Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

`log("cosec x"-cot x)`

Answer» Correct Answer - `"cosec x"`
52.

Differentiate with respect to x:√(sin x)

Answer»

Chain rule:

If y = f(t) and t = g(x) then dy/dx = dy/dt x dt/dx

d/dx √(sin x) = d/dx (sin x)1/2

= 1/2 * (sin x)-1/2 * d/dx (sin x)

= 1/2 * (sin x)-1/2 * cos x

= cos x/2√(sin x)

53.

Find `(dy)/(dx)`, if `x=a(theta+sintheta), y=1(1-costheta)`.

Answer» Correct Answer - `cot.(theta)/(2)`
54.

Find `(dy)/(dx),`when`x=a(theta+sintheta)a n dy=a(1-costheta)`

Answer» `x = a(theta+sintheta)`
`:. dx/(d theta) = a(1+cos theta)`
`y = a(1-cos theta)`
`:. dy/( d theta) = asin theta`
`:. dy/dx = (dy/( d theta))/(dx/( d theta)) = ( asin theta)/(a(1+cos theta))`
`=>dy/dx = sin theta/(1+cos theta) = (2sin(theta/2)cos (theta/2))/(2cos^2(theta/2)) = tan(theta/2)`
`=>:. dy/dx = tan(theta/2)`.
55.

Find `(dy)/(dx),`when`x=a e^(theta)(sintheta-costheta),y=a e^(theta)(sintheta+costheta)`

Answer» `x = ae^theta(sintheta-costheta)`
`:. dx/(d theta) = ae^(theta)(cos theta+sin theta)+ae^theta(sintheta-cos theta) = 2ae^thetasintheta`
`y = ae^theta(sintheta-costheta)`
`:. dy/( d theta) =ae^(theta)(cos theta-sin theta)+ae^theta(sintheta+cos theta) = 2ae^thetacostheta`
`:. dy/dx = (dy/( d theta))/(dx/( d theta)) = (2ae^thetacostheta)/(2ae^thetasintheta)`
`=> dy/dx = cot theta`.
56.

Find `(dy)/(dx)`, when: `y=sin2x sin 3x sin 4x`

Answer» Correct Answer - `(sin2x sin 3x sin 4x)(2cot 2x+3 cot 3x+4 cot 4x)`
`logy=logsin2x+log sin 3x+log sin 4x`
`rArr(1)/(y).(dy)/(dx)={(2cos2x)/(sin 2x)+(3cos3x)/(sin3x)+(4 cos 4x)/(sin 4x)}.`
57.

Find `(dy)/(dx)ifx=a(theta-sintheta)a n dy=a(1-costheta)dot`

Answer» `"We have "x=a(theta-sin theta)and y=a (1- cos theta).`
`therefore" "(dx)/("d"theta)=a(1-cos theta) and (dy)/("d"theta)=a sin theta`
`"or "(dy)/(dx)=(dy//"d" theta)/(dx//"d" theta)`
`=(a sin theta)/(a(1-cos theta))`
`=(2sin (theta//2)cos (theta//2))/(2 sin^(2) (theta//2))`
`=cot""(theta)/(2)`
58.

If `y=y(x)`and itfollows the relation `4x e^(x y)=y+5sin^2x ,`then `y^(prime)(0)`is equalto______

Answer» We have `4xe^(xy)=y+5 sin^(2)x`
Putting, x = 0 in above equation we get y=0
`therefore" (0,0) lies on the curve"`
Now on differentaiting equation (1) w.r.t.x, we get
`4ee^(xy)+4xe^(xy)(x(dy)/(dx)+y)=(dy)/(dx)+10 sin x cos x`
Putting x= 0 and y=0, we get
`4+0=((dy)/(dx))_("(0,0)")+0`
`therefore" "((dy)/(dx))_("(0,0)")=4`
59.

If`y=sqrt(x^2+a^2)` ,prove that `y(dy)/(dx)-x=0`

Answer» `y=sqrtx`
`=dy/dx`
`=1/(2sqrtx)`
`dy/dx=(1xx2x)/(2(sqrtx^2+a^2)`
`dy/dx=x/(sqrt(x^2+a^2))`
`y=sqrt(a^2+x^2)`
`(dy/dx)y-x=0`
`=x/sqrt(x^2+a^2)sqrt(a^2+x^2)-x`
`=0=RHS`
60.

