Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Differentiate `cos^(-1){sqrt((1+cosx)/(2))}` w.r.t. x.

Answer» Let `y=cos^(-1){sqrt((1+cosx)/(2))}=cos^(-1){sqrt((2cos^(2)(x//2))/(2))}`
`=cos^(-1){cos(x//2)}=(x)/(2).`
`thereforey=(x)/(2).`
Hence, `(dy)/(dx)=(d)/(dx)((x)/(2))=(1)/(2).`
102.

Find `(dy)/(dx)`, when : If `y=((cos x - sin x))/((cos x + sin x))`, prove that `(dy)/(dx)+y^(2)+1=0`.

Answer» `y((1-tanx)/(1+tanx))" [on dividing num. and denom. by cos x]"`
`rArry=tan((pi)/(4)-x)`
`rArr(dy)/(dx)=-sec^(2)((pi)/(4)-x)`
`rArr(dy)/(dx)+y^(2)+1=-sec^(2)((pi)/(4)-x)+tan^(2)((pi)/(4)-x)+1=0`.
103.

If `y=cot^(-1)sqrt((1-sinx)/(1+sinx)),` find `(dy)/(dx).`

Answer» We have
`y=cot^(-1)sqrt((1-sinx)/(1+sinx))="cot"^(-1)sqrt(1+cos((pi)/(2)+x)/(1-cos((pi)/(2)+x)))`
`="cot"^(-1)sqrt((2cos^(2)((pi)/(4)+(x)/(2)))/(2sin^(2)((pi)/(4)+(x)/(2))))=cot^(-1){cot((pi)/(4)+(x)/(2))}=((pi)/(4)+(x)/(2)).`
`therefore(dy)/(dx)=(d)/(dx)((pi)/(4)+(x)/(2))=(d)/(dx)((pi)/(4))+(d)/(dx)((x)/(2))=(0+(1)/(2))=(1)/(2).`
104.

`d/dx[sqrt((1+sinx)/(1-sinx))]`

Answer» Correct Answer - `secx(secx+tanx)`
`y=(sqrt(1+sinx))/(sqrt(1-sinx))xx(sqrt(1+sinx))/(sqrt(1+sinx))=((1+sinx))/(cosx)=(secx+tanx)`
`rArr(dy)/(dx)=(secxtanx+sec^(2)x)=secx(secx+tanx).`
105.

Find `(dy)/(dx)`, when : `y=((sinx+x^(2)))/(cot 2x)`

Answer» Correct Answer - `2(sinx+x^(2))sec^(2)2x+(cosx+2x)tan2x`
`y=(sinx+x^(2))tan2x`
`rArr(dy)/(dx)=(sinx+x^(2)).(d)/(dx)(tan2x)+tan2x.(d)/(dx)(sinx+x^(2)).`
106.

Conditions for maximum value of a function:

Answer»

For the function f(x) to be maximum at x = a

  • Necessary condition: f'(a) = 0
  • Sufficient condition: f”(a) < 0 (Negative)
107.

Conditions for Minimum Cost.

Answer»
  • Necessary condition: \(\frac{dC}{dx}\) = 0
  • Sufficient condition: \(\frac{d^2C}{dx^2}\) > 0
    Where, C = Production cost, x = Production
108.

Conditions for Maximum Revenue.

Answer»
  • Necessary condition: \(\frac{dR}{dx}\) = 0
  • Sufficient condition: \(\frac{d^2R}{dx^2}\) < 0
    Where, R = xp; x = Demand, p = Price
109.

Conditions for Maximum Profit.

Answer»
  • Necessary condition \(\frac{dP}{dx}\) = 0
  • Sufficient condition: \(\frac{d^2P}{dx^2}\) < 0

Where, P = R – C; P = Profit, R = Total revenue, C = Total cost ,

110.

The necessary condition for stationary points of a function.

Answer»

\(\frac{dy}{dx} = 0 OR f'(x) = 0\)

111.

Stationary Points of a Function.

