

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
251. |
Differentiate w.r.t `x: sin^(-1) ((2^(x+1))/(1+4^x))` |
Answer» Correct Answer - `(2^(x+1)(log2))/((1+4^(x)))` Let `y=sin^(-1){(2^(x).2)/(1+(2^(x))^(2))}`. Putting `2^(x)=tan theta`, weget `y=sin^(-1){(2tan theta)/(1+tan^(2)theta)}=sin^(-1)(sin 2theta)=2theta=2tan^(-1)2^(x).` `therefore(dy)/(dx)=2.(d)/(dx)(tan^(-1)2^(x))=2.(1)/({1+(2^(x))^(2)}).(d)/(dx)(2^(x))=(2)/((1+4^(x))).2^(x)(log2)=(2^(x+1)(log2))/((1+4^(x)))` |
|
252. |
Find `(dy)/(dx)`, when: `(x^(2)+y^(2))^(2)=xy` |
Answer» Correct Answer - `((y-4xy^(2)-4x^(3)))/((4y^(3)+4x^(2)y-x))` `x^(4)+y^(4)+2x^(2)y^(2)=xy` `rArr4x^(3)+4y^(3).(dy)/(dx)+4x^(2)y.(dy)/(dx)+4xy^(2)=x(dy)/(dx)+y` `rArr(4y^(3)+4x^(2)y-x)(dy)/(dx)=(y-4xy^(2)-4x^(3)).` |
|
253. |
Find `(dy)/(dx)`, when: `x^(2)+y^(2)=log(xy)` |
Answer» Correct Answer - `(y(1-2x^(2)))/(x(2y^(2)-1))` `x^(2)+y^(2)=logx+logy` `rArr2x+2y(dy)/(dx)=(1)/(x)+(1)/(y).(dy)/(dx).` |
|
254. |
Differentiate with respect to x:tan3 x |
Answer» Chain rule: If y = f(t) and t = g(x) then dy/dx = dy/dt x dt/dx Let y = tan3 x dy/dx = 3 tan2 x [d/dx (tan x)] = 3 tan2 x sec2x |
|
255. |
Differentiate with respect to x.tan √x |
Answer» Chain rule: If y = f(t) and t = g(x) then dy/dx = dy/dt x dt/dx Let y = tan √x dy/dx = sec2√x d/dx (√x) = sec2√x {1/(2√x) } = sec2√x / 2√x |
|
256. |
If `(d)/(dx)(log_(e)x)=(1)/(x)` then ` (d)/(dx)(log_(10)x)=`A. `(1)/(x)log_(10)e`B. `(1)/(10)log_(10)e`C. `(1)/(x)log_(e)10`D. `(1)/(e)log_(10)x` |
Answer» Correct Answer - A |
|
257. |
If `n lt 1 ` then `(dx^(n))/(dx)` exists when -A. `x = - 1 `B. ` x = 1`C. ` x = 0 `D. ` x ne 0 ` |
Answer» Correct Answer - D |
|
258. |
If `y = cos ^(2(x)/(2))` , state which of the following is the value of `(dy)/(dx)` ?A. cos xB. `(1)/(2) cos x `C. `-(1)/(2) sin x `D. `- sin x ` |
Answer» Correct Answer - C |
|
259. |
If `y = cos ^(2(x)/(2))` , state which of the following is the value of `(dy)/(dx)` ?A. sin xB. `(1)/(2) sin x `C. cos xD. `(1)/(2) cos x ` |
Answer» Correct Answer - B |
|
260. |
If `y = f(x) = 2 ` then the increment of the function `= Delta y = `A. 1B. `-1`C. 0D. 2 |
Answer» Correct Answer - C |
|
261. |
`cos 5x` |
Answer» Correct Answer - `-5 sin 5x` | |
262. |
If `y= cos^(-1)((2x)/(1+x^(2)))`, then `(dy)/(dx)` is -A. `(-2)/(1+x^(2))` for all xB. `(-2)/(1+x^(2))` for all `|x| lt 1`C. `(2)/(1+x^(2))` for `|x| gt 1`D. none of these |
Answer» Correct Answer - B, C |
|
263. |