`"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)`

Answer» Differentiating both sides w.r.t. x, we get
`(d)/(dx){log(x^(2)+y^(2))}=2(d)/(dx){tan^(-1)((y)/(x))}`
`"or "(1)/(x^(2)+y^(2))xx(d)/(dx)(x^(2)+y^(2))=2(1)/(1+(y//x)^(2))xx(d)/(dx)((y)/(x))`
`"or "(1)/(x^(2)+y^(2)){(d)/(dx)(x^(2))+(d)/(dx)(y^(2))}=2xx(x^(2))/(x^(2)+y^(2)){(x(dy)/(dx)-yxx1)/(x^(2))}`
`"or "(1)/(x^(2)+y^(2)){2x+22y(dy)/(dx)}=(2)/(x^(2)+y^(2)){x(dy)/(dx)-y}`
`"or "{x+y(dy)/(dx)}=2{x(dy)/(dx)-y}`
`"or "x+y(dy)/(dx)=x(dy)/(dx)-y`
`"or "(dy)/(dx)(y-x)=-(x+y)`
`"or "(dy)/(dx)=(x+y)/(x-y)`
61.

If`y=sin[2tan^(-1){sqrt((1-x)/(1+x))}],`find`(dy)/(dx)`

Answer» `y=sin[2tan^-1 (sqrt(1-x)/(1+x))]`
`x=Costheta`
`y=sin[2tan^-1 (sqrt(1-Costheta)/(1+Costheta))]`
`y=sin[2tan^-1 (sqrt(2-Sin^2theta/2)/(1+Cos^2theta/2))]`
`y= sin[2tan^-1tan(theta/2)]`
`y=Sintheta`
`x=Costheta`
`(dy)/(d theta)=costheta=x`
`(dx)/(d theta)=-sintheta=-y`
`(dy)/(dx)=(dy)/(d theta).(d theta)/(dx)=(x)(-1)/(y)`
`(dy)/(dx)=-x/y`
62.

If `y=xlog"{"x/((a+b x))"]"`, then show that`x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2dot`

Answer» Given `y//x=[log x- log (a+bx)].` Therefore,
`(1)/(x)(dy)/(dx)-(1)/(x^(2))y=(1)/(x)-(b)/(a+bx)" [Diff. both sides w.r.t. x]"`
`" or "x(dy)/(dx)-y=(ax)/(a+bx)" (1)"`
Differentiating again w.r.t. x, we get
`(x(d^(2)y)/(dx^(2))+(dy)/(dx))-(dy)/(dx)=(a^(2))/(a+bx)^(2)`
`therefore" "x^(3)(d^(2)y)/(dx^(2))=(a^(2)x^(2))/((a+bx)^(2))=(x(dy)/(dx)-y)^(2)`
63.

If`y=sqrt((1-x)/(1+x)),p rov et h a t(1-x^2)(dy)/(dx)+y=0`

Answer» We have
`y=sqrt((1-x)/(1+x))`
Differentiating w.r.t.x, we get
`(dy)/(dx)=(1)/(2)((1-x)/(1+x))^((1//2)-1)(d)/(dx)((1-x)/(1+x))`
`=(1)/(2)sqrt((1+x)/(1-x))((1+x)(d)/(dx)(1-x)-(1-x)(d)/(dx)(1+x))/(1+x)^(2)=-sqrt((1+x)/(1-x))(1)/((1+x)^(2))`
`"or " (1-x^(2))(dy)/(dx)=-sqrt((1+x)/(1-x))(1)/((1+x)^(2))(1-x^(2))`
`"or " (1-x^(2))(dy)/(dx)=-sqrt((1-x)/(1+x))`
`"or " (1-x^(2))(dy)/(dx)=-y`
`"or " (1-x^(2))(dy)/(dx)+y=0`
64.

Find the sum of the series `1+2x+3x^(2)+(n-1)x^(n-2))` using differentiation.

Answer» We know that `1+x+x^(2)+…+x^(n-1)=(1-x^(n))/(1-x).`
Differentiating both sides w.r.t.x, we get
`0+1+2x+3x^(2)+…+(n-1)x^(n-2)`
`=((1-x)(d)/(dx)(1-x^(n))-(1-x^(n))(d)/(dx)(1-x))/((1-x)^(2))`
`"or "1+2x+3x^(2)+...+(n-1)^(x-2)=(-(1-x)nx^(n-1)+(1-x^(n)))/((1-x)^(2))`
`"or "1+2x+3x^(2)+...+(n-1)^(x-2)=(-nx^(n-1)+(n-1)x^(n)+1)/((1-x)^(2))`
65.