Answer»

y = f(x). Points at which the maximum and minimum values of f(x) are obtained are called the stationary points of function. Necessary condition for stationary points: f'(x) = 0

112.

Maximisation of Profit.

Answer»

If R = Total revenue, C = Total production cost, then profit P = R – C.
The conditions for maximisation of profit are as follows:

  • Necessary condition: \(\frac{dP}{dx }\)= 0
  • Sufficient condition: \(\frac{d^2P}{dx^2 }\)< 0 (Negative)
113.

Maximisation of Revenue.

Answer»

x Demand of an item, p = Price per unit of an item, Revenue R = x . p.
The conditions for maximisation of revenue are as follows:

  • Necessary condition: \(\frac{dR}{dx}\) = 0
  • Sufficient condition: \(\frac{d^2R}{dx^2}\) < 0 (Negative)
114.

Minimisation of Cost.

Answer»

x = Units of production,

C = Production cost.

The conditions for minimisation of cost are as follows:

  • Necessary condition:\(\frac{ dC}{dx} = 0\)
  • Sufficient condition: \(\frac{d^2C}{dx^2} > 0\) (Positive)
115.

Elasticity of Demand.

Answer»

The ratio of percentage change in demand and the percentage change in price is called elasticity of demand. Thus,

Elasticity of demand = \(− \frac{Percentage \,change\, in \,demand }{ Percentage \,change \,in \,price }\)

  • The demand of an item x is a function of the price of an item p, i.e., x = f(p).
  • The relation between demand of an item and its price is inverse. Hence, the negative sign is taken in the formula of elasticity of demand.
  • Demand x is a function of price p. Hence, taking the derivative of x with respect to p the elasticity of demand is obtained as follows: Elasticity of demand = −\(\frac{p}x⋅\frac{dx}{dp}\)
116.

Marginal Revenue and Marginal Cost.

Answer»

Marginal Revenue: The change in total revenue with respect to a small change in demand of an item is called marginal revenue.

  • x = Demand of an item, p = Price of an item, then total revenue R = x . p
  • Marginal revenue is obtained by finding derivative of R with respect to x.

Thus, marginal revenue = \(\frac{dR}{dx}\)

Marginal Cost:

  • The change in total cost with respect to a small change in production is called marginal cost.
  • x = Production of an item, C = Production cost, then finding derivative of C with respect to x, marginal cost is obtained.

Thus, marginal cost =\(\frac{ dC}{dx}\)

117.

Maximum and Minimum Values of a Function.

Answer»

Maximum Value of a Function:
y = f(x). If h is a very small positive number and f(a) > f(a + h) and f(a) > f(a – h), then at x = a, the function f(x) is called maximum.

The conditions for maximisation of function at x = a:

  • Necessary condition: f(a) = 0
  • Sufficient condition: f”(a) < 0 (Negative)

Minimum Value of a Function:
y = f(x). If h is . a very small positive number and f(a) < f(a + h) and f(a) < f(a – h), then at x = a, the function f(x) is called minimum.

The condition for minimisation of function at x = a:

  • Necessary condition: f(a) = 0
  • Sufficient condition: f(a) > 0 (Positive)
118.

Increasing Function and Decreasing Function.

Answer»

1. Increasing Function: y = f(x). If h is a very small positive number and f(a + h) >f(a) and f(a)<f(a-h), then at x = a, the function f(x) is called increasing function. That is, if at x = a, the function f(x) is increasing function then f(a) > 0.

2. Decreasing Function: y = fx). If h is a very small positive number and f(a + h) < f(a) and f(a) < f(a-h), then at x = a, the function f(x) is called decreasing function. That is, if at x = a, the function fix) is decreasing function then f(a) < 0.

119.

