Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

For each of the folowing differential equations, find a particular solution satisfying the given condition: `(dy)/(dx) =-4xy^(2)," it being given that " y = 1 " when " x = 0.`

Answer» Correct Answer - `y=(1)/((2x^(2)+1))`
`int (dy)/(y^(2))=int -4x dx rArr (-1)/(y) = -2x^(2)+C rArr y = (1)/((2x^(2)-C)) " " `...(i)
Putting x = 0 and y = 1 in (i), we get C = -1.
Hwence, `y = (1)/((2x^(2)+1)).`
2.

Find the general solution of each of the following differential equations: `(dy)/(dx)=(1-cos x)/(1+cosx)`

Answer» Correct Answer - `y=2 "tan"(x)/(2)-x+C`
`(dy)/(dx)=(1-cosx)/(1+cosx)=(2sin^(2)(x//2))/(2cos^(2)(x//2))="tan"^(2)(x)/(2)=("sec"^(2)(x)/(2)-1)`
` therefore int dy = int ("sec"^(2)(x)/(2)-1)dx.`
3.

Find the general solution of each of the following differential equations: `(1)/(x)*(dy)/(dx)=tan^(-1)x`

Answer» Correct Answer - `y=(1)/(2)(x^(2)+1)tan^(-1)x-(1)/(2)x+C`
`intdy = int (underset(I)(tan^(-1))x)underset(II)(x) dx rArr y=(tan^(-1)x)(x^(2))/(2)-int (1)/((1+x^(2)))*(x^(2))/(2)dx +C`
`rArr y = (1)/(2)x^(2)(tan^(-1)x)-(1)/(2)int{((1+x^(2))-1)/((1+x^(2)))}dx +C.`
`rArr y =(1)/(2)x^(2)(tan^(-1)x)-(1)/(2)int{1-(1)/((1+x^(2)))}dx +C`.
4.

Find the general solution of each of the following differential equations: `ydx +(1+x^(2))tan^(-1)xdy =0`

Answer» Correct Answer - `ytan^(-1)x=C`
`int (dx)/((1+x^(2))tan^(-1)x)+int(1)/(y)dy =log|C_(1)|.`
Put `tan^(-1)x=t and (dx)/((1+x^(2)))=dt.`
5.

Find the general solution of the differential equations `sec^2xtany dx+sec^2ytanx dy=0`

Answer» Correct Answer - `tan y = C (1-e^(x))`
`int (sec^(2)x)/(tanx) dx +int (sec^(2)y)/(tany) dy = log |C_(1)|rArr log |tanx|+log |tan y| = log |C_(1)|`
`therefore log |tan x tany| = log |C_(1)| rArr |tan x tany|=|C_(1)|.`
`therefore tanx tan y = pm C_(1) = C.`
6.

Find the general solution of each of the following differential equations: `(dy)/(dx) = sin^(3)x cos^(2)x+xe^(x)`

Answer» Correct Answer - `y=-(1)/(3) "cos"^(3)x+(1)/(5)cos^(5)x +xe^(x)-e^(x)+C`
`int dy=int cos^(2)x(1-cos^(2)x)sinx dx +int xe^(x)dx+C`
`rArr y = -int t^(2)(1-t^(2))dt+int xe^(x)dx+C, " where " t = cosx`
`rArr y = -int t^(2)dt +int t^(4)dt +int underset(I)(x)underset(II)(e^(x))dx +C. `
7.

Find the general solution of each of the following differential equations: `(dy)/(dx)+sin(x+y)=sin(x-y)`

Answer» Correct Answer - `log|"cosec"y-coty|+2 sinx =C`
`sin(x-y)-sin(x+y)=2cos{((x-y)+(x+y))/(2)}sin{((x-y)-(x+y))/(2)}`
`=2cosx sin(-y)= -2 cosx siny.`
`therefore int (1)/(siny)dy = -2 int cosx dx rArr int "cosec"y dy = -2sinx +C`
`rArr log|"cosec"y-coty|= -2 sinx +C.`
8.

