Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Find df for f(x) = x2 + 3x and evaluate it for (i) x = 2 and dx = 0.1 (ii) x = 3 and dx = 0.02

Answer»

y = f(x) = x + 3x 

dy = (2x + 3) dx 

(i) dy {when x = 2 and ate = 0.1} 

= [2(2) + 3] (0.1) 

= 7(0.1) 

= 0.7

(ii) dy {when x = 3 and dx = 0.02} 

= [2(3) + 3] (0.0.2) 

= 9(0.02) 

= 0.18

2.

If there is an error of a% in measuring the edge of a cube, thenpercentage error in its surface is2a% (b)`a/2%`(c) `3a %`(d) none of theseA. `2a%`B. `a/2%`C. `3%`D. none of these

Answer» Correct Answer - A
3.

If there is an error of a% in measuring the edge of a cube, thenpercentage error in its surface is2a% (b)`a/2%`(c) `3a %`(d) none of these

Answer» let x be the edge of cube
`(dx)/x xx 100 = a`
surface area of cube , `s= 6x^2`
diff wrt x
`(ds)/(dx) = 12x`
`(ds)/s xx 100 = ( 12x xx dx)/(6x^2) xx 100`
`= (12x xx (ax)/100)/(6x^2) xx 100`
`= (12ax^2)/(6x^2 xx 100) xx 100`
`= 2a`
`(ds)/s xx 100 = 2a`
`2a%`changes occur while measuring the edge
option a is correct
4.

If there is an error of 2% in measuring the length of simple pendulum,then percentage error in its period is:1% (b) 2%(c) 3% (d)4%A. `1%`B. `2%`C. `3%`D. `4%`

Answer» Correct Answer - A
5.

If errors of 1% each are made in te base radius and height of a cylinder, then the percentage error in its volume, isA. `1%`B. `2%`C. `3%`D. none f these

Answer» Correct Answer - C
Let V be the volume of the cone of base radius r and height h. Then,
`V=pir^(2) h`
`rArr " "dV=d(pir^(2) h)`
`rArr dV=pi(h" "dr^(2)+ r^(2) dh)`
`rArr" "dV=pi(2rhdr+r^(2)dh)`
`rArr" "(dV)/V= (pi2rh" "dr+r^(2)dh)/(pir^(2)h)`
`rArr" "(dV)/V=2/rdr+(dh)/h`
`(dV)/V xx100=2(dr)/rxx100+(dh)/h xx100`
`rArr" "(DeltaV)/V xx100=2 ((Delta r)/r xx100)+((Deltah)/h xx 100)2 xx1+1=3`
6.

The height of acylinder is equal to the radius. If an error of `alpha%`is made in the height,then percentage error in its volume is`alpha%`(b) `2alpha%`(c) `3alpha%`(d) none of theseA. `a%`B. `2a%`C. `3a%`D. none of these

Answer» Correct Answer - C
7.

The height of a cylinder is equal to the radius. If an error of `alpha%`is made in the height, then percentage error in its volume is`alpha%`(b) 2`alpha%`(c) 3`alpha%`(d) none of these

Answer» height of cyliner is h & radius is r
so,`h=r`
`(del h)/h xx 100 = a`
`(dh)/h xx 100 = a`
`dh = (ah)/100`
volume of cylinder= `v= pi r^2 h= pi h^2 h = pi h^3`
`v = pi h^3`
diff wrt h
`(dv)/(dh) = 3 pi h^2 `
`dv = 3 pi h^2 *dh`
`(dv)/v xx 100 = (dv)/v xx 100 = (3 pi h^2 *dh)/(pi h^3) xx 100`
`(dv)/v xx 100= 3a `
correct option is c
8.

The value of `(127)^(1//3)` to four decimal places, isA. `5.0267`B. `5.4267`C. `5.5267`D. `5.001`

Answer» Correct Answer - A
Let `y=x^(1//3), x=125 and x+ Delta x =127`. Then,
`dy/dx=1/(3x^(2//3)) Delta x = 2`
When, x =125, we have
`y=5 and dy/dx=1/75`
`:." "Deltay=dy/dx Deltax rArr Deltay= 1/75 xx2=2/75`
`:." "(127)^(1//3) = y+ Deltay=5+2/75=5+8/3 xx1/100`
`rArr" "(127)^(1//3) = 5+(2.6667)/100=5.02667 cong 5.0267`
9.

Using differentials,find the approximate value of `sqrt(401)`A. `20.100`B. `20.025`C. `20.030`D. `20.125`

Answer» Correct Answer - B
10.

