

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
101. |
Differentiate `cos^(-1){sqrt((1+cosx)/(2))}` w.r.t. x. |
Answer» Let `y=cos^(-1){sqrt((1+cosx)/(2))}=cos^(-1){sqrt((2cos^(2)(x//2))/(2))}` `=cos^(-1){cos(x//2)}=(x)/(2).` `thereforey=(x)/(2).` Hence, `(dy)/(dx)=(d)/(dx)((x)/(2))=(1)/(2).` |
|
102. |
Find `(dy)/(dx)`, when : If `y=((cos x - sin x))/((cos x + sin x))`, prove that `(dy)/(dx)+y^(2)+1=0`. |
Answer» `y((1-tanx)/(1+tanx))" [on dividing num. and denom. by cos x]"` `rArry=tan((pi)/(4)-x)` `rArr(dy)/(dx)=-sec^(2)((pi)/(4)-x)` `rArr(dy)/(dx)+y^(2)+1=-sec^(2)((pi)/(4)-x)+tan^(2)((pi)/(4)-x)+1=0`. |
|
103. |
If `y=cot^(-1)sqrt((1-sinx)/(1+sinx)),` find `(dy)/(dx).` |
Answer» We have `y=cot^(-1)sqrt((1-sinx)/(1+sinx))="cot"^(-1)sqrt(1+cos((pi)/(2)+x)/(1-cos((pi)/(2)+x)))` `="cot"^(-1)sqrt((2cos^(2)((pi)/(4)+(x)/(2)))/(2sin^(2)((pi)/(4)+(x)/(2))))=cot^(-1){cot((pi)/(4)+(x)/(2))}=((pi)/(4)+(x)/(2)).` `therefore(dy)/(dx)=(d)/(dx)((pi)/(4)+(x)/(2))=(d)/(dx)((pi)/(4))+(d)/(dx)((x)/(2))=(0+(1)/(2))=(1)/(2).` |
|
104. |
`d/dx[sqrt((1+sinx)/(1-sinx))]` |
Answer» Correct Answer - `secx(secx+tanx)` `y=(sqrt(1+sinx))/(sqrt(1-sinx))xx(sqrt(1+sinx))/(sqrt(1+sinx))=((1+sinx))/(cosx)=(secx+tanx)` `rArr(dy)/(dx)=(secxtanx+sec^(2)x)=secx(secx+tanx).` |
|
105. |
Find `(dy)/(dx)`, when : `y=((sinx+x^(2)))/(cot 2x)` |
Answer» Correct Answer - `2(sinx+x^(2))sec^(2)2x+(cosx+2x)tan2x` `y=(sinx+x^(2))tan2x` `rArr(dy)/(dx)=(sinx+x^(2)).(d)/(dx)(tan2x)+tan2x.(d)/(dx)(sinx+x^(2)).` |
|
106. |
Conditions for maximum value of a function: |
Answer» For the function f(x) to be maximum at x = a
|
|
107. |
Conditions for Minimum Cost. |
Answer»
|
|
108. |
Conditions for Maximum Revenue. |
Answer»
|
|
109. |
Conditions for Maximum Profit. |
Answer»
Where, P = R – C; P = Profit, R = Total revenue, C = Total cost , |
|
110. |
The necessary condition for stationary points of a function. |
Answer» \(\frac{dy}{dx} = 0 OR f'(x) = 0\) |
|
111. |
Stationary Points of a Function. |
Answer» y = f(x). Points at which the maximum and minimum values of f(x) are obtained are called the stationary points of function. Necessary condition for stationary points: f'(x) = 0 |
|
112. |
Maximisation of Profit. |
Answer» If R = Total revenue, C = Total production cost, then profit P = R – C.
|
|
113. |
Maximisation of Revenue. |
Answer» x Demand of an item, p = Price per unit of an item, Revenue R = x . p.
|
|
114. |
Minimisation of Cost. |
Answer» x = Units of production, C = Production cost. The conditions for minimisation of cost are as follows:
|
|
115. |
Elasticity of Demand. |
Answer» The ratio of percentage change in demand and the percentage change in price is called elasticity of demand. Thus, Elasticity of demand = \(− \frac{Percentage \,change\, in \,demand }{ Percentage \,change \,in \,price }\)
|
|
116. |
Marginal Revenue and Marginal Cost. |
Answer» Marginal Revenue: The change in total revenue with respect to a small change in demand of an item is called marginal revenue.