If `Delta y ` be the increment of the function `y = f (x)` corresponding to the increment `Delta x ` of x then `Delta y = `A. `f(x-Deltax)-f(x)`B. `f(x+Deltax)-f(x)`C. `f(x+Deltax)- f(Deltax)`D. Nonr of these |
Answer» Correct Answer - B |
|
264. |
`sqrt(sinx^(3))` |
Answer» Correct Answer - `(3)/(2)x^(2).(cosx^(3))/(sqrt(sinx))` | |
265. |
`tan3x` |
Answer» Correct Answer - `3sec^(2)3x` | |
266. |
If `f(x)=sin^(-1) (cos x)` then answer the following. Find the value of `f(10)`.A. `10-(7pi)/(2)`B. `(7pi)/(5)-11`C. `(5pi)/(2)-11`D. none of these |
Answer» Correct Answer - A |
|
267. |
`tan^(3)x` |
Answer» Correct Answer - `3 tan^(2)xsec^(2)x` | |
268. |
`sqrt(x sinx)` |
Answer» Correct Answer - `((xcos x+sinx))/(2sqrt(x sinx))` | |
269. |
`cos x^(3)` |
Answer» Correct Answer - `-3x^(2)sinx^(3)` | |
270. |
Let `y=x^(3)-8x+7` and `x=f(t)` given t=0, x=3 Find the value of `(dx)/(dt)`A. `(2)/(19)`B. `(-2)/(19)`C. `(19)/(2)`D. `(-19)/(2)` |
Answer» Correct Answer - A |
|
271. |
Let `y=x^(3)-8x+7` and `x=f(t)` given t=0, x=3 Find the value of `(dy)/(dt)`.A. -2B. 2C. `(1)/(2)`D. `-(1)/(2)` |
Answer» Correct Answer - B |
|
272. |
Let `y=x^(3)-8x+7` and `x=f(t)` given t=0, x=3 Find the value of `(dy)/(dx)`A. -19B. `(1)/(19)`C. 19D. `-(1)/(19)` |
Answer» Correct Answer - C |
|
273. |
`sqrt(cotsqrtx)` |
Answer» Correct Answer - `-("cosec"^(2)sqrtx)/(4sqrtxsqrt(cotsqrtx))` | |
274. |
Differentiate `(xcosx)^x`with respect to `xdot` |
Answer» Correct Answer - `(x cos x)^(x)[( log x +1) +{ log cos x- x cot x}]` Let `y = (x cos x)^(x).` Taking logarithm on both sides, we get `log y = log (x cos x)^(x)` `=x log ( x cos x )` `=x log x+ x log cos x` Differentiating both sides with respect to x, we get `(1)/(y)(dy)/(dx)=xcdot(1)/(x)+ log x+log cos x+xcdot ((-sin x)/(cos x))` `" or "(dy)/(dx)=( x cos x)^(x)[(log x +1)+{ log cos x - x cot x}]` |
|
275. |
`"Find "(dy)/(dx)" for "y=sin(x^(2)+1).` |
Answer» `"Let "y= sin(x^(2)+1).` Putting `u=x^(2)+1," we get y sin u"` `therefore" "(dy)/(dx)=cos u and (du)/(dx) = 2x` `"Now, "(du)/(dx)=(dy)/(du).(du)/(dx)` `= (cos u) (2x)=2x cos(x^(2)+1)` |
|
276. |
If the equation `2x^(4)+x^(3)-2x-1=0` has two real roots `alpha` and `beta`, then between `alpha` and `beta` the equation `8x^(3)+3x^(2)-2=0` has -A. no rootB. at least one rootC. exactly one rootD. atmost two roots |
Answer» Correct Answer - B |
|
277. |
`cot^(3)x^(2)` |
Answer» Correct Answer - `-6x cot^(2)x^(2)"cosec"^(2)x^(2)` | |
278. |
Find `(dy)/(dx)` if `x=cos theta - cos 2 theta` `and" "y = sin theta - sin 2theta` |