If`u=sin(mcos^(-1)x),v=cos(msin^(-1)x),p rov et h a t(d u)/(d v)=sqrt((1-u^2)/(1-v^2))`

Answer» `u = sin(m cos^-1 x) `
`v = cos(m sin^-1 x) `
`sin^-1 u = m cos^-1 x`
and `cos^-1 v = msin^-1 x`
1 + 2
`sin^-1 u + cos^-1 v = m(cos^-1 x + sin^-1 x) = m pi/2`
diff wrt v
`1/(sqrt(1-u^2)) (du)/(dv) + (-1)/sqrt(1-v^2)= 0 `
`(du)/(dv) = sqrt((1-u^2)/(1-v^2))`
Answer
120.

If f(x) = x + 1, then write the value of

Answer»

f(x) = x + 1

⇒ (fof)(x) = f(x) + 1

= (x + 1) + 1

= x + 2

So, \(\frac{d}{d\text x}\)(fof)(x) = \(\frac{d}{d\text x}\)(x + 2)

= 1

121.

If`x=asec^3theta and y=atan^3theta, ` find `(dy)/(dx) ` at `theta=pi/3`

Answer» `x= asec^2 theta`
`y = a tan^3 theta`
`dx/(d theta)= 3a^2 sec^2 theta d/(d theta) sec theta`
`= 3a^2 sec^2 theta sec theta tan theta`
`= 3asec^2 theta tan theta`
now,`dy/(dtheta) = 3atan^2 theta d/(d theta) (tan theta) = 3atan^2theta sec^2 theta`
so, `(dy)/(dx) = (dy)/(d theta) xx (d theta)/(dx) `
`= (3atan^2 theta sec^2theta)/(3asec^2 theta tan theta) `
`= (tan theta)/(sec theta) = sin theta`
at `theta = pi/3`
``= sin pi/3 = sqrt3/2
Answer
122.

Differentiate`sin^(-1)((2x)/(1+x^2))`with respectto `tan^(-1)((2x)/(1-x^2)),`if `-1A. 1 for all xB. `1" for "|x|gt1" and"-1" for "|x|lt1`C. `1" for "|x|lt1" and"-1" for "|x|gt1`D. `1" for "|x|le1" and"-1" for "|x|gt1`

Answer» Correct Answer - C
Let `y=tan^(-1)((2x)/(1-x^(2)))" and "x=sin^(-1)((2x)/(1+x^(2))).`
Then,
`y={{:(2tan^(-1)x" ,","if"-1ltxlt1),(2tan^(-1)x-pi","," if "xgt1),(2tan^(-1)x+pi","," if "xlt-1):}`
and,
`z={{:(2tan^(-1)x" ,","if"-1lexle1),(pi-2tan^(-1)x" ,"," if "xgt1),(-pi-2tan^(-1)x","," if "xlt-1):}`
`:." "(dy)/(dz)={{:(1" ,"," if"-1ltxlt1),(-1","," if "|x|gt1):}`
123.

`y(x)=|(sinx,cosx,sinx+cosx+1),(23,17,13),(1,1,1)|,x in RR,` then `(d^2y)/(dx^2)+y` is equal to :A. 6B. 4C. -10D. 0

Answer» Correct Answer - A
We have,
`:." "y(x)=|{:(sinx,cosx,sinx+cosx+1),(23,17," "13),(1,1," "1):}|`
`implies" "(dy)/(dx)=|{:(cosx,-sinx,cosx-sinx),(23," "17," "13),(1," "1," "1):}|`
`implies" "(d^(2)y)/(dx^(2))=|{:(-sinx,-cosx,-sinx-cosx),(23," "17," "13),(1," "1," "1):}|`
`implies" "(d^(2)y)/(dx^(2))+y=|{:(-sinx,-cosx,-sinx-cosx),(23," "17," "13),(1," "1," "1):}|+|{:(sinx,cosx,sinx+cosx+1),(23," "17," "13),(1," "1," "1):}|`
`implies" "(d^(2)y)/(dx^(2))+y=|{:(0,0,1),(23,17,13),(1,1,1):}|=23-17=6`
`implies" "(d^(2)y)/(dx^(2))+y=6`
124.

