

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
151. |
Find `(dy)/(dx)`, when: `x^(n)+y^(n)=a^(n)` |
Answer» Correct Answer - `(-x^(n-1))/(y^(n-1))` `x^(n)+y^(n)=a^(n)rArrnx^(n-1)+ny^(n-1)(dy)/(dx)=0.` |
|
152. |
Find `(dy)/(dx)`, when: `cot(xy)+xy=y` |
Answer» Correct Answer - `(-ycot^(2)(xy))/({1+xcot^(2)(xy)})` `cot(xy)+xy=y` `rArr-"cosec"^(2)(xy).{x(dy)/(dx)+y}+(x(dy)/(dx)+y)=(dy)/(dx)` `rArr{"cosec"^(2)(xy)-1)}.x(dy)/(dx)+(dy)/(dx)={1-"cosec"^(2)(xy)}y` `rArr{xcot^(2)(xy)+1}.(dy)/(dx)=-ycot^(2)(xy).` |
|
153. |
If `ln((e-1)e^(xy) +x^2)=x^2+y^2` then `((dy)/(dx))_(1,0)` is equal to |
Answer» `"We have, "(e-1)e^(xy)+x^(2)=e^(x^(2))+y^(2)` Differentiating both sides w.r.t. x, we get `(e-1)cdote^(xy)cdot(xcdot(dy)/(dx)+y)+2x=e^(x^(2)+y^(2)).(2x+2y(dy)/(dx))` Putting x=1 and y = 0, we get `(e-1)((dy)/(dx))+2=e(2+0)` `rArr" "((dy)/(dx))_((1,0))=2` |
|
154. |
if `y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/(sqrt(a-x)+sqrt(x-b))` then `dy/dx` wherever it is defined is equal to`:`A. `(x+(a+b))/(sqrt((a-x)(x-b)))`B. `(2x-a-b)/(2sqrt(a-x)sqrt(x-b))`C. `-((a+b))/(2sqrt((a-x)(x-b)))`D. `(2x+(a+b))/(2sqrt((a-x)(x-b)))` |
Answer» `y=((a-x)^(3//2)+(x-b)^(3//2))/(sqrt(a-x)+sqrt(x-b))` `=((sqrt(a-x)+sqrt(x-b))(a-x-sqrt(a-x)sqrt(x-b)+x-b))/(sqrt(a-x)+sqrt(x-b))` `=a-b-sqrt(a-x)sqrt(x-b)` `therefore" "(dy)/(dx)=(1)/(2sqrt(a-x))sqrt(x-b)-(1)/(2sqrt(x-b))sqrt(a-x)` `=(2x-a-b)/(2sqrt(a-x)sqrt(x-b))` |
|
155. |
the derivative of `y=(1-x)(2-x)..........(n-x)` at `x=1` is equal to |
Answer» `(dy)/(dx)=-[(2-x)(3-x)...(n-x)+(1-x)(3-x)...(n-x)+...(1-x)(2-x)...(n-1-x)]` At x = 1, `(dy)/(dx)=-[(n-1)!+0+...+0]=(-1)(n-1)!` |
|
156. |
`d/(dx)sqrt((1-sin2x)/(1+sin2x))i se q u a lto,(0A. `sec^(2)x`B. `-sec^(2)((pi)/(4)-x)`C. `sec^(2)((pi)/(4)+x)`D. `sec^(2)((pi)/(4)-x)` |
Answer» `y=sqrt((1-sin 2x)/(1+ sin 2x))=(cos x - sin x)/(cos x + sin x)=(1-tan x)/(1+ tan x)=tan ((pi)/(4)-x)` `therefore (dy)/(dx)=-sec^(2)((pi)/(4)-x)` |
|
157. |
`(d^2x)/(d y^2)` equalsA. `-((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)`B. `((d^(2)y)/(dx^(2)))^(-1)`C. `-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)`D. `((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2)` |