Answer» Correct Answer - `(cos theta -2 cos 2 theta)/(2 sin 2 theta - sin theta)` The given equations are `x=cos theta - cos 2 theta` `and" "y = sin theta - sin 2theta` `"Then, "(dx)/(d""theta)=-sin theta - (-2 sin 2theta)=2 sin 2 theta- sin theta` `"And "(dy)/(d""theta)=cos theta -2 cos 2theta` `therefore" "(dy)/(dx)=(dy//d""theta)/(dx//d""theta)=(cos theta-2 cos 2theta)/(2 sin 2theta- sin theta)` |
|
279. |
If `y=(1)/(3x-1)`, then the value of `[(dy)/(dx)]_(x=0)` is -A. -3B. `(1)/(3)`C. `-(1)/(9)`D. 3 |
Answer» Correct Answer - A |
|
280. |
`ax^2+2hxy+by^2+2gx+2fy+c=0` |
Answer» Given: `ax^(2)+2hxy+by^(2)+2gx+2fy+c=0." …(i)"` Differentiating both sides of (i) w.r.t. x, we get `2ax+2h(x.(dy)/(dx)+y.1)+2by.(dy)/(dx)+2g+2f.(dy)/(dx)=0` `rArr(2ax+2hy+2g)+(2hx+2by+2f).(dy)/(dx)=0` `rArr (dy)/(dx)=-((ax+hy+g)/(hx+by+f)).` |
|
281. |
if `2^x+2^y=2^(x+y)` then the value of `(dy)/(dx)` at `x=y=1` |
Answer» Correct Answer - B | |
282. |
If `y=10^(10^(x))`, then the value of `(dy)/(dx)` is -A. `10^(10^(x))*(log_(e)10)^(2)`B. `10^(10^(x))*log_(e)10`C. `10^(10^(x))*10^(x)*log_(e)10`D. `10^(10^(x))*10^(x)*(log_(e)10)^(2)` |
Answer» Correct Answer - D |
|
283. |
If `x=e^y+e^((y+ tooo))`, where `x >0,t h e nfin d(dy)/(dx)`A. `(1+x)/(x)`B. `(1)/(x)`C. `(1-x)/(x)`D. `(x)/(1+x)` |
Answer» Correct Answer - C We have, `x=e^(y+e^(y+e^(y+..." to "oo)))` `implies" "x=e^(y+x)` `implies" "log_(e)x=(y+x)` `implies" "(1)/(x)=(dy)/(dx)+1" "["Differentiating with respect to x"]` `implies" "(dy)/(dx)=(1-x)/(x)` |
|
284. |
If `y=sin^(-1)(x/2)+cos^(-1)(x/2)` then `(dy)/(dx)=`A. 1B. -1C. 0D. 2 |
Answer» Correct Answer - C | |
285. |
If `y=x+e^x ,`then `(d^2x)/(dy^2)`is equal toA. `e^(x)`B. `-(e^(x))/((1+e^(x))^(3))`C. `-(e^(x))/((1+e^(x))^(2))`D. `(1)/((1+e^(x))^(2))` |
Answer» Correct Answer - B | |
286. |
If`sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),"p r o v et h a t"(dy)/(dx)sqrt((1-y^2)/(1-x^2))` |
Answer» Given: `sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)." …(i)"` Putting `x=sin theta and y = sin phi`, it becomes `cos theta + cos phi =a(sin theta - sin phi)` `rArr(cos theta+cos phi)/(sin theta-sin phi)=a` `rArr(2cos((theta+phi)/(2))cos((theta-phi)/(2)))/(2cos((theta+phi)/(2))sin((theta-phi)/(2)))=a` `rArr cot((theta-phi)/(2))=a rArr theta-phi = 2 cot^(-1)a` `rArr sin^(-1)x sin^(-1)y=2 cot^(-1)a." ...(ii)"` On differentiating both sides of (ii) w.r.t. x, we get `(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-y^(2))).(dy)/(dx)=0` Hence, `(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2))).` |
