= (5x2 + 3x – 1) \(\frac{d}{dx}\)(x – 1) + (x – 1) \(\frac{d}{dx}\)(5x2 + 3x – 1) 

= (5x2 + 3x – 1) + (x – 1) (10x + 3) 

= 5x2 + 3x – 1 + 10x2 – 10x + 3x – 3 

= 15x2 – 4x – 4

28.

Solve: [log(cos x)]2

Answer»

Let y = [log(cos x)]2 

\(\frac{dy}{dx}\) = 2log(cos x). \(\frac{1}{cosx}\)(-sin x) 

= -2 tan x log(cos x)

29.

Solve: cos x3

Answer»

Let y = cosx3 

\(\frac{dy}{dx}\)= -sinx3 .3x2

30.

Solve: 3x2 .log x.

Answer»

Let y = 3x2 .logx.

\(\frac{dy}{dx}\) = 3x2 .\(\frac{1}{x}\) + logx . 3x2 . loge3 . 2x

31.

Solve: sinxy = cos(x + y).

Answer»

Given sin xy = cos(x + y), diff w.r.t x. 

cos(xy) \(\Big[x\frac{dy}{dx} + y\Big]\) 

\(\frac{dy}{dx}\)[sin(x + y) + xcos (xy)] = -sin(x + y) – ycos(xy)

\(\frac{dy}{dx} = \frac{-\Big[sin(x + y) + cosxy\Big]}{\Big(sin(x + y) + xcosxy\Big)}\)

32.

Solve: cos 3x . sin 5x

Answer»

Let y = cos3x . sin5x (Trans using formula) 

sy = 2[sin8x – sin(-2x)] = 2 [sin8x] + 2sin2x 

\(\frac{dy}{dx}\) = 16cos8x + 4cos2x 

OR Let y = cos 3x . sin 5x 

\(\frac{dy}{dx}\) = cos3x(5cos5x) + sin5x(-3sin3x) = 5cos3x sin5x – 3sin5x.sin3x.

33.

Solve: cos5x . cos(x5).

Answer»

Let y = cos5x . cos(x5

\(\frac{dy}{dx}\) = cos5x(-sin(x5)5x4) + cos(x5).5cos4x.(-sinx) 

= – cos5x sin(x5) 5x4 – 5 cos(x5) . cos4x . sinx

34.

Solve: e2x . sin3x.

Answer»

Let y = e2x.sin3x 

\(\frac{dy}{dx}\) = e2x(3cos3x) + sin3x(2e2x)

35.

Differentiate the following with respect to x. (i) sin2 x (ii) cos2 x (iii) cos3 x

Answer»

For the following problems chain rule to be used: 

\(\frac{d}{dx}\)f(g(x)) = f'(g(x)).g'(x) 

\(\frac{d}{dx}\)[f(x)]n = n[f(x)]n - 1 x \(\frac{d}{dx}\)f(x)

(i) Let y = sin2 x = (sin x)2 

\(\frac{dy}{dx}\) = 2(sin x)2-1 \(\frac{d}{dx}\)(sin x) 

= 2 sin x (cos x) 

= sin 2x

(ii) y = cos2 x = (cos x)2 

\(\frac{dy}{dx}\) = 2(cos x)2-1 \(\frac{d}{dx}\)(cos x) 

= 2 cos x (-sin x) 

= -2 sin x cos x 

= -sin 2x

(iii) y = cos3

y = (cos x)3

\(\frac{dy}{dx}\) = 3(cos x)3 - 1 \(\frac{d}{dx}\)(cos x) 

= 3 cos2 x (-sin x) 

= -3 cos2 x sin x 

= -3 cos x (sin x cos x) [Multiply and divide by 2] 

= \(\frac{-3}{2}\) cos x (2 sin x cos x) 

= \(\frac{-3}{2}\) cos x sin 2x

36.

The graph of f(x) = ex is identical to that of:(a) f(x) = ax, a > 1 (b) f(x) = ax, a < 1 (c) f(x) = ax, 0 < a < 1 (d) y = ax + b, a ≠ 0

Answer»

(a) f(x) = ax, a > 1

37.

\(\lim\limits_{\theta \to 0}\frac{tan\theta}{\theta}\) = (a) 1(b) ∞(c) -∞ (d) θ

Answer»

(a) 1 (By formula)

38.

The graph of y = ex intersect the y-axis at: (a) (0, 0) (b) (1, 0) (c) (0, 1) (d) (1, 1)

Answer»

(c) (0, 1)

y = ex 

Put x = 0, we get y = e0 = 1. 

∴ The graph intersects the y-axis at (0, 1)

39.