Thus, marginal revenue = \(\frac{dR}{dx}\) Marginal Cost:
Thus, marginal cost =\(\frac{ dC}{dx}\) |
|
117. |
Maximum and Minimum Values of a Function. |
Answer» Maximum Value of a Function: The conditions for maximisation of function at x = a:
Minimum Value of a Function: The condition for minimisation of function at x = a:
|
|
118. |
Increasing Function and Decreasing Function. |
Answer» 1. Increasing Function: y = f(x). If h is a very small positive number and f(a + h) >f(a) and f(a)<f(a-h), then at x = a, the function f(x) is called increasing function. That is, if at x = a, the function f(x) is increasing function then f(a) > 0. 2. Decreasing Function: y = fx). If h is a very small positive number and f(a + h) < f(a) and f(a) < f(a-h), then at x = a, the function f(x) is called decreasing function. That is, if at x = a, the function fix) is decreasing function then f(a) < 0. |
|
119. |
If`u=sin(mcos^(-1)x),v=cos(msin^(-1)x),p rov et h a t(d u)/(d v)=sqrt((1-u^2)/(1-v^2))` |
Answer» `u = sin(m cos^-1 x) ` `v = cos(m sin^-1 x) ` `sin^-1 u = m cos^-1 x` and `cos^-1 v = msin^-1 x` 1 + 2 `sin^-1 u + cos^-1 v = m(cos^-1 x + sin^-1 x) = m pi/2` diff wrt v `1/(sqrt(1-u^2)) (du)/(dv) + (-1)/sqrt(1-v^2)= 0 ` `(du)/(dv) = sqrt((1-u^2)/(1-v^2))` Answer |
|
120. |
If f(x) = x + 1, then write the value of |
Answer» f(x) = x + 1 ⇒ (fof)(x) = f(x) + 1 = (x + 1) + 1 = x + 2 So, \(\frac{d}{d\text x}\)(fof)(x) = \(\frac{d}{d\text x}\)(x + 2) = 1 |
|
121. |
If`x=asec^3theta and y=atan^3theta, ` find `(dy)/(dx) ` at `theta=pi/3` |
Answer» `x= asec^2 theta` `y = a tan^3 theta` `dx/(d theta)= 3a^2 sec^2 theta d/(d theta) sec theta` `= 3a^2 sec^2 theta sec theta tan theta` `= 3asec^2 theta tan theta` now,`dy/(dtheta) = 3atan^2 theta d/(d theta) (tan theta) = 3atan^2theta sec^2 theta` so, `(dy)/(dx) = (dy)/(d theta) xx (d theta)/(dx) ` `= (3atan^2 theta sec^2theta)/(3asec^2 theta tan theta) ` `= (tan theta)/(sec theta) = sin theta` at `theta = pi/3` ``= sin pi/3 = sqrt3/2 Answer |
|
122. |
Differentiate`sin^(-1)((2x)/(1+x^2))`with respectto `tan^(-1)((2x)/(1-x^2)),`if `-1A. 1 for all xB. `1" for "|x|gt1" and"-1" for "|x|lt1`C. `1" for "|x|lt1" and"-1" for "|x|gt1`D. `1" for "|x|le1" and"-1" for "|x|gt1` |
Answer» Correct Answer - C Let `y=tan^(-1)((2x)/(1-x^(2)))" and "x=sin^(-1)((2x)/(1+x^(2))).` Then, `y={{:(2tan^(-1)x" ,","if"-1ltxlt1),(2tan^(-1)x-pi","," if "xgt1),(2tan^(-1)x+pi","," if "xlt-1):}` and, `z={{:(2tan^(-1)x" ,","if"-1lexle1),(pi-2tan^(-1)x" ,"," if "xgt1),(-pi-2tan^(-1)x","," if "xlt-1):}` `:." "(dy)/(dz)={{:(1" ,"," if"-1ltxlt1),(-1","," if "|x|gt1):}` |
|
123. |
`y(x)=|(sinx,cosx,sinx+cosx+1),(23,17,13),(1,1,1)|,x in RR,` then `(d^2y)/(dx^2)+y` is equal to :A. 6B. 4C. -10D. 0 |