|
287. |
If `y=(2x+3)^((3x-5))`, find `(dy)/(dx)`. |
Answer» Given: `y=(2x+3)^((3x-5))." …(i)"` Taking logarithm on both sides of (i), we get `log y = (3x-5)log(2x+3)." …(ii)"` On differentiating both sides of (ii) w.r.t. x, we get `(1)/(y).(dy)/(dx)=(3x-5).(d)/(dx){log(2x+3)}+log(2x+3).(d)/(dx)(3x-5)` `=(3x-5).(1)/((2x+3)).2+log(2x+3).3` `rArr(dy)/(dx)=y.{((6x-10))/((2x+3))+3log(2x+3)}` `rArr(dy)/(dx)=(2x+3)^((3x-5)).{((6x-10))/((2x+3))+3log(2x+3)}.` |
|
288. |
If `y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi),`then find `(dy)/(dx)dot` |
Answer» We have `y=sqrt((1-cso2x)/(1+cos2x)),=sqrt((2sin^(2)x)/(2cos^(2)x))=sqrt(tan^(2)x)` `=|tanx|," where "x in(0,(pi)/(2))cup((pi)/(2),pi)` `={{:(tan x, x in(0,(pi)/(2)),),(-tan x, x in((pi)/(2),pi),):}` `therefore" "(dy)/(dx)={{:(sec^(2)x",", x in(0,(pi)/(2)),),(-sec^(2) x",", x in((pi)/(2),pi),):}` |
|
289. |
The value of `(d)/(dx)10^(mx)` is -A. `10^(mx)log_(e)10`B. `10^(mx)*m log_(e)10`C. `m*10^(mx)`D. none of these |
Answer» Correct Answer - B |
|
290. |
If `y sqrt(1-x^2)+x sqrt(1-y^2)=1`. Prove that `dy/dx=-sqrt((1-y^2)/(1-x^2))` |
Answer» We have `xsqrt(1-y^(2))+ysqrt(1-x^(2))=1." …(i)"` Putting `x = sin theta and y = cos phi` in (i), we get `sin theta cos phi+cos theta sin phi=1` `rArr sin(theta+phi)=1` `rArr (theta+phi)=sin^(-1)(1)` `rArr sin^(-1)x+sin^(-1)y=(pi)/(2)." ...(ii)"` On differentiating both sides of (ii) w.r.t. x, we get `(1)/(sqrt(1-x^(2)))+(1)/(sqrt(1-y^(2))).(dy)/(dx)=0.` `therefore (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2))).` |
|
291. |
`" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx)` is equal toA. `y^(2)`B. `1//y`C. `-y`D. `-y//x` |
Answer» Correct Answer - -y `"We have "y=sqrt((1-x)/(1+x)` Differentiating w.r.t. x, we get `(dy)/(dx)=(1)/(2)((1-x)/(1+x))^(1//2-1)(d)/(dx)((1-x)/(1+x))` `=(1)/(2)sqrt((1+x)/(1-x))cdot((1+x)(-1)-(1-x)(1))/((1+x)^(2))` `=-sqrt((1+x)/(1-x))(1)/((1+x)^(2))` `"or "(1-x)^(2)(dy)/(dx)=-sqrt((1+x)/(1-x))(1)/((1+x)^(2))(1-x)^(2)` `"or "(1-x)^(2)(dy)/(dx)=-sqrt((1-x)/(1+x))` `"or "(1-x^(2))(dy)/(dx)=-y` `"or "(1-x^(2))(dy)/(dx)+y=0` |
|
292. |
Differentiate log sin x w.r.t. `sqrt(x).` |
Answer» `"Let "u=tan^(-1)((sqrt(1+x^(2))-1)/(x))and v= tan^(-1) x.` `(du)/(dx)=cos x and (dv)/(dx)=-(sin x)/(2sqrt(cos x))` `"or "(du)/(dv)=(du//dv)/(dv//dx)=(cot x)/(-(sin x)/(2sqrt(cos x)))=-2sqrt(cos x cot x "cosec" x )` |
|
293. |
If `y^x+x^y+x^x=a^b`, find `(dy)/(dx)`. |