The derivative of `log_(10x)` with respect to `x^(2)`, isA. `(1)/(2x^(2))log_(e)10`B. `(2)/(x^(2))log_(10)e`C. `(1)/(2x^(2))log_(10)^( e )`D. none of these

Answer» Correct Answer - B
Let `u=log_(10)x" and "v=x^(2)`. Then,
`(du)/(dv)=((du)/(dx))/((dv)/(dx))=((1)/(xlog_(e)10))/(2x)=(1)/(2x^(2))log_(10)e`
125.

If `a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2)`is`(h^2-a b)/((h x+b y)^2)`(b) `(a b-h^2)/((h x+b y)^2)``(h^2+a b)/((h x+b y)^2)`(d) none of theseA. `(h^(2)-ab)/((hx+by)^(3))`B. `(ab-h^(2))/(hx+by)^(2)`C. `(h^(2)+ab)/(hx+by)^(2)`D. none of these

Answer» `ax^(2)+2hxy+by^(2)=1`
Differentiating both sides w.r.t. x, we get
`2ax+2hx(dy)/(dx)+2hy+2by(dy)/(dx)=0`
`"or "(dy)/(dx)=-(ax+hy)/(hx+by)`
Again differentiating w.r.t. x, we get
`(d^(2)y)/(dx^(2))=-[((hx+by)(a+h(dy)/(dx))-(ax+hy)(h+b(dy)/(dx)))/((hx+by)^(2))]`
`=-([y(ab-h^(2))+(dy)/(dx)(h^(2)x-abx)])/((hx+by)^(2))`
`=((h^(2)-ab)(y-x(dy)/(dx)))/((hx+by)^(2))`
`=((h^(2)-ab))/((hx+by)^(2))[y+x(ax+hy)/(hx+by)]`
`(h^(2)-ab)/((hx+by)^(3))`
126.

The value of `(d)/(dx)(|x-1|+|x-5|)` at x=3, isA. -2B. 0C. 2D. 4

Answer» Correct Answer - B
127.

If `x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)=` ?A. `(y)/(x)`B. `(py)/(qx)`C. `(x)/(y)`D. `(qy)/(px)`

Answer» Correct Answer - A
128.

If `y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2)`is equal to`n(n-1)y`(b) `n(n+1)y``n y`(d) `n^2y`A. `m^(2)(ae^(mx)-be^(-mx))`B. 1C. 0D. none of these

Answer» `y=ae^(mx)+be^(-mx)`
`therefore" "(dy)/(dx)=ame^(mx)-mbe^(-mx)`
`"Again "(d^(2)y)/(dx^(2))=am^(2)e^(mx)+m^(2)be^(-mx)`
`=m^(2)(ae^(mx)+be^(-mx))=m^(2)y`
`"or "(d^(2)y)/dx^(2)-m^(2)y=0`
129.

If `y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2)`is equal to`n(n-1)y`(b) `n(n+1)y``n y`(d) `n^2y`A. n(n-1) yB. n(n+1)yC. nyD. `n^(2)y`

Answer» `y=ax^(n+1)+bx^(-n)`
`"or "(dy)/(dx)=(n+1)ax^(n)-nbx^(-n-1)`
`"or "(d^(2)y)/(dx^(2))=n(n+1)ax^(n-1)+n(n+1)bx^(-n-2)`
`"or "x^(2)(d^(2)y)/(dx^(2))=n(n+1)y`
130.

If `y=(x^x)^x` then `(dy)/(dx)` isA. `y[x^(x)(log ex)log x+x^(x)]`B. `y[x^(x)(log ex)log x+x]`C. `y[x^(x)(log ex)log x+x^(-1)]`D. `y[x^(x)(log_(e)x)log x+x^(-1)]`

Answer» `y=""_(x)(x^(x))`
`"or "log y= x^(x) log x`
`"or "(1)/(y)(dy)/(dx)=(dz)/(dx)log x +(1)/(x)z("where "x^(x)=z)`
`"or "(dy)/(dx)=x^((x^(x)))[x^(x)(log ex)log x + x^(x-1)]" "(because(dz)/(dx)=x^(x) log ex)`
131.