Answer» We have `(d^(2)x)/(dy^(2))=(d)/(dy)=((dx)/(dy))=(d)/(dy)(((1)/(dy))/(dx))cdot(dx)/(dy)` `=-(1)/(((dy)/(dx))^(2))cdot(d^(2)y)/(dx^(2))cdot(1)/(((dy)/(dx)))` `=-(1)/(((dy)/(dx))^(3))cdot(d^(2)y)/(dx^(2))` `=-((dy)/(dx))^(-3)((d^(2)y)/(dx^(2)))` |
|
158. |
`(1)/((x^(2)-3x+5)^(3))` |
Answer» Correct Answer - `(-3(2x-3))/((x^(2)-3x+5)^(4))` | |
159. |
`sqrt((a^(2)-x^(2))/(a^(2)+x^(2)))` |
Answer» Correct Answer - `(-2a^(2)x)/((a^(2)+x^(2))^(3//2)(a^(2)-x^(2))^(1//2))` | |
160. |
If `y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta)`, then `(d^(3)y)/(dalpha^(3))`, isA. `(sin^(3)(alpha+beta))/(cosalpha)`B. `cos(alpha+3beta)`C. 0D. none of these |
Answer» Correct Answer - C | |
161. |
If `f(x) = |cos x| + |sin x|`, then `dy/dx` at `x = (2pi)/3` is equal toA. `(1-sqrt(3))/(2)`B. 0C. `(1)/(2)(sqrt(3)-1)`D. none of these |
Answer» In neighborhood of `x=(2pi)/(3),| cos x| = -cos x and | sin x| = som x` `"or "y=-cos x+ sin x` `therefore" "(dy)/(dx)=sin x + cos x` Thus, at `x=(2pi)/(3)," we get "(dy)/(dx)= sin""(2pi)/(3)+cos""(2pi)/(3)=(sqrt(3)-1)/(2).` |
|
162. |
Find `(dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).` |
Answer» We have, `sin^(-1)(cos x)=(pi)/(2)-cos^(-1)(cos x)` `={:{((pi)/(2)-"x,"," "if 0ltxltpi),((pi)/(2)-(2pi-x)","," "if piltxlt2pi):}` `={:{((pi)/(2)-"x,"," "if 0ltxltpi),(x-(3pi)/(2)-(2pi-x)","," "if piltxlt2pi):}` `therefore" "(d)/(dx){sin^(-1)(cos x)}={:{(-1","," "if 0ltxltpi),(1","," "if piltxlt2pi):}` |
|
163. |
Let `z=(cosx)hat5a n dy="sin"xdot`Then the value of `2(d^2z)/(dy^2)a tx=(2pi)/9`is____________. |
Answer» `z=(cos x)^(5),y=sin x` `(dz)/(dx)=-5cos^(4)xcdot sin x, (dy)/(dx)= cos x` `therefore" "(dz)/(dy)=-5cos^(3)x cdot sin x` `"Now, "(d^(2)z)/(dy^(2))=(d)/(dx)((dz)/(dy))cdot(dx)/(dy)` `=-5(d)/(dx)[cos^(3)xcdot sin x] (1)/(cos x)` `=-5[cos^(4)x- 3 sin^(2)xcdot cos^(2)x ](1)/(cos x)` `=-5(cos^(3)x-3 sin^(2)xcdotcos x)` `=-5(cos^(3)x-3 cos x(1-cos^(2)x))` `=-5(4 cos^(3)x-3 cos x)` `=-5 cos 3x` `therefore" "(d^(2)z)/(dy^(2)):|_(x=(2pi)/(9))=-5 cos 120^(@)=(5)/(2)` |
|
164. |
`cos^(2)x^(3)` |
Answer» Correct Answer - `-3x^(2)sin(2x^(3))` | |
165. |
`"If "y^(x)=x^(y)," then find "(dy)/(dx).` |