If f(x) = x3 - \(\frac{1}{x^3}\), then show that f(x) + f(\(\frac{1}{x}\)) = 0

Answer»

f(x) = x3\(\frac{1}{x^3}\) ... (1)

f(\(\frac{1}{x}\)) = (\(\frac{1}{x}\))\(\frac{1}{(\frac{1}{x})^3}\) = \(\frac{1}{x^3}\) - x3 ... (2)

(1) + (2) gives f(x) + f(\(\frac{1}{x}\))

= x3 \(\frac{1}{x^3}+\frac{1}{x^3}-x^3\) = 0

Hence Proved.

40.

If \(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥2 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\), then f(0) is (a) 2 (b) 5 (c) -1 (d) 0

Answer»

(a) 2

\(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥0 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\)

f(0) = 0 + 2 = 2 

[For x = 0 take f(x) = x + 2]

41.

\(\lim\limits_{x \to 0}\frac{e^x-1}{x}\) =(a) e (b) nxn - 1 (c) 1 (d) 0

Answer»

(c) 1 (By formula)

42.

\(\frac{d}{dx}({\frac{1}{x}})\) is equal to: (a) \(-\frac{1}{x^2}\)(b) \(-\frac{1}{x}\)(c) log x (d) \(\frac{1}{x^2}\)

Answer»

(a) \(-\frac{1}{x^2}\)

43.

Let f be defined by f(x) = x3 - kx2 + 2x, x ∈ R. Find k, if 'f' is an odd function.

Answer»

For a polynomial function to be an odd function each term should have odd powers pf x. 

Therefore there should not be an even power of x term.

∴ k = 0.

44.

For what value of x, f(x) = \(\frac{x+2}{x-1}\) is not continuous? (a) -2 (b) 1 (c) 2 (d) -1

Answer»

(b) 1

When x = 1, \(\frac{x+2}{x-1}\) is not defined.

45.

If \(f(x) = \begin{cases} x^2-4x &amp; \quad \text{if } x≥2 \text{}\\ x+2 &amp; \quad \text{if } x&lt;2 \text{} \end{cases}\), then f(5) is (a) -1 (b) 2 (c) 5 (d) 7

Answer»

(c) 5

\(f(x) = \begin{cases} x^2-4x & \quad \text{if } x≥2 \text{}\\ x+2 & \quad \text{if } x<2 \text{} \end{cases}\)

f(5) = 52 – 4(5) = 25 – 20 = 5 

[For x = 5 take f(x) = x2 – 4x]

46.

If f(x) = x2 – x + 1 then f(x + 1) is: (a) x2 (b) x (c) 1 (d) x2 + x + 1

Answer»

(d) x2 + x + 1

f(x) = x2 – x + 1 

f(x + 1) = (x + 1)2 – (x + 1) + 1

= x2 + 2x + 1 – x – 1 + 1 

= x2 + x + 1

47.

The range of f(x) = |x|, for all x ∈ R is: (a) (0, ∞)(b) [0, ∞) (c) (-∞, ∞) (d) [1, ∞)

Answer»

(b) [0, ∞)

[0, ∞) since in this interval 0 is included and f(0) = 0.

48.

f(x) = -5, for all x ∈ R is a: (a) an identity function (b) modulus function (c) exponential function(d) constant function

Answer»

(d) constant function

49.

If y = sin(log x), then show that x2 y2 + xy1 + y = 0.

Answer»

y = sin(log x) 

y1 = cos(log x) \(\frac{d}{dx}\)(log x) 

y1 = cos(log x).\(\frac{1}{x}\) 

∴ xy1 = cos(log x)

Differentiating both sides with respect to x, we get 

xy2 + y1(1) = -sin(log x).\(\frac{1}{x}\) 

⇒ x[xy2 + y1] = -sin(log x) 

⇒ x2 y2 + xy1 = -y 

⇒ x2 y2 + xy1 + y = 0

50.

If \(\lim\limits_{x \to a}\frac{x^9-a^9}{x-a}\) = \(\lim\limits_{x \to 3}(x+6)\), find the value of a.

Answer»

\(\lim\limits_{x \to a}\frac{x^9-a^9}{x-a}\) = \(\lim\limits_{x \to 3}(x+6)\)

9.a9 - 1 = 3 + 6 

9.a8 = 9 

a8 = 1 

Taking squareroot on bothsides, we get 

\((a^8)^{\frac{1}{2}}\)= ±1 

a4 = ±1 

But a= -1 is imposssible. 

∴ a4 = 1 

Again taking squareroot, we get 

\((a^4)^{\frac{1}{2}}\)= ±1 

a2 = ±1 

a2 = -1 is imposssible 

∴ a2 = 1 

Again taking positive squareroot, a = ±1