Find the general solution of each of the following differential equations: `sin^(3)xdx -siny dy =0`

Answer» Correct Answer - `12 cosy = 9 cosx -cos3x +C`
`siny dy = sin^(3)x dx = ((3sinx-sin3x))/(4)dx " " [because sin 3x = 3 sinx -4 sin^(3)x]`
`therefore int siny dy =(3)/(4)intsinx dx -(1)/(4)int sin3x dx +C.`
9.

Find the general solution of each of the following differential equations: `(1)/(x)cos^(2)y dy +(1)/(y)cos^(2)xdx=0`

Answer» Correct Answer - `2(x^(2)+y^(2))+2xsin2x+2y sin2y+cos2x+cos2y=C`
`ycos^(2)y dy +xcos^(2)x dx =0 rArr y(2cos^(2)y)dy +x(2cos^(2)x)dx=0`
`rArr y(1+cos2y)dy+x(1+cos2x)dx=0`
`rArr int y dy +int y cos 2y dy +int x dx +int x cos2x dx = C`
`rArr (x^(2))/(2)+(y^(2))/(2)+int underset(I)(y)underset(II)(cos 2y)dy+int underset(I)(x)underset(II)(cos 2x)dx =C.`
10.

Find the general solution of each of the following differential equations: `(dy)/(dx)=(1+x^(2))(1+y^(2))`

Answer» Correct Answer - `tan^(-1)y=x+(x^(3))/(3)+C`
`int(1)/((1+y^(2)))dy = int (1+x^(2))dx +C.`
11.

Find the general solution of each of the following differential equations: `x^(4)(dy)/(dx)=-y^(4)`

Answer» Correct Answer - ` (1)/(x^(3))+(1)/(y^(3))= C`
`(-1)/(y^(4))dy = (1)/(x^(4))dx rArr int x^(-4)dx +int y^(-4)dy =C_(1) rArr (1)/(x^(3))+(1)/(y^(3))= -3C_(1) = C.`
12.

Find the general solution of each of the following differential equations: `(dy)/(dx) +((1+cos 2y))/((1-cos 2x)) =0`

Answer» Correct Answer - `tany =cot x +C`
`(dy)/(dx)+(2cos^(2)y)/(2sin^(2)x)=0 rArr (dy)/(dx)+("cosec"^(2)x)/(sec^(2)y)=0 rArr int (sec^(2)y)dy +int "cosec"^(2)xdx =C.`
13.

Find the general solution of each of the following differential equations: `(cosx)(dy)/(dx)+cos2x = cos 3x`

Answer» Correct Answer - `y=sin 2x -2 sinx -x +log |sec x +tan x |+C`
`(dy)/(dx)=(cos3x-cos 2x)/(cosx)=((4cos^(3)x-3cosx)-(2cos^(2)x-1))/(cosx)`
`rArr (dy)/(dx)=4cos^(2)x-2cosx-3+secx`
` rArr (dy)/(dx) =(4(1+cos2x))/(2)-2cosx-3 +secx =2 cos 2x -2cosx -1 +sec x.`
14.

Find the general solution of each of the following differential equations: `x(x^(2)-x^(2)y^(2))dy +y(y^(2)+x^(2)y^(2))dx =0`

Answer» Correct Answer - `(-1)/(2y^(2))-(1)/(2x^(2))+log|(x)/(y)|=C`
`x^(3)(1-y^(2))dy +y^(3)(1+x^(2))dx =0 rArr int ((1-y^(2)))/(y^(3))dy + int ((1+x^(2)))/(x^(3)) dx = C.`
`therefore int (y^(-3)-(1)/(y)) dy +int (x^(-3)+(1)/(x))dx = C rArr (y^(-2))/(-2)-log|y|+(x^(-2))/(-2) +log|x|=C.`
15.

Find the general solution of each of the following differential equations: `(dy)/(dx)=1+x+y+xy`

Answer» Correct Answer - `log|1+y|=x+(x^(2))/(2)+C`
`(dy)/(dx) = (1+x)+y(1+x)=(1+x)(1+y) rArr int (dy)/((1+y))=int (1+x)dx +C.`
16.