Find the derivative of `(sqrt(x)(x+4)^(3/2))/((4x-3)^(4/3))`

Answer» `"Let y"=(sqrt(x)(x+4)^(3//2))/((4x-3)^(4//3))`
Taking log of both sides, we get
`log y=(1)/(2) log x +(3)/(2) log (x+4)-(4)/(3) log (4x-3)`
`Differentiating both sides w.r.t x, we get
132.

If y = sin-1 x + cos-1 x, find \(\cfrac{dy}{d\mathrm x}\).

Answer»

We know that  sin-1x+ cos-1x = \(\cfrac{\pi}2\)

So, here y = sin–1 x + cos–1 x

= \(\cfrac{\pi}2\) which is a constant.

Also, sin-1 x and cos-1 x exist only when -1 ≤ x ≤ 1

So, \(\cfrac{dy}{d\mathrm x}\) = 0 when x ∈ [-1, 1] and does not exist for all other values of x.

133.

If ` y=a sin x + b cos x`, then `((dy)/dx)^2+y^2` isA. function of xB. function of yC. function of x and yD. constant

Answer» y=a sin x + b cos x
Differentiating with respect to x, we get
`(dy)/(dx)=a cos x - b sin x`
`"Now, "((dy)/(dx))^(2)=(a cos x - b sin x)^(2)`
`=a^(2)cos^(2)x+b^(2)sin^(2)x-2ab sin x cos x`
`"and "y^(2)=(a sin x + b cos x)^(2)`
`a^(2)sin^(2) x +b^(2)cos^(2) x +2ab sin x cos x`
`"So, "((dy)/(dx))^(2)+y^(2)=a^(2)(sin^(2)x + cos^(2)x)+b^(2)(sin^(2)x+ cos^(2)x)`
`=(a^(2)+b^(2))=` constant
134.

If y =sin (sin x) and `(d^(2)y)/(dx^(2))+(dy)/(dx)` tan x + f(x) = 0, then find f(x).

Answer» Correct Answer - `cos^(2)x sin (sin x)`
`(dy)/(dx)=cos (sin x) cos x`
`(d^(2)y)/(dx^(2))=-cos ( sin x) sin x + cos x [-sin (sin x)] cos x`
`therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x= -c os ( sin x) sin x-cos^(2) x sin (sin x)+cos (sin x )cos x tan x`
`=-cos^(2)x sin (sin x)`
`therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x + cos^(2)x sin (sin x) =0`
`therefore" "f(x)=cos^(2)x sin (sin x)`
135.

If `x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3)`at `theta=0.`

Answer» Correct Answer - Does not exist
`x=acos^(3) theta, y = b sin^(3)theta`
`y_(1)=(dy)/(dx)=(3b sin^(2) theta cos theta)/(-3a cos^(2) theta sin theta)`
`=-(b)/(a) tan theta, if sin theta ne 0, cos theta ne 0`
Therefore, `y_(1)` does not exist a `theta = 0.`
Hence, `y_(2) and y_(3)` do not exist at `theta=0.`
136.

`sin^(-1){(x^(2))/(sqrt(x^(4)+a^(4)))}`

Answer» Correct Answer - `(2a^(2)x)/((a^(4)+x^(4)))`
Put `x^(2)=a^(2)tan theta.`
137.

`tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x))` where `x!=0,` is equal to

Answer» Correct Answer - `(a)/(2(+a^(2)x^(2)))`
Put `ax=tan theta.`
138.

`sin^(-1){2axsqrt(1-a^(2)x^(2))}`

Answer» Correct Answer - `(1)/(sqrt(1-a^(2)x^(2)))`
Put `ax=sin theta`.
139.

`d/dx(tan^-1(x/sqrt(a^2-x^2))`

Answer» Correct Answer - `(1)/(sqrt(a^(2)-x^(2)))`
Put `x=sin theta.`
140.