Answer» Correct Answer - `(y(x log y-y))/(x(y log x -x))` `y^(x)=x^(y)` `"or "log y^(x)= log x^(y)` `"or "x log y = y log x` `"or "x(1)/(y)(dy)/(dx)+log y xx1 =(y)/(x)+log x (dy)/(dx)` `"or "((x)/(y)-log x)(dy)/(dx)=(y)/(x)-log y` `"or "(dy)/(dx)=(y/x-logy)/((x)/(y)-log x)=(y(y-x log y))/(x(x- y log x))=(y(x log y - y ))/(x(y log x -x))` |
|
166. |
If sec (x+y) = xy, then find `(dy)/(dx)` |
Answer» We have, sec (x+y)=xy On differentiating both sides w.r.t x, we get `sec (x+y)cdot tan (x+y) cdot (d)/(dx) (x+y) = x (dy)/(dx)+y` `rArr overset(cdot)sec (x+y) cdot tan (x+y) cdot (1+(dy)/(dx))=x(dy)/(dx)+y` `rArr (dy)/(dx)[sec (x+y)cdot tan (x+y)-x]` `=y-sec (x+y)cdot. tan (x+y)` `therefore (dy)/(dx)=(y-sec(x+y).tan (x+y))/(sec (x+y). tan (x+y)-x` |
|
167. |
Find `(dy)/(dx)`, when: `y=((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x))` |
Answer» Correct Answer - `((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x)).{(2)/((x+1))+(1)/(2(x-1))-(3)/((x+4))-1}` `logy=2log(x+1)+(1)/(2)log(x-1)-3log(x+4)-x` `rArr(1)/(y).(dy)/(dx)={(2)/((x+1))+(1)/(2(x-1))-(3)/((x+4))-1}.` |
|
168. |
`sec^(3)(x^(2)+1)` |
Answer» Correct Answer - `6x sec^(3)(x^(2)+1)tan(x^(2)+1)` | |
169. |
`sqrt(cos3x)` |
Answer» Correct Answer - `(-3)/(2).(sin3x)/(sqrt(cos 3x))` | |
170. |
Find `(dy)/(dx)`, when: `y=(x^(5)sqrt(x+4))/((2x+3)^(2))` |
Answer» Correct Answer - `(x^(5)sqrt(x+4))/((2x+3)^(2)).{(5)/(x)+(1)/(2(x+4))-(4)/((2x+3))}` `logy=5logx+(1)/(2)log(x+4)-2log(2x+3)` `rArr(1)/(y).(dy)/(dx)={(5)/(x)+(1)/(2(x+4))-(4)/((2x+3))}.` |
|
171. |
Find `(dy)/(dx)`, when: `y=cosxcos2x cos3x` |
Answer» Correct Answer - `-(cosx cos2x cos3x).[tanx+2 tan 2x+3 tan 3x]` `logy=log cosx+logcos2x+log cos3x` `rArr(1)/(y).(dy)/(dx)=(-sinx)/(cosx)-(2sin2x)/(cos2x)-(3sin3x)/(cos3x)` `rArr(dy)/(dx)=y.{-tanx-2 tan2x-3 tan 3x}.` |
|
172. |
`y=sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))),f i n d(dy)/(dx)` |
Answer» Correct Answer - `(1)/(2)sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))).[(1)/((x-1))+(1)/((x-2))-(1)/(x-3)-(1)/((x-4))-(1)/((x-5))]` `logy=(1)/(2).{log(x-1)+log(x-2)-log(x-3)-logx(-4)-log(x-5)}` `rArr(1)/(y).(dy)/(dx)=(1)/(2).{(1)/((x-1))+(1)/((x-2))-(1)/((x-3))-(1)/((x-4))-(1)/((x-5))}.` |