Find the general solution of each of the following differential equations: `(1-x^(2))dy +xy(1-y)dx =0`

Answer» Correct Answer - `y=C(1-y)sqrt(1-x^(2))`
`int (1)/(y(1-y))dy + int (x)/((1-x^(2)))dx = log |C_(1)|`
`rArr int {(1)/(y)+(1)/((1-y))}dy -(1)/(2)int (-2x)/((1-x^(2)))dx =log|C_(1)|`
`rArr log|y|-log|1-y|-(1)/(2)log|1-x^(2)|=log|C_(1)| rArr log|(y)/((1-y)sqrt(1-x^(2)))|=log|C_(1)|`
`rArr (y)/((1-y)sqrt(1-x^(2)))= pm C_(1)=C.`
17.

Find the general solution of each of the following differential equations: `(x-1)(dy)/(dx)=2x^(3)y`

Answer» Correct Answer - `log|y| =(2x^(3))/(3) +x^(2)+2x+2log|x-1| +C`
`(1)/(y)dy=(2x^(3))/((x-1))=2[x^(2)+x+1+(1)/((x-1))]["on dividing "x^(3) " by " (x-1)]`
18.

Find the general solution of each of the following differential equations: `(1-x^(2))(1-y)dx = xy(1+y)dy`

Answer» Correct Answer - `log|x(1-y^(2))|=(x^(2))/(2)-(y^(2))/(2)-2y+C`
`int ((1-x^(2)))/(x)dx = int(y(1+y))/((1-y))dy rArr int ((1)/(x)-x)dx=int((y^(2)+y))/((-y+1))dy`
`therefore int ((1)/(x)-x)dx=int(-y-2+(2)/(1-y))dy " "["on dividing "(y^(2)+y)"by"(-y+1)].`
19.

Find the general solution of each of the following differential equations: `(dy)/(dx)=e^(x+y)`

Answer» Correct Answer - `e^(x)+e^(-y) =C`
`(dy)/(dx)=e^(x)*e^(y) rArr (1)/(e^(y)) dy = e^(x)dx rArr int e^(-y)dy = int e^(x)dx +C`
20.

Find the general solution of each of the following differential equations: `(dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))`

Answer» Correct Answer - `y=e^(3x)+C`
`(dy)/(dx)=(3e^(2x)(1+e^(2x)))/((e^(x)+(1)/(e^(x))))=(3e^(3x)(1+e^(2x)))/((1+e^(2x)))=3e^(3x).`
21.

Find the general solution of each of the following differential equations: `(dy)/(dx)=e^(x+y)+e^(x-y)`

Answer» Correct Answer - `tan^(-1)(e^(y))=e^(x)+C`
`int(e^(y))/((e^(2y)+1))dy =int e^(x)dx rArr int (dt)/((t^(2)+1))=e^(x)+C." where " e^(y)=t`
`rArr tan^(-1)(t)=e^(x)+C rArr tan^(-1)(e^(y))=e^(x)+C.`
22.

Find the general solution of each of the following differential equations: `3e^(x)tany dx +(1-e^(x))sec^(2)y dy=0`

Answer» Correct Answer - `tany = C (1-e^(-x))^(3)`
`int (3e^(x))/((1-e^(x)))dx+int(sec^(2)y)/(tany)dy=log|C_(1)|`
`rArr -3int (-e^(x))/((1-e^(x)))dx+int (sec^(2)y)/(tany)dy =log|C_(1)|rArr -3log|1-e^(-x)|+log|tan y|=log|C_(1)|`
`rArr log|(1-e^(-x))^(-3)tany|=log|C_(1)|rArr (tan y)/((1-e^(-x))^(3)) = pm C_(1)=C.`
23.

Find the general solution of each of the following differential equations: `(e^(x)+e^(-x))dy-(e^(x)-e^(-x))dx=0`

Answer» Correct Answer - `y = log (e^(x)+e^(-x)) +C`
`dy-((e^(x)-e^(-x)))/((e^(x)+e^(-x)))dx=0 rArr int dy - int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx + C rArr y - log(e^(x)+e^(-x)) =C.`
24.