Answer» Correct Answer - A We have, `:." "y(x)=|{:(sinx,cosx,sinx+cosx+1),(23,17," "13),(1,1," "1):}|` `implies" "(dy)/(dx)=|{:(cosx,-sinx,cosx-sinx),(23," "17," "13),(1," "1," "1):}|` `implies" "(d^(2)y)/(dx^(2))=|{:(-sinx,-cosx,-sinx-cosx),(23," "17," "13),(1," "1," "1):}|` `implies" "(d^(2)y)/(dx^(2))+y=|{:(-sinx,-cosx,-sinx-cosx),(23," "17," "13),(1," "1," "1):}|+|{:(sinx,cosx,sinx+cosx+1),(23," "17," "13),(1," "1," "1):}|` `implies" "(d^(2)y)/(dx^(2))+y=|{:(0,0,1),(23,17,13),(1,1,1):}|=23-17=6` `implies" "(d^(2)y)/(dx^(2))+y=6` |
|
124. |
The derivative of `log_(10x)` with respect to `x^(2)`, isA. `(1)/(2x^(2))log_(e)10`B. `(2)/(x^(2))log_(10)e`C. `(1)/(2x^(2))log_(10)^( e )`D. none of these |
Answer» Correct Answer - B Let `u=log_(10)x" and "v=x^(2)`. Then, `(du)/(dv)=((du)/(dx))/((dv)/(dx))=((1)/(xlog_(e)10))/(2x)=(1)/(2x^(2))log_(10)e` |
|
125. |
If `a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2)`is`(h^2-a b)/((h x+b y)^2)`(b) `(a b-h^2)/((h x+b y)^2)``(h^2+a b)/((h x+b y)^2)`(d) none of theseA. `(h^(2)-ab)/((hx+by)^(3))`B. `(ab-h^(2))/(hx+by)^(2)`C. `(h^(2)+ab)/(hx+by)^(2)`D. none of these |
Answer» `ax^(2)+2hxy+by^(2)=1` Differentiating both sides w.r.t. x, we get `2ax+2hx(dy)/(dx)+2hy+2by(dy)/(dx)=0` `"or "(dy)/(dx)=-(ax+hy)/(hx+by)` Again differentiating w.r.t. x, we get `(d^(2)y)/(dx^(2))=-[((hx+by)(a+h(dy)/(dx))-(ax+hy)(h+b(dy)/(dx)))/((hx+by)^(2))]` `=-([y(ab-h^(2))+(dy)/(dx)(h^(2)x-abx)])/((hx+by)^(2))` `=((h^(2)-ab)(y-x(dy)/(dx)))/((hx+by)^(2))` `=((h^(2)-ab))/((hx+by)^(2))[y+x(ax+hy)/(hx+by)]` `(h^(2)-ab)/((hx+by)^(3))` |
|
126. |
The value of `(d)/(dx)(|x-1|+|x-5|)` at x=3, isA. -2B. 0C. 2D. 4 |
Answer» Correct Answer - B | |
127. |
If `x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)=` ?A. `(y)/(x)`B. `(py)/(qx)`C. `(x)/(y)`D. `(qy)/(px)` |
Answer» Correct Answer - A | |
128. |
If `y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2)`is equal to`n(n-1)y`(b) `n(n+1)y``n y`(d) `n^2y`A. `m^(2)(ae^(mx)-be^(-mx))`B. 1C. 0D. none of these |
Answer» `y=ae^(mx)+be^(-mx)` `therefore" "(dy)/(dx)=ame^(mx)-mbe^(-mx)` `"Again "(d^(2)y)/(dx^(2))=am^(2)e^(mx)+m^(2)be^(-mx)` `=m^(2)(ae^(mx)+be^(-mx))=m^(2)y` `"or "(d^(2)y)/dx^(2)-m^(2)y=0` |
|
129. |
If `y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2)`is equal to`n(n-1)y`(b) `n(n+1)y``n y`(d) `n^2y`A. n(n-1) yB. n(n+1)yC. nyD. `n^(2)y` |
Answer» `y=ax^(n+1)+bx^(-n)` `"or "(dy)/(dx)=(n+1)ax^(n)-nbx^(-n-1)` `"or "(d^(2)y)/(dx^(2))=n(n+1)ax^(n-1)+n(n+1)bx^(-n-2)` `"or "x^(2)(d^(2)y)/(dx^(2))=n(n+1)y` |
|
130. |
If `y=(x^x)^x` then `(dy)/(dx)` isA. `y[x^(x)(log ex)log x+x^(x)]`B. `y[x^(x)(log ex)log x+x]`C. `y[x^(x)(log ex)log x+x^(-1)]`D. `y[x^(x)(log_(e)x)log x+x^(-1)]` |