The approximate value of `(1.0002)^3000`, isA. `1.2`B. `1.4`C. `1.6`D. `1.8`

Answer» Correct Answer - C
Let `y=x^(3000), x=1 and x+Delta x = 1.0002`
Then, `Delta x=1.0002-1=0.0002`
Also,y=1 when x=1
Now,
`y=x^(3000)`
`rArr" "(dy)/dx=3000" "x^(2999) rArr((dy)/dx)_(x=1)=3000`
`:." "Deltay=(dy)/dxDeltax`
`rArr" "Deltay= 3000 xx0.0002 = 6/10=0.6`
Hence
`(1.0002)^(3000)= y+Deltay=1+0.6=1.6`
11.

If `1^(@)=0.017` radians, then the approximate value of sin`46^(@)` , is

Answer» Correct Answer - C
12.

Using differentials, the approximate value if `(627)^(1//4)`, isA. `5.002`B. `5.003`C. `5.005`D. `5.004`

Answer» Correct Answer - D
13.

Use differentials to find the approximate value of `(log)_e(4. 01),`having given that `(log)_e4=1. 3863`.A. 1.3968`B. `1.3898`C. `1.3893`D. none of these

Answer» Correct Answer - C
14.

A sphere of radius `100mm` shrinks to radius 98mm, then the approximatedecrease in its volume is(a)`12000pim m^3`(b) `80000 pim m^3`(C) `8000pim m^3`(d) `120pim m^3`

Answer» `v= (4/3 pi r^3)`
`r= 100 mm`
`del v = (4/3) pi (3r^2) del r `
`= 4 pi r^2 del r`
`del r = 98-100 = -2`
`r= 100mm`
`del v = 4 pi r (100)^2 xx (-2) `
`= -80000 pi mm^3`
`= 80000 pi mm^3`
Answer
15.

The radius of a sphere shrinks from 10 to 9.8 cm. Find approximatelythe decrease in its volume.

Answer» Volume of a sphere, `V = 4/3pir^3`
`:. (dV)/(dr) = 4/3pi(3r^2)`
`=> (dV)/(dr) = 4pir^2`
Here, `r = 10cm, dr = 9.8-10 = -0.2cm`
`:. (dV)/(-0.2) = 4pi(10)^2`
`=>dV = 400pi**(-0.2) = -80pi`.
So, decrease in volume of the sphere is `80pi cm^3`.
16.

find the approximate volume of metal in a hollow spherical shell whoseinternal and external radii are 3cm and 3.0005cm, respectively.

Answer» `r= 3cm`
`R= 3.0005 cm`
`R= r + /_`
`V= 4/3 pi R^3 - 4/3 pi r^3`
`y = f(x) = 4/3 pi x^3`
`/_ y = f(x + /_ x) - f(x) `
now,`r= 3cm , /_ r = 0.0005 cm`
`/_ y = (dy/dx) /_ x`
`= 4/3 pi (3x^2) xx 0.0005`
`x=r`
`= 4/3 pi (3^3) xx 0.0005`
`= 0.018 pi `
`v= 0.018 pi cm^3`
Answer
17.

The pressure p and the volume V of a gas are connected by the relation, `pV^(1//4) = k`, where k is a contant. Find the percentage increase in the pressure, corresponding to a diminution of 0.5% in the volumeA. `1/2`B. `1/4%`C. `1/8%`D. none of these

Answer» Correct Answer - C
18.

If `y=x^n ,`then the ratio of relative errors in `ya n dx`is`1:1`(b) 2:1 (c)1:n (d) n:1A. `1:1`B. `2:1`C. `1:n`D. `n:1`

Answer» Correct Answer - D
19.

Use differentials to approximate the cube root of 127.

Answer» `y = f(x) = (x)^(1/2)`
`(127)^(1/3) = f(x + /_ x) `
when `x=125 & /_x=2`
`f(x+ /_ x) = /_ y + f(x) `
`f(x) = f(125) = (125)^(1/3) = 5`
`/_ y = dy = (dy/dx) /_/x`
`= d/dx(x^(1/3)) xx 2`
`= [1/(3x^(2/3))] xx 2`
`= 2/(3x^(2/3))`
`= 2/(3 xx25) = 2/75`
`/_ y = 0.027`
`f(x+ /_x ) = f(127) = (127)^(1/3) = 5 + 0.027= 5.027 `
Answer
20.