|
173. |
Find `(dy)/(dx)`, when: `y=sin(x^(x))` |
Answer» Correct Answer - `[cos(x^(x))]x^(x)(1+logx)` Let `x^(x)=t`. Then, `logt=xlogx rArr(1)/(t).(dt)/(dx)=x.(1)/(x)+logx.1` `rArr(dt)/(dx)=t[1+logx]=x^(x)(1+logx).` `thereforey=sint rArr(dy)/(dt)=cost=cosx^(x).` `therefore(dy)/(dx)=((dy//dt))/((dx//dt))=[cos(x^(x))]x^(x)(1+logx).` |
|
174. |
`sec(x+y) = xy` |
Answer» We have, sec (x+y)=xy On differentiating both sides w.r.t x, we get `sec (x+y)cdot tan (x+y) cdot (d)/(dx) (x+y) = x (dy)/(dx)+y` `rArr overset(cdot)sec (x+y) cdot tan (x+y) cdot (1+(dy)/(dx))=x(dy)/(dx)+y` `rArr (dy)/(dx)[sec (x+y)cdot tan (x+y)-x]` `=y-sec (x+y)cdot. tan (x+y)` `therefore (dy)/(dx)=(y-sec(x+y).tan (x+y))/(sec (x+y). tan (x+y)-x` |
|
175. |
If `y=1=x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !),`show that `(dy)/(dx)-y+(x^n)/(n !)=0.` |
Answer» `(dy)/(dx)=0+(1)/(1!)+(1)/(2!)(2x)+(1)/(3!)(3x^(2))+...+(1)/(n!)(nx^(n-1))` `=1+(x)/(1!)+(x^(2))/(2!)+...+(x^(n-1))/((n-1)!)` `={1+(x)/(1!)+(x^(2))/(2!)+...+(x^(n-1))/((n-1)!)+(x^n)/(n!)}-(x^(n))/(n!)` `=y-(x^(n))/(n!)` `"or "(dy)/(dx)-y+(x^(n))/(n!)=0` |
|
176. |
Find `(dy)/(dx)`for `y=sin^(-1)(cosx),`where `x in (0,2pi)dot` |
Answer» We have, `sin^(-1)(cos x)=(pi)/(2)-cos^(-1)(cos x)` `={:{((pi)/(2)-"x,"," "if 0ltxltpi),((pi)/(2)-(2pi-x)","," "if piltxlt2pi):}` `={:{((pi)/(2)-"x,"," "if 0ltxltpi),(x-(3pi)/(2)-(2pi-x)","," "if piltxlt2pi):}` `therefore" "(d)/(dx){sin^(-1)(cos x)}={:{(-1","," "if 0ltxltpi),(1","," "if piltxlt2pi):}` |
|
177. |
If `cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a`, prove than `(dy)/(dx)=(y)/(x).` |
Answer» `(x^(2)-y^(2))/(x^(2)+y^(2))=cos [tan^(-1)a]=" constant"` `rArr(d)/(dx)((x^(2)-y^(2))/(x^(2)+y^(2)))=0` `rArr((x^(2)+y^(2)).(d)/(dx)(x^(2)-y^(2))-(x^(2)-y^(2)).(d)/(dx)(x^(2)+y^(2)))/((x^(2)+y^(2))^(2))=0` `rArr(x^(2)+y^(2))[2x-2y(dy)/(dx)]-(x^(2)-y^(2))(2x+2y(dy)/(dx))=0` `rArrx{(x^(2)+y^(2))-(x^(2)-y^(2))}=y{(x^(2)=y^(2))+(x^(2)+y^(2))}(dy)/(dx).` Hence, `(dy)/(dx)=(y)/(x).` |
|
178. |
If `y=logsqrt((1+sin^(2)x)/(1-sinx))`, find `(dy)/(dx)`. |