Answer» `y=""_(x)(x^(x))` `"or "log y= x^(x) log x` `"or "(1)/(y)(dy)/(dx)=(dz)/(dx)log x +(1)/(x)z("where "x^(x)=z)` `"or "(dy)/(dx)=x^((x^(x)))[x^(x)(log ex)log x + x^(x-1)]" "(because(dz)/(dx)=x^(x) log ex)` |
|
131. |
Find the derivative of `(sqrt(x)(x+4)^(3/2))/((4x-3)^(4/3))` |
Answer» `"Let y"=(sqrt(x)(x+4)^(3//2))/((4x-3)^(4//3))` Taking log of both sides, we get `log y=(1)/(2) log x +(3)/(2) log (x+4)-(4)/(3) log (4x-3)` `Differentiating both sides w.r.t x, we get |
|
132. |
If y = sin-1 x + cos-1 x, find \(\cfrac{dy}{d\mathrm x}\). |
Answer» We know that sin-1x+ cos-1x = \(\cfrac{\pi}2\) So, here y = sin–1 x + cos–1 x = \(\cfrac{\pi}2\) which is a constant. Also, sin-1 x and cos-1 x exist only when -1 ≤ x ≤ 1 So, \(\cfrac{dy}{d\mathrm x}\) = 0 when x ∈ [-1, 1] and does not exist for all other values of x. |
|
133. |
If ` y=a sin x + b cos x`, then `((dy)/dx)^2+y^2` isA. function of xB. function of yC. function of x and yD. constant |
Answer» y=a sin x + b cos x Differentiating with respect to x, we get `(dy)/(dx)=a cos x - b sin x` `"Now, "((dy)/(dx))^(2)=(a cos x - b sin x)^(2)` `=a^(2)cos^(2)x+b^(2)sin^(2)x-2ab sin x cos x` `"and "y^(2)=(a sin x + b cos x)^(2)` `a^(2)sin^(2) x +b^(2)cos^(2) x +2ab sin x cos x` `"So, "((dy)/(dx))^(2)+y^(2)=a^(2)(sin^(2)x + cos^(2)x)+b^(2)(sin^(2)x+ cos^(2)x)` `=(a^(2)+b^(2))=` constant |
|
134. |
If y =sin (sin x) and `(d^(2)y)/(dx^(2))+(dy)/(dx)` tan x + f(x) = 0, then find f(x). |
Answer» Correct Answer - `cos^(2)x sin (sin x)` `(dy)/(dx)=cos (sin x) cos x` `(d^(2)y)/(dx^(2))=-cos ( sin x) sin x + cos x [-sin (sin x)] cos x` `therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x= -c os ( sin x) sin x-cos^(2) x sin (sin x)+cos (sin x )cos x tan x` `=-cos^(2)x sin (sin x)` `therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x + cos^(2)x sin (sin x) =0` `therefore" "f(x)=cos^(2)x sin (sin x)` |
|
135. |
If `x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3)`at `theta=0.` |
Answer» Correct Answer - Does not exist `x=acos^(3) theta, y = b sin^(3)theta` `y_(1)=(dy)/(dx)=(3b sin^(2) theta cos theta)/(-3a cos^(2) theta sin theta)` `=-(b)/(a) tan theta, if sin theta ne 0, cos theta ne 0` Therefore, `y_(1)` does not exist a `theta = 0.` Hence, `y_(2) and y_(3)` do not exist at `theta=0.` |
|
136. |
`sin^(-1){(x^(2))/(sqrt(x^(4)+a^(4)))}` |
Answer» Correct Answer - `(2a^(2)x)/((a^(4)+x^(4)))` Put `x^(2)=a^(2)tan theta.` |
|
137. |
`tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x))` where `x!=0,` is equal to |
Answer» Correct Answer - `(a)/(2(+a^(2)x^(2)))` Put `ax=tan theta.` |
|
138. |
`sin^(-1){2axsqrt(1-a^(2)x^(2))}` |
Answer» Correct Answer - `(1)/(sqrt(1-a^(2)x^(2)))` Put `ax=sin theta`. |