Answer» Let `u=x^(x),v=x^(y) and w=y^(x)`. Then, `y+v+w=a^(b)` `rArr(du)/(dx)+(dv)/(dx)+(dw)/(dx)=0." …(i) "[because a^(b)=" constant"]` Now, `u=x^(x)` `rArr logu=xlog x` `rArr(1)/(u).(du)/(dx)=x.(d)/(dx)(logx)+logx.(d)/(dx)(x)` `" [on differentiating both sides w.r.t. x]"` `rArr(du)/(dx)=u.{x.(1)/(x)+(logx).1}` `rArr(du)/(dx)=x^(x)(1+logx)." ...(ii)"` And, `v=x^(y)` `rArr log v=ylogx` `rArr(1)/(v).(dv)/(dx)=y.(d)/(dx)(logx)+(logx).(d)/(dx)(y)` `" [on differentiating both sides w.r.t. x]"` `rArr(dv)/(dx)=v.[y.(1)/(x)+(logx).(dy)/(dx)]` `rArr(dv)/(dx)=x^(y){(y)/(x)+(logx)(dy)/(dx)}." ...(iii)"` And, `w=y^(x)` `rArr logw=xlogy` `rArr(1)/(w).(dw)/(dx)=x.(d)/(dx)(logy)+(logy).(d)/(dx)(x)` `" [on differentiating both sides w.r.t. x]"` `rArr(dw)/(dx)=w.{x.(1)/(y).(dy)/(dx)+(logy).1}.` `rArr(dw)/(dx)=y^(x){(x)/(y).(dy)/(dx)+(logy)}." ...(iv)"` Using (ii), (iii) and (iv) in (i), we get `x^(x)(1+logx)+x^(y){(y)/(x)+(logx)(dy)/(dx)}+y^(x).{(x)/(y).(dy)/(dx)+(logy)}=0` `rArr{x^(x)(1+logx)+y.x^((y-1))+y^(x)(logy)}+{x^(y)(logx)+xy^((x-1))}(dy)/(dx)=0` `rArr(dy)/(dx)=(-{x^(x)(1+logx)+y.x^((y-1))+y^(x)(logy)})/({x^(y)(logx)+xy^((x-1))}).` |
|
294. |
`" If "y=sqrt((1-x)/(1+x))," then "(1=x^(2))(dy)/(dx)` is equal toA. `y^(2)`B. `1//y`C. `-y`D. `-y//x` |
Answer» `"We have "y=sqrt((1-x)/(1+x)` Differentiating w.r.t. x, we get `(dy)/(dx)=(1)/(2)((1-x)/(1+x))^(1//2-1)(d)/(dx)((1-x)/(1+x))` `=(1)/(2)sqrt((1+x)/(1-x))cdot((1+x)(-1)-(1-x)(1))/((1+x)^(2))` `=-sqrt((1+x)/(1-x))(1)/((1+x)^(2))` `"or "(1-x)^(2)(dy)/(dx)=-sqrt((1+x)/(1-x))(1)/((1+x)^(2))(1-x)^(2)` `"or "(1-x)^(2)(dy)/(dx)=-sqrt((1-x)/(1+x))` `"or "(1-x^(2))(dy)/(dx)=-y` `"or "(1-x^(2))(dy)/(dx)+y=0` |
|
295. |
If `sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx)`is equal to`x/y`(b) `y/(x^2)``(x^2-y^2)/(x^2+y^2)`(d) `y/x`A. `(x)/(y)`B. `(y)/(x^(2))`C. `(x^(2)-y^(2))/(x^(2)+y^(2))`D. `(y)/(x)` |
Answer» `"We have "sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=log a` `"or "(x^(2)-y^(2))/(x^(2)+y^(2))=sin (log a)` `"or "(1-tan^(2)theta)/(1+tan^(2)theta)=sin(log a)" "("on putting "y= x tan theta)` `"or "cos 2theta= sin (log a)` `"or "2theta=cos^(-1)(sin (log a))` `"or "theta=(1)/(2)cos^(-1)(sin (log a))` `"or "tan^(-1)((y)/(x))=(1)/(2)cos^(-1)(sin (log a))` `"or "(y)/(x)=tan ((1)/(2)cos^(-1)(sin (loga )))` Differentiating w.r.t. x, we get `(x(dy)/(dx)-y)/(x^(2))=0` `"or "x(dy)/(dx)-y=0` `"or "(dy)/(dx)=(y)/(x)` |
|
296. |
If `y=x^x^x^^((((oo))))`, find `(dy)/(dx)dot` |