\(y = (x - 1) (5x^3 + \sqrt x)^\frac{11}2 \left(\frac{tanx - 1}{sin x}\right) e^{{5(x)}^\frac18} .\, x^{x^{x....}}\)

Answer»

\(y = (x - 1) (5x^3 + \sqrt x)^\frac{11}2 \left(\frac{tanx - 1}{sin x}\right) e^{{5(x)}^\frac18} .\, x^{x^{x....}}\)

\(log \,y = log (x -1) + \frac{11}2 log (5x^3 + \sqrt x) + log(tan x - 1) - log \, sin x + 5(x) \frac 18 + x^{x^x} \)

On Differentiating both sides logx w.r.t x, we get

\(\frac1y \frac {dy}{dx} = \frac 1 {x- 1} +\frac{11}2\frac{15x^2 + \frac 1{2\sqrt x}}{5x^3+ \sqrt x} + \frac{sec^2 x}{tan x - 1} - \frac{cos x}{sin x} + \frac 58 x^{-\frac78} + \frac{x^{x^{x...}}}{x} + log x. \frac{x^{x^{x...}}}{x}\left(\frac 1{x^{x^{x...} }} - log x\right)\)

\(\therefore \frac{dy}{dx} = y\left(\frac 1{x - 1} + \frac {11}2 \frac{15x^2 + \frac1{2\sqrt x}}{5x^3 + \sqrt x} + \frac{sec^2x}{tan x -1} - cot x + \frac 58 \, \frac1{x^\frac 78} + \frac{x^{x^{x...}}}{x}\left(\frac {log x}{x^{x^{x..}}} - (log x)^2 + 1\right) \right)\)

y at x = 1 = 0

\(\therefore\frac{dy}{dx}|_{x=1} = 0\)

66.

A curve is represented parametrically by the equations `x=f(t)=a^(In(b^t))and y=g(t)=b^(-In(a^(t)))a,bgt0 and a ne 1, b ne 1" Where "t in R.` The value of `(d^(2)y)/(dx^(2))` at the point where f(t)=g(t) is

Answer» `x=f(t)=a^(In(b))=a^(t" In "b)" (1)"`
`y=g(t)=b^(-In(a^(t)))=(b^(In a))^(-t)=(a^(In b))^(-t)=a^(-t" In b")`
`therefore" "y=g(t)=a^(In(b^(-t)))=f(-t)" (2)"`
From equations (1), and (2),
`xy=1`
`f(t)=g(t)rArrf(t)=f(-t)rArrt=0" "[because f(t)" is one-one function"]`
`"At "t=0, x=y=1`
`because" "xy=1, (dy)/(dx)=(-1)/(x^(2))and (d^(2)y)/(dx^(2))=(2)/(x^(3))" At "x=1, (d^(2)y)/(dx^(2))=2`
67.

A curve parametrically given by `x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2)`?A. `1//3`B. 2C. 3D. 1

Answer» `(dy)/(dx)=(dy//dt)/(dx//dt)=(2t)/(1+3t^(2))=(1)/(2)`(given)
`rArr" "3t^(2)-4t+1=0`
`rArr" "(3t-1)(t-1)=0`
`rArr" "t=(t)/(3),t=t`
68.

If `y=e^(-x) cos x` and `y_n+k_ny=0` where `yn=(d^ny)/(dx^n)` and `k_n` are constant `n in N` thenA. `k_(4)=4`B. `k_(8)=-16`C. `k_(12)=20`D. `k_(16)=-24`

Answer» Correct Answer - B
`y=e^(-x)cos x`
`y_(1)=-e^(-x)cos x - e^(-x)sin x=-sqrt(2) e^(-x)cos (x-(pi)/(4))`
`y_(2)=(-sqrt(2))e^(-x)cos (x-(pi)/(2))`
`y_(3)=(-sqrt(2))^(3)e^(-x)cos (x-(3pi)/(4))`
`y_(4)=(-sqrt(2))^(4)e^(-x)cos (x-pi)=-4 e^(-x)cos x`
`"or "y_(4)+4y=0or k_(4)=4`
Differentiating it again four times, we get
`y_(8)+4y_(4)=0`
`"or "y_(8)-16y=0`
`"or "k_(8)=-16`
`"Further "y_(12)+4y_(8)=0`
`"or "y_(12)+64y=0`
`"or "k_(12)=64`
`"Similarly, "k_(16)=-256`
69.