Answer» We have `y=(1)/(2){log(1+sin^(2)x)-log(1-sinx)}." ...(i)"` On differentiating (i) w.r.t. x, we get `(dy)/(dx)=(1)/(2).[(d)/(dx){log(1+sin^(2)x)}-(d)/(dx){log(1-sinx)}]` `=(1)/(2).{(2sinx cos x)/(1+sin^(2)x)-((-cos x))/((1-sinx))}` `=(1)/(2).{(sin2x)/((1+sin^(2)x))+(cosx)/((1-sinx))}`. |
|
179. |
If `y=(xsin^(-1)x)/(sqrt(1-x^2))+logsqrt(1-x^2)`, then prove that `(dy)/(dx)=(sin^(-1)x)/((1-x^2)^(3/2))` |
Answer» Let `x = sin theta => dx/(d theta) = cos theta ` Now, `y = (theta sin theta)/sqrt(1-sin^2theta) + log sqrt(1-sin^2theta)` `=>y = (theta sin theta)/cos theta +log cos theta` `=>y = theta tan theta +log cos theta` `=>dy/(d theta) = tan theta + theta(sec^2 theta)+1/costheta(-sintheta)` `=>dy/(d theta) = tan theta + theta/(cos^2theta)-tan theta` `=>dy/(d theta) = theta/(cos^2theta)` `=> dy/dx = (dy/(d theta))/(dx/(d theta)) = (theta/(cos^2theta))/(cos theta)` `=> dy/dx = (theta/(cos^3 theta))` Now, `x = sin theta => cos theta = sqrt(1-x^2)` `=> dy/dx = (sin^-1x)/(1-x^2)^(3/2).` |
|
180. |
`y=logsqrt(sinsqrt(e^(x)))` |
Answer» Correct Answer - `(1)/(4)e^(x//2)cot (e^(x//2))` `(d)/(dx)[logsqrt(sin)sqrt(e^(x))]=(d)/(dx)[(1)/(2)log (sinsqrt(e^(x)))]` `=(1)/(2)cot sqrt(e^(x))(1)/(2sqrt(e^(x)))e^(x)=(1)/(4)e^(x//2)cot (e^(x//2))` |
|
181. |
`"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).` |
Answer» We have `sqrt(x)+sqrt(y)=4` Differentiating the given equation both sides w.r.t.x, we get `(1)/(2sqrt(x))+(d)/(dx)(sqrt(y))=0` `rArr(1)/(2sqrt(x))+((d)/(dy)(sqrt(y)))(dy)/(dx)=0` `rArr(1)/(2sqrt(x))+(1)/(2sqrt(y))cdot(dy)/(dx)=0` `rArr(dy)/(dx)=-(sqrt(y))/(sqrt(x))` |
|
182. |
If `y=x+1/(x+1/(x+1/(x+ dot)))`, prove that `(dy)/(dx)=y/(2y-x)`. |
Answer» We have `y=x + (1)/(x + (1)/(x + (1)/(x+....)))=x+(1)/(y)` `or y^(2)=xy+1` ` or 2y(dy)/(dx)=y+x(dy)/(dx)+0" [Differentiating both sides w.r.t.x]"` `or (dy)/(dx)(2y-x)=y` `or (dy)/(dx)=(y)/(2y-x)` |
|
183. |
Find `(dy)/(dx)`, when `y=e^(a x)cos(b x+c)` |
Answer» We have `(dy)/(dx)=e^(ax).(d)/(dx){cos(bx+c)}+cos(bx+c).(d)/(dx)(e^(ax))` `=e^(ax).{-b sin(bx+c)}+cos(bx+c).ae^(ax)` `=e^(ax).{a cos (bx+c)-b sin (bx+c)}`. |
|
184. |
Differentiate `logsqrt((1+cos^(2)x)/((1-e^(2x))))` w.r.t. x. |