Find the general solution of each of the following differential equations: `(dy)/(dx)=e^(x-y)+x^(2)e^(-y)`

Answer» Correct Answer - `e^(y)=e^(x)+(x^(3))/(3)+C`
`(dy)/(dx)=e^(x)*e^(-y)+x^(2)e^(-y)=(e^(x)+x^(2))e^(-y) rArr int e^(y) dy = int (e^(x)+x^(2))dx + C. `
25.

Find the general solution of each of the following differential equations: `e^(x) tan y dx +(1-e^(x))sec^(2)y dy =0`

Answer» Correct Answer - `tany=C(1-e^(x))`
`-int (-e^(x))/((1-e^(x)))dx + int (sec^(2)y)/(tan y) dy = log |C_(1)| rArr logh|tan y|-log |1-e^(x)|=log |C_(1)|.`
` therefore log |(tany)/((1-e^(x)))|=log |C_(1)| rArr (tan y)/((1-e^(x))) = pm C_(1) = C.`
26.

Findthe particular solution of the differential equation `log(dy)/(dx)=3x+4y`given that `y" "=" "0`when`x" "=" "0`.

Answer» Correct Answer - `4e^(3x)+3e^(-4y)=7`
`(dy)/(dx)=e^(3x+4y)=e^(3x)*e^(4y) rArr int e^(3x)dx = int e^(-4y)dy`
`therefore (e^(3x))/(3)=(e^(-4y))/(-4)+C. " " `...(i)
Putting x = 0 and y = 0 in (i), we get `C=((1)/(3)+(1)/(4))=(7)/(12).`
`therefore (e^(3x))/(3)=(e^(-4y))/(-4)+(7)/(12) rArr 4e^(3x)+3e^(-4y)=7.`
27.

Find the general solution of the differential equation `(dy)/(dx) = log(x+1).`

Answer» We have ,
`(dy)/(dx)=log(x+1)`
`rArr dy=log(x+1)dx`
`rArr int dy = int log(x+1)dx` [integrating both sides]
`rArr y=int {log(x+1)*1}dx + C, ` where C is an arbitrary constant
`={log(x+1)*x}-int(1)/((x+1)) *x dx + C " " `[integrating by parts]
`=x log (x+1) - int ((x+1)-1)/((x+1)) dx + C`
`=x log (x+1) - int {1-(1)/((x+1)) } dx + C`
` = x log (x+1)-x + log(x+1) + C`
`=(x+1)log(x+1)-x+C.`
Hence, `y=(x+1)log(x+1)-x+C` is the required solution.
28.

Find the general solution of the differential equation `(1+x^(2))(dy)/(dx)-x=2tan^(-1)x.`

Answer» The given differential equation may be written as
`(dy)/(dx)=(2tan^(-1)x)/((1+x^(2)))+(x)/((1+x^(2)))`
`rArr dy={(2tan^(-1)x)/((1+x^(2)))+(x)/((1+x^(2)))}dx " " ` [separating the variables]
`rArr int dy=int (2tan^(-1)x)/((1+x^(2)))dx+int (x)/((1+x^(2)))dx + C, " " ` where C is an arbitrary constant
`rArr y= 2int t dt + (1)/(2) int (2x)/((1+x^(2))) dx +C `
[putting `tan^(-1)x=t and (1)/((1+x^(2))) dx = dt ` in 1st integral]
`rArr y=t^(2)+(1)/(2)log|1+x^(2)| + C`
`rArr y=(tan^(-1)x)^(2)+(1)/(2)log|1+x^(2)|+C.`
Hence, `y=(tan^(-1)x)^(2)+(1)/(2)log|1+x^(2)|+C` is the required solution.
29.

Find the general solution of each of the following differential equations: `(dy)/(dx)+sqrt((1-y^(2))/(1-x^(2)))=0`

Answer» Correct Answer - `sin^(-1)y + sin^(-1)x=C`
30.

The volume of sphericalballoon being inflated changes at a constant rate. If initially its radius is3 units and after 3 seconds it is 6 units. Find the radius of balloon after tseconds.