If`y=sqrt(logx+sqrt(cosx+sqrt(cosx+...tooo))),`provethat `(dy)/(dx)=(sinx)/(1-2y)`

Answer» `y = sqrt(cosx+sqrt(cosx+sqrt(cosx+...oo)))`
`=>y = sqrt(cosx+y)`
`=>y^2 = cosx+y`
Differntiating both sides w.r.t. `x`,
`=>2y dy/dx = -sinx+dy/dx`
`=>dy/dx(2y-1) = -sinx`
`=>dy/dx = sinx/(1-2y)`
70.

If `y=(logx)^(cosx)+(x^(2)+1)/(x^(2)-1)`, find `(dy)/(dx).`

Answer» Let `(logx)^(cosx)=u and(x^(2)+1)/(x^(2)-1)=v.` Then,
`u=(logx)^(cosx)rArr log u = cosx. Log (logx)." …(i)"`
On differentiating both sides of (i) w.r.t. x, we get
`(1)/(u).(du)/(dx)=cosx.(d)/(dx){log(logx)}+log(logx).(d)/(dx)(logx)`
`=cosx(1)/(logx).(1)/(x)-(sinx).log(logx).`
`therefore(du)/(dx)=u.{(cosx)/(xlogx)-(sinx).log(logx)}`
`rArr(du)/(dx)=(logx)^(cosx).{(cosx)/(x logx)-(sinx).log(logx)}.`
And, `v=((x^(2)+1))/((x^(2)-1))rArr(dv)/(dx)=((x^(2)-1).(d)/(dx)(x^(2)+1)-(x^(2)+1).(d)/(dx)(x^(2)-1))/((x^(2)-1)^(2))`
`rArr(dv)/(dx)=((x^(2)-1).2x-(x^(2)+1).2x)/((x^(2)-1)^(2))=(-4x)/((x^(2)-1)^(2)).`
`therefore y=u+v`
`rArr(dy)/(dx)=(du)/(dx)+(dv)/(dx)`
`=(logx)^(cosx).{(cosx)/(xlogx)-(sinx).(logx)}-(4x)/((x^(2)-1)^(2)).`
71.

Find `(dy)/(dx)`, when: `y=(cosx)^(logx)`

Answer» Correct Answer - `(cosx)^(logx).{(log(cosx))/(x)-(tanx)(logx)}`
72.

Find `(dy)/(dx)`for the function:`y=a^(sin^(-1)x)^2`

Answer» Correct Answer - `(2log a sin^(-1)x)/(sqrt(1-x^(2)))a(sin^(-1)x)^(2)`
`"Let "y=a^((sin^(-1)x)^(2))`.
Using chain rule, we get
`(dy)/(dx)=(d)/(dx){a^((sin^(-1)x)^(2))}`
`=a^((sin^(-1)x)^(2))loga(d)/(x){(sin^(-1)x)^(2)}`
`=a^((sin^(-1)x)^(2))(log a) 2 (sin ^(-1)x)^(1)(d)/(dx)(sin^(-1)x)`
`=a^((sin^(-1)x)^(2))(log a)2 sin^(-1)x(1)/(sqrt(1-x^(2)))`
`=(2 log a sin^(-1)x)/(sqrt(1-x^(2)))a^((sin^(-1)x)^(2))`
73.

`y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]`

Answer» Correct Answer - `(1)/(2sqrt(x(1-x)))`
`y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]`
`=sin^(-1)[sqrt(x)sqrt(1-a)-sqrt(a)sqrt(1-x)]`
`=sin^(-1)[sqrt(x)sqrt(1-(sqrt(a))^(2))-sqrt(a)sqrt(1-(sqrt(x))^(2))]`
`=sin^(-1)sqrt(x)-sin^(-1)sqrt(a)`
`therefore" "(dy)/(dx)=(1)/(sqrt(1-x))xx(1)/(2sqrt(x))`
74.