`cos^(-1)((1-x^(2n))/(1+x^(2n)))`

Answer» Correct Answer - `(2nx^(n-1))/((1+x^(2n)))`
Put `ax=tan theta.`
141.

`sqrt(sin^(-1)x^(2))`

Answer» `(x)/((sqrt(1-x^(4)))sqrt(sin^(-1)x^(2)))`
142.

If f(x) is an even function, then write whether f’ (x) is even or odd.

Answer»

f(x) is an even function.

This means that f(-x) = f(x).

If we differentiate this equation on both sides w.r.t. x, we get –

f’(-x).(-1) = f’(x)

or, -f’(-x) = f’(x)

i.e., f’(x) is an odd function.

143.

If f(x) is an odd function, then write whether f’(x) is even or odd.

Answer»

f(x) is an odd function.

This means that f(-x) = -f(x).

If we differentiate this equation on both sides w.r.t. x, we get –

f’(-x).(-1) = -f’(x)

or, f’(-x) = f’(x)

i.e., f’(x) is an even function.

144.

Differentiate x4 tan x

Answer»

By Product Rule: (uv)′ = u′v + uv′

Here u = x4 and v = tan x

(x4 tan x)’ = 4x3 × tan x + x4 × sec2x

= 4x3tan x + x4sec 2x

145.

Differentiate (x2 + 3x + 1) sin x

Answer»

By Product Rule: (uv)′ = u′v + uv′

Here u = (x2 + 3x + 1) and v = sin x

[(x2 + 3x + 1) sin x]’ = (2x + 3) × sinx + (x2 + 3x + 1) × cosx

= (2x + 3)sin x + (x2 + 3x + 1)cos x

146.

Differentiate x3 sec x

Answer»

By Product Rule: (uv)′ = u′v + uv′

Here u = x3 and v = sec x

(x3 sec x)’ = 3x2(sec x) + x3(sec x tan x)

= x2sec x(3 + x tan x)

147.

Differentiate xn cot x

Answer»

By Product Rule: (uv)′ = u′v + uv′

Here u = xn and v = cot x

(xn cot x)’ = nxn-1 (cot x) + x(- cosec2x)

= nxn-1 (cot x) – x(cosec2x)

= xn-1 (n cot x – x cosec2x)

148.

Differentiate ex cot x

Answer»

By Product Rule: (uv)′ = u′v + uv′

Here u = ex and v = cot x

(ex cot x)’ = e(cot x) + e(- cosec2x)

= e(cot x) – ecosec2x

= ex (cot x – cosec2x)

149.

If`x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i n d"(dy)/(dx)dot`

Answer» `x = (1+logt)/t^2`
`:. dx/dt = (t^2(1/t) - (1+logt)(2t))/t^4 = (-t-2tlogt)/t^4 = t(-2tlogt-1)/t^4`
`y = (3+2logt)/t `
`:.dy/dt = (t(2/t)-(3+2logt))/(t^2) = (-2logt-1)/t^2`
Now, `dy/dx = (dy/dt)/(dx/dt) = (-2logt-1)/t^2 ** (t^4)/( t(-2tlogt-1)) = t`
`:. dy/dx = t`
150.

If`sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot`

Answer» Let `t = tan theta`
Then, `sinx = (2tan theta)/(1+tan^2theta)`
As, `(2tan theta)/(1+tan^2theta) = sin2theta`,
`=> sin x = sin2theta`
`=> x= 2npi+2theta`
`=>dx/ (d theta) = 2 `
Now, `tan y = (2tan theta)/(1-tan^2theta)`
As, `(2tan theta)/(1- tan^2theta) = tan2theta`,
`:. tany = tan2 theta`
`=> y = npi+2theta`
`=>dy/(d theta) = 2`
`:. dy/dx = (dy/(d theta) )/(dx/(d theta) ) = 2/2 = 1`
`:. dy/dx = 1`