Use differentials to find the approximate value of `(log)_e(4. 01),`having given that `(log)_e4=1. 3863`.

Answer» let `y= f(x) = log_e x`
`x + /_ x = 4.01`
`x + /_ x = 4 + 0.01`
`x= 4 & /_ x = 0.01`
`y= f(4) = log_e 4 = 1.3863`
`/_ x = 0.01`
`del x = 0.01`
`dx = 0.01`
now, `y= log_e x`
diff wrt x
`dy/dx = 1/x`
at x=4`dy/dx = 1/4`
`dy = dy/dx xx dx = 1/4 xx 0.01 = 0.0025`
`/_ y = 0.0025`
`log_e (4.01) = y + /_y `
`= 1.3868 + 0.0025`
`= 1.3888`
`log_e (4.01) = 1.3838`
Answer
21.

The pressure P and volume V of a gas are connected by the relation `P V^(1/4=)`constant. The percentage increase in the pressure corresponding to a deminition of % in the volume is`1/2%`(b) `1/4%`(c) `1/8%`(d) none of these

Answer» `pv^(1/4) = c`
`p= cv^(-1/4)`
`ln p = ln(cv^(-1/4))`
`ln p = ln c + (-1/4)ln v`
now, `(dp)/p = 0- 1/4(dv)/v`
`(dp)/p = -1/4 (dv)/v`
`(dp)/p = -1/4(-1/2%)`
`= 1/8%`
option c is correct
22.

If `y=x^n ,`then the ratio of relative errors in `y and x`is(a) `1:1`(b) 2:1 (c)1:n (d) n:1

Answer» `y= x^n`
`(del y)/y= (del x)/x`
now, ` del y = n x^(n-1) del x`
`(x xx nx^(n-1) del x)/(x^n del x)`
`= n:1`
Answer
23.

In a right angled `DeltaΑ BC, cos^2A +cos^2B cos^2C=`A. 2RB. `pi`C. 0D. none of these

Answer» Correct Answer - C
24.

Find the approximatevalue of `(log)_(10)1005`, given that `(log)_(10)e=0. 4343`

Answer» Here, we will use the following rule,
`f(x+Deltax) = f(x) + f'(x)Deltax`
Here, `f(x+Deltax) = log_10 1005, f(x) = log_10 x, x = 1000, Deltax = 5`
`:. log_10(x+Deltax) = log_10 x+d/dx(log_10x)Deltax`
`:. log(x+Deltax) = log_10x+d/dx(log_e x/log_e 10)Deltax`
`=>log_10(1005) = log_10 (1000)+1/(log_e 10)(1/x)(5)`
`= 3+log_10 e(1/1000)**5``=3+0.4343**1/1000**5`
`=3+0.0021`
`=3.0021`
`:. log_10(1005) = 3.0021`
25.

A circular metal plate expands under heating so that its radiusincreases by 2%. Find  the approximateincrease in the area of the plate if the radius of the plate before heatingis 10cm.

Answer» `x=`radius & y= area
`y= pi x^2 `
`(/_x)/x xx 100 = 2`
`(/_ x)/10 xx 100 = 2`
`/_ x = 2/10= 0.2cm`
`dx= 0.2cm`
now,`y= pi x^2`
`dy/dx = 2x xx pi`
`dy/dx= 2 xx 10 xx pi = 20 pi`
`dy= 20 pi xx dx`
`dy= 20 xx pi xx 0.2= 4 pi`
`:. dy~= /_ y, so, /_ y= 4pi`
Answer
26.

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to …(a) z – x (b) y – z (c) x – z (d) y – x

Answer»

(a) z – x 

fx = y + z 

fz = y + x 

fx – fz = y + z – y – x = z – x

27.

Let V(x, y, z) = xy + yz + zx, x, y, z ∈ R. Find the differential dV.

Answer»

V(x, y, z) = xy + yz + zx 

Vx = y + z 

Vy = x + z 

Vz = y + x 

The differential is dV = (y + z) dx + (x + z) dy + (y + x) dz

28.

The approximate change in the volume: V of a cube of side x metres caused by increasing the side by 1% is …(a) 0.3 xdx m3 (b) 0.03 x m3 (c) 0.03 x2 m3 (d) 0.03 x3 m3

Answer»

(d) 0.03 xm3

Let the side of the cube be x units 

v = x3 

when dx = 0.01x 

dv = 3x2dx 

= 3x2(0.01 x) 

= 0.03 x3 m3

29.