Find `(dy)/(dx)`if `y=log{e^x((x-2)/(x+2))^(3/4)}`

Answer» Correct Answer - `(x^(2)-1)/(x^(2)-4)`
`"Let "y=[log{e^(x)((x-2)/(x+2))^(3//4)}]=log e^(x)+log ((x-2)/(x+2))^(3//4)`
`=x+(3)/(4)[log (x-2)-log(x+2)]`
`therefore" "(dy)/(dx)=1+(3)/(4)[(1)/(x-2)-(1)/(x+2)]=1+(3)/((x^(2)-4))=(x^(2)-1)/(x^(2)-4)`
75.

Differentiate the following functions:(i) 3x-5 (ii) 1/5x (iii) 6(x2)3/2

Answer»

We know, d/dx (xm) = m(xm-1)

(i) d/dx (3x-5) = 3(-5)x-6 = -15 x-6

(ii) d/dx (1/5x) = 1/5 * (d/dx (1/x)) = 1/5 (-1/x2) = -1/5x2

(iii) d/dx (6 (x2)1/3) = 6 d/dx (x2/3) = 6(2/3 * x-1/3) = 4x-1/3

76.

Differentiate `(e^(x)cos^(3)x sin^(2)x)` w.r.t. x.

Answer» Let `y=e^(x)cos^(3)xsin^(2)x." …(i)"`
Taking logarithm on both sides of (i), we get
`logy=x+3 log cos x+2 log sin x." …(ii)"`
On differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=1+(3)/(cosx).(-sinx)+(2)/(sinx).cosx`
`rArr(dy)/(dx)=y.{1-3 tanx+2 cot x}`
`=(e^(x)cos^(3)xsin^(2)x)(1-3tanx+2cotx).`
77.

Differentiate `sqrt((x-1)(x-2)(x-3)(x-4))` w.r.t. x.

Answer» Let `y=sqrt((x-1)(x-2)(x-3)(x-4))." …(i)"`
Taking logarithm on both sides of (i), we get
`log y = (1)/(2){log(x-1)+logx(x-2)+log(x-3)+log(x-4)}……..(ii)`
On differentiating both sides of (ii) w.r.t. x we get
`(1)/(y).(dy)/(dx)=(1)/(2).{(1)/((x-1))+(1)/((x-2))+(1)/((x-3))+(1)/((x-4))}`
`(dy)/(dx)=((y)/(2)).{(1)/((x-1))+(1)/((x-2))+(1)/((x-3))+(1)/((x-4))}`
`=(1)/(2).sqrt((x-1)(x-2)(x-3)(x-4)).{(1)/((x-1))+(1)/((x-2))+(1)/((x-3))+(1)/((x-4))}`
78.

Differentiate `(x+1)^(2)(x+2)^(3)(x+3)^(4)` w.r.t. x.

Answer» Let `y=(x+1)^(2)(x+2)^(3)(x+3)^(4)." …(i)"`
Taking logarithm on both sides of (i), we get
`log y = 2log (x+1)+3log (x+2)+4 log (x+3)." …(ii)"`
Differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=(2)/((x+1))+(3)/((x+2))+(4)/((x+3))`
`rArr(dy)/(dx)=y.[(2)/((x+1))+(3)/((x+2))+(4)/((x+3))]`
`=(x+1)^(2)(x+2)^(3)(x+3)^(4).[(2)/((x+1))+(3)/((x+2))+(4)/((x+3))].`
79.

If `y=(sqrtx(x+4)^(3//2))/((4x-3)^(4//3)),` find `(dy)/(dx).`

Answer» Given: `y=(sqrtx(x+4)^(3//2))/((4x-3)^(4//3))." ...(i)"`
Taking logarithm on both sides of (i), we get
`log y = (1)/(2)log x+(3)/(2)log (x+4)-(4)/(3)log(4x-4).`
On differentiating both sides w.r.t. x, we get
`(1)/(y).(dy)/(dx)=(1)/(2).(1)/(x)+(3)/(2).(1)/((x+4))-(4)/(3).(4)/((4x-3))`
`rArr(dy)/(dx)=y[(1)/(2x)+(3)/(2(x+4))-(16)/(3(4x-3))]`
`=(sqrtx(x+4)^(3//2))/((4x-3)^(4//3)).[(1)/(2x)+(3)/(2(x+4))-(16)/(3(4x-3))].`
80.

If `y=sqrt(((x-3)(x^(2)+4))/((3x^(2)+4x+5)))`, find `(dy)/(dx)`.