Answer» Correct Answer - `r=(63t+27)^(1//3)`
The volume of a spherical balloon of radius r is given by `V=(4)/(3) pi r^(3).`
Now, `(dV)/(dt) = -k, " where " k gt 0 " " ` [note that V is decreasing]
`rArr (d)/(dt)((4)/(3)pi r^(3))= -k rArr (4pr^(2))(dr)/(dt) = -k`
`rArr int (4pir^(2))dr=int (-k)dt`
`rArr (4)/(3) pi r^(3) = -kt +C " " `...(i), where C is an arbitrary constant.
Putting t = 0 and r = 3 in (i), we get C = 36 `pi`.
`therefore (4)/(3)pir^(3)= -alpha t +36 pi. " " `...(ii)
It is being given that when t = 3, then r = 6.
Putting t = 3 and r = 6 in (ii), we get k = -84`pi`.
Putting k = -84`pi`. in (ii) , we get
`r^(3)=(63t +27) rArr r = (63t +27)^(1//3).`
31.

Solve the differential equation `(y)/(dx)=y sin 2x, " given that " y(0) =1.`

Answer» Correct Answer - `y=e^(sin^(2)x)`
`int (1)/(y)dy = int sin2x dx +C rArr log |y| = -(1)/(2)cos2x +C." " `...(i)
Putting x = 0 and y = 1 in (i), we get C = `(1)/(2).`
`therefore log |y|=(1)/(2)(1-cos2x)=((1)/(2) xx 2 sin^(2)x)=sin^(2)x.`
Hence, `y = e^(sin^(2)x).`
32.

Solve `(x^(3)+x^(2)+x+1)(dy)/(dx) =2x^(2)+x, " given that " y=1 " when " x =0.`

Answer» Correct Answer - `y=(1)/(2){log|x+1|+(3)/(2)log (x^(2)+1)-tan^(-1)x}+1`
`dy=(1)/(2){(1)/((x+1))+(3x-1)/((x^(2)+1))}dx " " `[by partial fractions]
`rArr int dy=(1)/(2) int {(1)/((x+1))+(3)/(2)*(2x)/((x^(2)+1))-(1)/((x^(2)+1))}dx +C`
`rArr y =(1)/(2) {log |x+1|+(3)/(2)log |x^(2)+1|-tan^(-1)x}+C.` When x = 0 and y = 1, then C = 1.
33.

Solve the differential equation `(x+1)(dy)/(dx) =2xy, " given that " y(2)=3.`

Answer» Correct Answer - `y(x+1)^(2)=27e^((2x-4))`
`int (1)/(y)dy =int (2x)/((x+1))dx = 2int ((x+1)-1)/((x+1))dx =2int {1-(1)/((x+1))}dx`
` rArr log |y|=2x - 2 log |x+1|+log |C_(1)|`
`rArr log |y|=log |e^(2x)|-log|(x+1)^(2)|+log |C_(1)|`
`rArr log|(y(x+1)^(2))/(e^(2x))|=log|C_(1)|rArr (y(x+1)^(2))/(e^(2x))=pm C_(1)=C` (say).
Then, `y(x+1)^(2)=Ce^(2x).`
Putting x =2 and y =3 in (i), we get `C=27e^(-4)`.
`therefore y(x+1)^(2)=27e^(2x-4)` is the required solution.
34.

Solve `(dy)/(dx) =y cot 2x, " given that " y =2 " when " x =(pi)/(4)`.

Answer» Correct Answer - `y=2sqrt(sin 2x)`
`int (dy)/(dx)=int (cos 2x)/(sin2x)dx rArr log |y| = (1)/(2) log |sin 2x|+log |C_(1)|`
`therefore (y)/(sqrt(sin2x))=C_(1) rArr (y)/(sqrt(sin2x))=pm C_(1)=C "(say). " ` ...(i)
Putting `x = (pi)/(4)` and y = 2 in (i), we get C = 2.
Hence, `y=2sqrt(sin 2x).`
35.