|
139. |
`d/dx(tan^-1(x/sqrt(a^2-x^2))` |
Answer» Correct Answer - `(1)/(sqrt(a^(2)-x^(2)))` Put `x=sin theta.` |
|
140. |
`cos^(-1)((1-x^(2n))/(1+x^(2n)))` |
Answer» Correct Answer - `(2nx^(n-1))/((1+x^(2n)))` Put `ax=tan theta.` |
|
141. |
`sqrt(sin^(-1)x^(2))` |
Answer» `(x)/((sqrt(1-x^(4)))sqrt(sin^(-1)x^(2)))` | |
142. |
If f(x) is an even function, then write whether f’ (x) is even or odd. |
Answer» f(x) is an even function. This means that f(-x) = f(x). If we differentiate this equation on both sides w.r.t. x, we get – f’(-x).(-1) = f’(x) or, -f’(-x) = f’(x) i.e., f’(x) is an odd function. |
|
143. |
If f(x) is an odd function, then write whether f’(x) is even or odd. |
Answer» f(x) is an odd function. This means that f(-x) = -f(x). If we differentiate this equation on both sides w.r.t. x, we get – f’(-x).(-1) = -f’(x) or, f’(-x) = f’(x) i.e., f’(x) is an even function. |
|
144. |
Differentiate x4 tan x |
Answer» By Product Rule: (uv)′ = u′v + uv′ Here u = x4 and v = tan x (x4 tan x)’ = 4x3 × tan x + x4 × sec2x = 4x3tan x + x4sec 2x |
|
145. |
Differentiate (x2 + 3x + 1) sin x |
Answer» By Product Rule: (uv)′ = u′v + uv′ Here u = (x2 + 3x + 1) and v = sin x [(x2 + 3x + 1) sin x]’ = (2x + 3) × sinx + (x2 + 3x + 1) × cosx = (2x + 3)sin x + (x2 + 3x + 1)cos x |
|
146. |
Differentiate x3 sec x |
Answer» By Product Rule: (uv)′ = u′v + uv′ Here u = x3 and v = sec x (x3 sec x)’ = 3x2(sec x) + x3(sec x tan x) = x2sec x(3 + x tan x) |
|
147. |
Differentiate xn cot x |
Answer» By Product Rule: (uv)′ = u′v + uv′ Here u = xn and v = cot x (xn cot x)’ = nxn-1 (cot x) + xn (- cosec2x) = nxn-1 (cot x) – xn (cosec2x) = xn-1 (n cot x – x cosec2x) |
|
148. |
Differentiate ex cot x |
Answer» By Product Rule: (uv)′ = u′v + uv′ Here u = ex and v = cot x (ex cot x)’ = ex (cot x) + ex (- cosec2x) = ex (cot x) – ex cosec2x = ex (cot x – cosec2x) |
|
149. |
If`x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i n d"(dy)/(dx)dot` |
Answer» `x = (1+logt)/t^2` `:. dx/dt = (t^2(1/t) - (1+logt)(2t))/t^4 = (-t-2tlogt)/t^4 = t(-2tlogt-1)/t^4` `y = (3+2logt)/t ` `:.dy/dt = (t(2/t)-(3+2logt))/(t^2) = (-2logt-1)/t^2` Now, `dy/dx = (dy/dt)/(dx/dt) = (-2logt-1)/t^2 ** (t^4)/( t(-2tlogt-1)) = t` `:. dy/dx = t` |
|
150. |
If`sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot` |
Answer» Let `t = tan theta` Then, `sinx = (2tan theta)/(1+tan^2theta)` As, `(2tan theta)/(1+tan^2theta) = sin2theta`, `=> sin x = sin2theta` `=> x= 2npi+2theta` `=>dx/ (d theta) = 2 ` Now, `tan y = (2tan theta)/(1-tan^2theta)` As, `(2tan theta)/(1- tan^2theta) = tan2theta`, `:. tany = tan2 theta` `=> y = npi+2theta` `=>dy/(d theta) = 2` `:. dy/dx = (dy/(d theta) )/(dx/(d theta) ) = 2/2 = 1` `:. dy/dx = 1` |
|