Answer» Let `y=logsqrt((1+cos^(2)x)/((1-e^(2x))))=log((1+cos^(2)x)/(1-e^(2x)))^(1//2)=(1)/(2)log((1+cos^(2)x)/(1-e^(2x)))` `thereforey=(1)/(2)log(1+cos^(2)x)-(1)/(2)log(1-e^(2x))` `rArr(dy)/(dx)=(1)/(2).(1)/((1+cos^(2)x))(2 cos x)(-sinx)-(1)/(2).(1)/((1-e^(2x))).(-2e^(2x))` `={(-sinx cos x)/((1+cos^(2)x))+(e^(2x))/((1-e^(2x)))}`. Hence, `(d)/(dx){logsqrt((1+cos^(2)x)/((1-e^(2x))))}={(-sin x cos x)/((1+cos^(2)x))}+(e^(2x))/((1-e^(2x)))}.` |
|
185. |
If `y=sec(tan^(-1)x)`, then `(tan^(-1)x)`, then `(dy)/(dx)" at "x=1` is equal toA. `(1)/(sqrt(2))`B. `-(1)/(sqrt(2))`C. 1D. none of these |
Answer» Correct Answer - A We have, `y=sec(tan^(-1)x)` `implies" "y=sec(sec^(-1)sqrt(1+x^(2))` `implies" "y=sqrt(1+x^(2))implies(dy)/(dx)=(x)/(sqrt(1+x^(2)))implies((dy)/(dx))_(x=1)=(1)/(sqrt(2))` |
|
186. |
The function `u=e^x s in ; v=e^x cos x`satisfy the equation`v(d u)/(dx)-u(d v)/(dx)=u^2+v^2`b. `(d^2u)/(dx^2)=2v`c. `(d^2)/(dx^2)=-2u`d. `(d u)/(dx)+(d v)/(dx)=2v`A. `v(du)/(dx)u(dv)/(dx)=u^(2)+v^(2)`B. `(d^(2)u)/(dx^(2))=2v`C. `(d^(2)v)/(dx^(2))=-2u`D. all the above |
Answer» Correct Answer - D We have, `u=e^(x)sinximplies(du)/(dx)=e^(x)sinx+e^(x)cosx=u+v` `v=e^(x)cosximplies(dv)/(dx)=e^(x)cosx+e^(x)sinx=v-u` `:." "v(du)/(dx)-(udv)/(dx)=v(u+v)-u(v-u)=u^(2)+v^(2)` `(d^(2)u)/(dx^(2))=(du)/(dx)+(dv)/(dx)=u+v+v-u=2v` and,`(d^(2)u)/(dx^(2))=(dv)/(dx)-(du)/(dx)=(v-u)-(v+u)=-2u` |
|
187. |
`"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2))` isA. `(5)/(2)t`B. `20t^(8)`C. `(5)/(16t^(6))`D. none of these |
Answer» `"Here, "y=t^(10)+1 and x=t^(8) +1` `therefore" "t^(8)=x-1 or t^(2)=(x-1)^(1//4)` `"So, "y=(x-1)^(5//4)+1` Differentiating both sides w.r.t. x, we get `(dy)/(dx)=(5)/(4)(x-1)^(1//4)` Again, differentiating both sides w.r.t. x, we get `(d^(2)y)/(dx^(2))=(5)/(16)(x-1)^(-3//4)=(5)/(16(x-1)^(3//4))=(5)/(16(t^(2))^(3))=(5)/(16t^(6))` |
|
188. |
If `f(x)=x^4tan(x^3)-x1n(1+x^2),`then the value of`(d^4(f(x)))/(dx^4)`at `x=0`is0 (b) 6(c) 12 (d)24 |
Answer» `"As "f(x) = x^(4) tan (x^(3))-x" In "(1+x^(2))" is odd, "(d^(3)f(x))/(dx^(3))` is even `"Hence, "(d^(4)f(x))/(dx^(4))=0at x = 0.` |
|
189. |
If x = log p and `y=(1)/(p),` thenA. `(d^(2)y)/(dx^(2))-2p=0`B. `(d^(2)y)/(dx^(2))+y=0`C. `(d^(2)y)/(dx^(2))+(dy)/(dx)=0`D. `(d^(2)y)/(dx^(2))-(dy)/(dx)=0` |
Answer» `(dy)/(dx)=(-(1)/(p^(2)))/((1)/p)=-(1)/(p)=-y` `"or "(d^(2)y)/(dx^(2))=-(dy)/(dx)` `"or "(d^(2)y)/(dx^(2))+(dy)/(dx)=0` |