Find the equation of the curve that passes through the point (1, 2) and satisfies the differential equation `(dy)/(dx) =(-2xy)/((x^(2)+1)).`

Answer» We have
`(dy)/(dx) =(-2xy)/((x^(2)+1))`
`rArr (dy)/(y)=(-2x)/((x^(2)+1))dx" " `[on separating the variables]
`rArr int (dy)/(y)=int(-2x)/((x^(2)+1))dx" " `[integrating both sides]
`rArr log y = -log(x^(2)+1)+logC,` where log C is an arbitrary constant
`rArr log y + log (x^(2)+1)=log C`
`rArr log {y(x^(2)+1)}=log C`
`rArr y(x^(2)+1)=C " " `...(i)
Now, it is given that the curve passes through (1, 2).
So, putting x = 1 and y = 2 in (i), we get C = 4
`therefore y=(x^(2) +1)=4` is the required equation of the curve.
36.

Find the equation of a curve which passes through the origin and whose differential equation is `(dy)/(dx) =e^(x) sin x`.

Answer» Correct Answer - `2y=e^(x)(sinx-cosx)+1`
Use the formula `inte^(ax)sin bx dx = (e^(ax)(asinx bx-b cosbx))/((a^(2)+b^(2))).`
Put `a = 1 and b = 1`.
37.

Find the equation of a curve, passes through `(-2,3)` at which the slope of tangent at any point `(x,y)` is `(2x)/(y^(2))`.

Answer» We know the slope of a curve at a point (x, y) is `(dy)/(dx)`.
`therefore (dy)/(dx)=(2x)/(y^(2)) " " ` …(i)
`rArr y^(2)dy = 2x dx " " `[separating the variables]
`rArr int y^(2)dy = int 2x dx `
`rArr (1)/(3)y^(3) = x^(2) +C " " `...(ii)
where C is a constant.
Thus, (ii) is the equation of the curve whose differential equation is given by (i) .
Since the given curve passes through the point (-2, 3), we have
`C=((1)/(3)xx 27)-(-2)^(2)=(9-4)=5.`
Hence , the required equation of the curve is
` (1)/(3) y^(3) = x^(2)+5 rArr y^(3) =3x^(2)+15`.
38.

A curve passes through the point (-2, 1) and at any point (x, y) of the curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4, -3). Find the equation of the curve.

Answer» Correct Answer - `y+3=(x+4)^(2)`
`(dy)/(dx) = (2(y+3))/((x+4))rArr int (1)/((y+3))dy =2 int (1)/((x+4))dx`
`therefore log |y+3|=2log|x+4|+log|C_(1)| rArr ((y+3))/((x+4)^(2)) =pm C_(1)=C.`
Putting x = -2 and y = 1, we get C = 1.
39.

Find the equation of the curve passing through thepoint (0, -2) given that at any point `(x , y)`on the curve the product of the slope of its tangentand `y`coordinate of the point is equal to thex-coordinate of the point.

Answer» Correct Answer - `y^(2)=x^(2)+4`
`y(dy)/(dx) =x rArr inty dy = int x dx rArr (y^(2))/(2) = (x^(2))/(2)+C.`
Put x = 0 and y = 2 to get C = 2.
40.

Find the general solution of each of the following differential equations: `e^(2x-3y)dx+e^(2y-3x)dy =0`

Answer» Correct Answer - `e^(5x)+e^(5y)=C`
`e^(2x)*e^(-3y) dx +e^(2y)*e^(-3x)dy = 0 rArr int e^(5x)dx + int e^(5y)dy = C.`
41.

Find the general solution of each of the following differential equations: `(dy)/(dx)+(cosxsiny)/(cosy)=0`

Answer» Correct Answer - `log |sin y| +sin x=C`
`int cot y dy +int cosx dx =C.`
42.

Find the general solution of each of the following differential equations: `cosx(1+cosy)dx -siny (1+sinx)dy =0`

Answer» Correct Answer - `(1+sin x)(1+cosy) =C`
`int (cosx)/((1+cosx))dx + int (-siny)/((1+cosy))dy = log |C_(1)|`
`rArr log |1+sinx|+log|1+cosy|=log |C_(1)|rArr log |(1+sinx)(1+cosy)=log |C_(1)|`
`rArr |(1+sinx) (1+cosy)|=C_(1) rArr (1+sinx)(1+cosy) = pm C_(1) = C.`