If g(x, y) = 3x2 – 5y + 2y2, x(t) = et and y(t) = cos t, then dg/dt is equal to …(a) 6e2t + 5 sin t – 4 cos t sin t (b) 6e2t – 5 sin t + 4 cos t sin t (c) 3e2t + 5 sin t + 4 cos t sin t (d) 3e2t – 5 sin t + 4 cos t sin t

Answer»

(a) 6e2t + 5 sin t – 4 cos t sin t

30.

If u(x,y) = ex^2 + y^2, then ∂u/∂x is equal to ...(a) ex^2 + y^2(b) 2xu(c) x2u (d) y2u

Answer»

(b) 2xu

∂u/∂x = 2xex^2 + y^2 = 2xu

31.

If w (x, y) = xy, x > 0, then ∂w/∂x is equal to …(a) xy log x(b) y log x(c) yxy - 1(d) x log y 

Answer»

(c) yxy - 1

w(x,y) = xy

∂w/∂x = yxy - 1

32.

Find ∆f and df for the function f for the indicated values of x, ∆x and compare (i) f (x) = x3 – 2x2; x = 2, ∆x = dx = 0.5 (ii) f(x) = x2 + 2x + 3; x = -0.5, ∆x = dx = 0.1

Answer»

(i) y = f(x) = x3 – 2x2 

dy = (3x2 – 4x) dx

dy (when x = 2 and dx = 0.5) 

= [3(22) – 4(2)] (0.5) 

= (12 – 8)(0.5) = 4(0.5) = 2 

(i.e.,) df = 2 

Now ∆f = f(x + ∆x) – f(x) 

Here x = 2 and ∆x = 0.5 

f(x) = x3 – 2x2 

So f(x + ∆x) = f(2 + 0.5) 

= f(2.5) = (2.5)3 – 2(2.5)2 

= (2.5)2 [2.5 – 2] = 6.25 (0.5) = 3.125 

f(x) = f(2) = 23 – 2(22) = 8 – 8 = 0 

So ∆f = 3.125 – 0 = 3.125

(ii) y = f(x) = x2 + 2x + 3 

dy = (2x + 2) dx 

dy (when x = – 0.5 and dx = 0.1) 

= [2(-0.5) + 2] (0.1) 

= (-1 + 2) (0.1) 

= (1) (0.1) 

= 0.1 

(i.e.,) df = 0.1 

Now ∆f = f(x + ∆x) – f(x) 

Here x = -0.5 and ∆x = 0.1 

x2 + 2x + 3

f(x + ∆x) = f(-0.5 + 0.1) 

= f(-0.4)2 = (-0.4) + 2(-0.4) + 3 

= 0.16 – 0.8 + 3 = 3.16 – 0.8 = 2.36 

f(x) = f(-0.5) = (-0.5)2 + 2(-0.5) + 3 

= 0.25 – 1 + 3 = 3.25 – 1 = 2.25 

So ∆ f = f(x + ∆x) – f(x) = 2.36 – 2.25 = 0.11

33.

A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is`12000 pi m m^3`(b) `800 pi m m^3`(c) `80000 pi m m^3`(d) `120 pi m m^3`A. `12000 pi mm^(3)`B. `800 pi mm^(3)`C. `80000 pi mm^(3)`D. `120 pi mm^(3)`

Answer» Correct Answer - C
34.

The approximatevalue of `(33)^(1//5)`is(a) 2.0125 (b) 2.1 (c) 2.01 (d) none of theseA. `2.0125`B. `2.1`C. `2.01`D. none of these

Answer» Correct Answer - A
35.

A sphere of radius 100mm shrinks to radius 98 mm, then the approximate decrease in its volume is`12000 pi m m^3`(b) `800 pi m m^3`(c) `80000 pi m m^3`(d) `120 pi m m^3`A. `12000 pi mm^(3)`B. `800 pi mm^(3)`C. `80000 pi mm^(3)`D. `120 pi mm^(3)`

Answer» Correct Answer - C
36.

The circumference of a circle is measured as 28cm with an error of0.01cm. The percentage error in the area is

Answer» let say `c=`circumference
`A=` area
`r=` radius
`c= 28 = 2 pi r`
`r = 14/pi`
`del c = 2 pi del r= 0.01`
`del r= 001/(2 pi)`
`A= pi r^2`
`del A = 2 pi r del r `
`del A/A = (2 pi r del r)/(pi r^2)= (2 del r )/r xx 100`
`%` error = `(2 xx (0.01/(2 pi)) xx 100)/(14/pi)`
`= 1/14`
Answer