Answer» `y=x^(y)` `"or "log y = y log x` `"or "(1)/(y)(dy)/(dx)=(dy)/(dx)xxlog x+y(1)/(x)" "[Diff. both sides w.r.t.x]` `"or "(dy)/(dx)({1-y log x })/(y)=(y)/(x)` `"or "(dy)/(dx)=(y^(2))/(x(1-y log x))` |
|
297. |
If `x^y+y^x=a^b` , then find `dy/dx`. |
Answer» Let `u=x^(y) and v=y^(x)`. Then, `u+v=a^(b)rArr(du)/(dx)+(dv)/(dx)=0." ...(i) "[becausea^(b)=" constant"]` Now, `u=x^(y)rArrlogu=ylogx" [taking log on both sides]"` `rArr(1)/(u).(du)/(dx)=y.(1)/(x)+logx.(dy)/(dx)" [on differentiaton]"` `rArr(du)/(dx)=u[(y)/(x)+logx.(dy)/(dx)]` `rArr(du)/(dx)=x^(y)[(y+xlogx.(dy)/(dx))/(x)]` `rArr(du)/(dx)=x^(y-1)[y+xlogx.(dy)/(dx)].` And, `v=y^(x)rArr log v=x logy" [taking log on both sides]"` `rArr(1)/(v).(dv)/(dx)=x.(1)/(y).(dy)/(dx)+logy" [on differentiation]"` `rArr(dv)/(dx)=v.[(x)/(y).(dy)/(dx)+logy]rArr(dv)/(dx)=y^(x){(x.(dy)/(dx)+ylogy)/(y)}` `rArr(dv)/(dx)=y^((x-1)).{x.(dy)/(dx)+ylogy}.` Using (i), we get `(du)/(dx)+(dv)/(dx)=0` `rArrx^((y-1)){y+xlogx.(dy)/(dx)}+y^((x-1)).{x(dy)/(dx)+ylogy}=0` `rArr{x^(y)(logx)+x.y^((x-1))}.(dy)/(dx)=-{y.x^((y-1))+y^(x)(logy)}.` `therefore(dy)/(dx)=(-{y.x^((y-1))+y^(x)(logy)})/({x^(y)(logx)+xy^((x-1))}).` |
|
298. |
If`y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)),t h e n(dy)/(dx)i se q u a lto``(a y)/(xsqrt(a^2-x^2))`(b) `(a y)/(sqrt(a^2-x^2))``(a y)/(xsqrt(a^2-x^2))`(d) none of theseA. `(ay)/(xsqrt(a^(2)-x^(2)))`B. `(ay)/(sqrt(a^(2)-x^(2)))`C. `(ay)/(xsqrt(x^(2)-a^(2)))`D. none of these |
Answer» `y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x))` `=((sqrt(a+x)-sqrt(a-x))^(2))/((a+x)-(a-x))` `=((a+x)+(a-x)-2(sqrt(a^(2)-x^(2))))/(2x)` `=(2a-2sqrt(a^(2)-x^(2)))/(2x)=(a-sqrt(a^(2)-x^(2)))/(x)" (1)"` Differentiating w.r.t. x, we get `(dy)/(dx)=(x[-(1)/(2sqrt(a^(2)-x^(2)))(-2x)]-(a-sqrt(a^(2)-x^(2))))/(x^(2))` `=(x^(2)-asqrt(a^(2)-x^(2)+a^(2)-x^(2)))/(x^(2)sqrt(a^(2)-x^(2)))=(a(a-sqrt(a^(2)-x^(2))))/(x^(2)sqrt(a^(2)-x^(2)))` `(a)/(xsqrt(a^(2)-x^(2)))[(a-sqrt(a^(2)-x^(2)))/(x)]=(ay)/(xsqrt(a^(2)-x^(2)))" [by (1)]"` |
|
299. |
`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`A. `(1)/((1+x)^(2))`B. `-(1)/((1+x)^(2))`C. `(1)/(1+x^(2))`D. `(1)/(1-x^(2))` |
Answer» Correct Answer - B | |
300. |
If `x^(y)=e^(x-y)`, prove that `(dy)/(dx)=(logx)/((1+logx)^(2)).` |
Answer» We have `x^(y)=e^(x-y)rArr ylog x=(x-y)` `rArr (1+logx)y=x` `rArry=(x)/((1+logx))." …(i)"` On differentiating both sides of (i) w.r.t. x, we get `(dy)/(dx)=((1+logx).(d)/(dx)(x)-x.(d)/(dx)(1+logx))/((1+logx)^(2))` `=((1+logx).1-x.(1)/(x))/((1+logx)^(2))=((1+logx-1))/((1+logx)^(2))=(logx)/((1+logx)^(2)).` |
|