Answer» Given : `y=sqrt(((x-3)(x^(2)+4))/((3x^(2)+4x+5))).`
Taking logarithm on both sides of (i), we get
`logy=(1)/(2){log(x-3)+log(x-3)+log(x^(2)+4)-log(3x^(2)+4x+5)}.`
Differentiating both sides w.r.t. x, we get
`(1)/(y).(dy)/(dx)=(1)/(2).{(1)/((x-3))+(2x)/((x^(2)+4))-((6x+4))/((3x^(2)+4x+5))}`
`rArr (dy)/(dx)=((1)/(2)y).{(1)/((x-3))+(2x)/((x^(2)+4))-((6x+4))/((3x^(2)+4x+5))}`
`=(1)/(2).sqrt(((x-3)(x^(2)+4))/((3x^(3)+4x+4))).{(1)/((x-3))+(2x)/((x^(2)+4))-((6x+4))/((3x^(2)+4x+5))}`
81.

If `tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a`, show that `(dy)/(dx)=(x(1-tana))/(y(1+tana)).`

Answer» `tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=arArr((x^(2)-y^(2))/(x^(2)+y^(2)))=tana`
`therefore (x^(2)-y^(2))=(x^(2)+y^(2)) tan a." …(i)"`
On differentiating both sides of (i) w.r.t. x, we get
`2x-2y.(dy)/(dx)=2x tan a +2y.(dy)/(dx).tana`
`rArr y(1+tana)(dy)/(dx)=x(1-tana)`
`rArr (dy)/(dx)=(x(1-tana))/(y(1+tana)).`
82.

If`e^x+e^y=e^(x+y),` prove that `(dy)/(dx)+e^(y-x)=0`

Answer» Given : `e^(x)+e^(y)=e^(x+y)." …(i)"`
On dividing throughout by `e^(x+y)`, we get
`e^(-y)+e^(-x)=1." …(ii)"`
`e^(-y).((-dy)/(dx))+e^(-x)(-1)=0`
`rArr(dy)/(dx)=(-e^(-x))/(e^(-y))=-e^((y-x)).`
83.

If `sin(x y)+y/x=x^2-y^2`, find `(dy)/(dx)`.

Answer» Given: `sin(xy)+(x)/(y)=x^(2)-y.`
Differentiating both sides w.r.t. x, we get
`cos(xy).(d)/(dx)(xy)+x.(-(1)/(y^(2)))(dy)/(dx)+(1)/(y).1=2x-(dy)/(dx)`
`rArr cos(xy).[x.(dy)/(dx)+y.1]-(x)/(y^(2)).(dy)/(dx)+(1)/(y)=2x-(dy)/(dx)`
`rArr[x cos(xy)-(x)/(y^(2)+1)].(dy)/(dx)=2x-(1)/(y)-y cos(xy)`
`rArr{xy^(2)cos(xy)-x+y^(2)}.(dy)/(dx)=2xy^(2)-y-y^(3)cos(xy).`
Hence, `(dy)/(dx)={(2xy^(2)-y-y^(3)cos(xy))/(xy^(2)cos(xy)-x+y^(2))}.`
84.

If `cos(x+y)=y sin x,` find `(dy)/(dx).`

Answer» Given: `cos(x+y)=y sin x.`
On differentiating both sides of (i) w.r.t. x, we get
`-sin(x+y).(d)/(dx)(x+y)=y cos+sinx.(dy)/(dx)`
`rArr-sin(x+y)(1+(dy)/(dx))=y cos x+sin x.(dy)/(dx)`
`rArr{sin(x+y)+sinx}.(dy)/(dx)=-{sin(x+y)+ycosx}`
`rArr(dy)/(dx)=(-{sin(x+y)+ycosx})/({sin(x+y)+sinx}).`
85.

If `y=sqrtx+1/sqrtx` then prove that `2x (dy)/(dx)+y=2sqrtx`

Answer» `y=sqrtx+(1)/(sqrtx)rArrsqrtxy=x+1" ...(i)"`
On differentiating both sides of (i) w.r.t. x, we get
`sqrtx.(dy)/(dx)y.(1)/(2)x^(-1//2)=1`
`rArrsqrtx(dy)/(dx)+(y)/(2sqrtx)=1`
`rArr 2x(dy)/(dx)+y=2sqrtx.`
86.

`(i)e^(2//x)" "(ii)e^(sqrtx)" "(iii) e^(-2sqrtx)`

Answer» `(i)-(2)/(x^(2)).e^(2//x)" "(ii)(1)/(2sqrtx)e^(sqrtx)" "(iii)(-1)/(sqrtx)e^(-2sqrtx)`
87.