|
190. |
If `y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx)`is`(n y)/(sqrt(x^2+a^2))`(b) `-(n y)/(sqrt(x^2+a^2))``(n x)/(sqrt(x^2+a^2))`(d) `-(n x)/(sqrt(x^2+a^2))`A. `(ny)/(sqrt(x^(2)+a^(2))`B. `-(ny)/(sqrt(x^(2)+a^(2))`C. `(nx)/(sqrt(x^(2)+a^(2))`D. `-(nx)/(sqrt(x^(2)+a^(2))` |
Answer» `(dy)/(dx)=(d)/(dx)[(x+sqrt(x^(2)+a^(2)))^(n)]` `=n(x+sqrt(x^(2)+a^(2)))^(n-1).(d)/(dx)(x+sqrt(x^(2)+a^(2)))` `n=(x+sqrt(x^(2)+a^(2)))^(n-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2))+a^(2)))` `=(n(x+sqrt(x^(2)+a^(2)))^(n))/(sqrt(x^(2))+a^(2))` `=(ny)/(sqrt(x^(2))+a^(2))` |
|
191. |
If ( sin x) (cos y) = `1//2,` then `d^(2)y//dx^(2)` at `(pi//4, pi//4)` isA. `-4`B. `-2`C. `-6`D. 0 |
Answer» `(sin x ) (cos y )=(1)/(2)` `therefore" "(cos x ) (cos y) - sin y sin x (dy)/(dx) =0` `"or "(dy)/(dx)=(cot x )(cot y)` `"or "(d^(2)y)/(dx^(2))=-cosec^(2)xcdotcot y -cosec^(2)y cot xcdot (dy)/(dx)` `"Now, "((dy)/(dx))_(((pi//4,pi//4)))=1` `"or "((d^(2)y)/(dx^(2)))_(((pi//4,pi//4)))=-(2) (1) -(2) (1) (1) =-4` |
|
192. |
If `x=a (theta-sin theta) and y=a(1-cos theta)`, find `(d^(2)y)/(dx^(2))` at `theta=pi.` |
Answer» Correct Answer - `(-1)/(4a)` | |
193. |
`(d)/(dx)cos^(-1)sqrt(cosx),0ltxlt(pi)/(2)` is equal toA. `(1)/(2)sqrt(1+sec x)`B. `sqrt(1+sec x)`C. `-(1)/(2)sqrt(1+sec x)`D. `-sqrt(1+sec x)` |
Answer» `(d)/(dx)cos^(-1)sqrt(cos x)=(sin x)/(2sqrt(cos x)sqrt(1-cos x))` `=(sqrt(1- cos^(2)x))/(2sqrt(cos x)sqrt(1-cos x))=(1)/(2)sqrt((1+cos x)/(cos x))` |
|
194. |
If xy = 1, prove that \(\cfrac{dy}{d\mathrm x}\) + y2 = 0 |
Answer» We are given with an equation x y = 1, we have to prove that \(\cfrac{dy}{d\mathrm x}\)+ y2 = 0 by using the given equation we will first find the value of \(\cfrac{dy}{d\mathrm x}\)and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get, By using product rule, we get, y(1) + x\(\cfrac{dy}{d\mathrm x}\) = 0 \(\cfrac{dy}{d\mathrm x}\) = \(\cfrac{-y}{\mathrm x}\) Or we can further solve it by using the given equation, \(\cfrac{dy}{d\mathrm x}\) = \(\cfrac{-y}{\frac{1}y}\) = -y2 By putting this value in the L.H.S. of the equation, we get, –y2 + y2 = 0 = R.H.S. |
|
195. |
Find the second - order derivative of : `(i)x^(10)" "(ii)logx" "(iii)tan^(-1)x` |
Answer» (i) Let `y=x^(10)`. Then, `(dy)/(dx)=10x^(9).` `therefore (d^(2)y)/(dx^(2))=(10xx9)x^(8)=90x^(8)`. Hence, `(d^(2)y)/(dx^(2))(x^(10))=90^(8).` (ii) Let `y=logx.` Then, `(dy)/(dx)=(1)/(x)=x^(-1)`. `therefore (d^(2)y)/(dx^(2))=(d)/(dx)(x^(-1))=(-1)x^((-1)-1)=-x^(-2)=(-1)/(x^(2)).` Hence, `(d^(2))/(dx^(2))(logx)=(-1)/(x^(2)).` (iii) Let `y=tan^(-)x.` Then, `(dy)/(dx)=(1)/((1+x^(2)))=(1+x^(2))^(-1)`. `therefore(d^(2)y)/(dx^(2))=(d)/(dx)(1+x^(2))^(-1)=(-1)(1+x^(2))^(-2).(2x)=(-2x)/((1+x^(2))^(2))`. Hence, `(d^(2))/(dx^(2)){tan^(-1)x}=(-2x)/((1+x^(2))^(2))`. |
|
196. |
If `y=sin(logx)`, prove that `x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0`. |
Answer» We have `y=sin(logx)` `rArr(dy)/(dx)=(d)/(dx){sin(logx)}=cos(logx).(1)/(x)=(cos(logx))/(x)` `rArr(d^(2)y)/(dx^(2))=(d)/(dx){(cos(logx))/(x)}` `=(x.(d)/(dx){cos(logx)}-cos(logx).(d)/(dx)(x))/(x^(2))` `=(x{-sin(logx).(1)/(x)}-cos(logx).1)/(x^(2))` `=(-{sin(logx)+cos(logx)})/(x^(2)).` |
|
197. |
If `t=(x^(4)+cotx),` find `(d^(2)y)/(dx^(2))`. |
Answer» We have `y=(x^(4)+cotx)` `rArr (dy)/(dx)=4x^(3)-"cosec"^(2)x` `rArr (d^(2)y)/(dx^(2))=(d)/(dx)(4x^(3)-"cosec"^(2)x)` `=4.(d)/(dx)(x^(3))-(d)/(dx)("cosec"^(2)x)` `=(4xx3x^(2))-2"cosec x"(-"cosec x cot x")` `=(12x^(2)+2"cosec"^(2)xcot x).` |
|
198. |
If`y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)),`then (dy)/(dx) is equal to(a)`1`(b) `(a+b+c)^(x+b+c-1)``0`(d) none of these |
Answer» `y = 1/(1 + x^a/x^b + x^c/x^b) + 1/(1 + x^b/x^c + x^a/x^c) + 1/(1+x^b/x^a + x^c/x^a)` `y = x^b/(x^a + x^b + x6c) + x^c/(x^a + x^b + x^c) + x^a/(x^a + x^b + x^c) ` `= (x^b + x^c + x^a )/(x^a + x^b + x^c) = 1` `y = 1` `dy/dx = 0` option c is correct |
|
199. |
Find second orderderivative of `log(logx)` |
Answer» Let `y=log(logx).` Then, `(dy)/(dx)=(1)/((logx)).(1)/(x)=(1)/((xlogx))=(xlogx)^(-1)` `rArr(d^(2)y)/(dx^(2))=(d)/(dx)(x logx)^(-1)` `=(-1)(xlogx)^(-2).(d)/(dx)(xlogx)` `=(-1)/((xlogx)^(2)).(x.(1)/(x)+logx.1)=(-(1+logx))/((xlogx)^(2)).` |
|
200. |
Differentiate `tan^(-1){(5x)/(1-6 x^2)}, -1/(sqrt(6)) |
Answer» Correct Answer - `((3)/(1+9x^(2))+(1)/((1+x^(2))))` `y=tan^(-1)3x+tan^(-1)2x.` |
|