`y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1`

Answer» Correct Answer - `(2)/(1+x^(2))`
`y=sin^(-1)((2x)/(1+x^(2)))`
Let `x = tan theta.` Therefore,
`y=sin^(-1)((2tan theta)/(1+tan^(2)theta))`
`=sin^(-1)(sin 2 theta)`
`=2theta`
`=2tan^(-1)x`
`therefore" "(dy)/(dx=(d)/(dx)(2 tan^(-1)x)`
`=2(d)/(dx)(tan^(-1)x)`
`(2)/(1+x^(2))`
88.

`sin^(-1){(1)/(sqrt(1+x^(2)))}`

Answer» Correct Answer - `(1)/((1+x^(2)))`
89.

`tan^(- 1)((1+x)/(1-x))=pi/4+tan^(- 1)x , xlt1`

Answer» Correct Answer - `(1)/((1+x^(2)))`
90.

`sec^(-1)((1)/(1-2x^(2)))`

Answer» Correct Answer - `(2)/(sqrt(1-x^(2)))`
91.

`sec^(- 1)((x^2+1)/(x^2-1))`

Answer» Correct Answer - `(-2)/((1+x^(2)))`
92.

`"cosec"^(-1)((1+x^(2))/(2x))`

Answer» Correct Answer - `(2)/((1+x^(2)))`
93.

`tan^(-1)((3x-x^(3))/(1-3x^(2)))`

Answer» Correct Answer - `(3)/((1+x^(2)))`
94.

`sec^(-1)((1+x^(2))/(1-x^(2)))`

Answer» Correct Answer - `(2)/((1+x^(2)))`
95.

`sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))`

Answer» Correct Answer - 2
96.

The differential coefficient of `a^(log10" cosec"^(-1)x)`, isA. `(a^(log10("cosec"^(-1)x)))/("cosec"^(-1)x)(1)/(xsqrt(x^(2)-1))log_(10)a`B. `-(a^(log10("cosec"^(-1)x)))/("cosec"^(-1)x).(1)/(|x|sqrt(x^(2)-1))log_(10)a`C. `(-a^(log10("cosec"^(-1)x)))/("cosec"^(-1)x).(1)/(|x|sqrt(x^(2)-1))log_(a)10`D. `(a^(log10"cosec"^(-1)x))/("cosec"^(-1)x).(1)/(xsqrt(x^(2)-1))log_(a)10`

Answer» Correct Answer - B
97.

Differentiate with respect to x:1/(x2 - x + 3)3

Answer»

Chain rule:

If y = f(t) and t = g(x) then dy/dx = dy/dt x dt/dx

d/dx (x2 – x + 3)-3 = -3(x2 – x + 3)-4 * d/dx (x2 – x + 3)

= -3(x2 – x + 3)-4 (2x2 – 1)

98.

Differentiate with respect to x:sin2 (2x + 3)

Answer»

Chain rule:

If y = f(t) and t = g(x) then dy/dx = dy/dt x dt/dx

d/dx sin2 (2x + 3) = 2 sin (2x + 3) * d/dx {sin(2x + 3)}

= 2 sin (2x + 3) * cos(2x + 3) * d/dx (2x + 3)

= 2 sin (2x + 3) * cos (2x + 3) * 2

= 4 sin (2x + 3) cos (2x + 3)

= 2 sin (4x + 6)

[Using identity: 2sin x cos x = sin 2x]

99.

(d2 - 3d + 2)y = 0, where D = d/dx is _____

Answer»

(D2 – 3D + 2)y = 0

It's auxilarly equation is

m2 – 3m + 2 = 0

⇒ m2 – 2m – m + 2 = 0

⇒ m(m – 2) – 1(m – 2) = 0

⇒ (m – 2)(m – 1) = 0

⇒ m = 1, 2

Therefore, its solution is y = C1ex + C2e2x.

100.

Differentiate using chain rule cos2(x3)

Answer»

Chain Rule:

If y = f(t) and t = g(x) then dy/dx = dy/dt x dt/dx

d/dx cos2(x3) = 2 cos(x3) * d/dx {cos(x3)}

= 2 cos(x3) * ( – sin (x3)) * d/dx (x3)

= 2 cos(x3) * ( – sin (x3)) * 3x2

= – 6x2 cos(x3) sin x3