This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 121451. |
वह फल कौन-सा था? |
|
Answer» वह फल नींबू था। |
|
| 121452. |
तिलक के नाम के साथ ‘लोकमान्य’ कैसे जुड़ा? |
|
Answer» तिलक के अच्छे कार्यों और विचारों के कारण इनके नाम के साथ लोकमान्य शब्द जुड़ा। |
|
| 121453. |
क्या अदिति फल को खोज पाई? |
|
Answer» हाँ, अदिति फल को खोज पाई। |
|
| 121454. |
स्वतन्त्रता आंदोलन किसके नेतृत्व में चलाया गया? |
|
Answer» स्वतन्त्रता आंदोलन गांधी जी के नेतृत्व में चलाया गया था। |
|
| 121455. |
किसी कार्य के करने या न करने के संबंध में निर्णय करने के लिए पिता ने पुत्री को क्या सलाह दी? |
|
Answer» पिता ने सलाह दी कि कोई ऐसा कार्य नहीं करना चाहिए, जिसके कारण लोगों से छिपना पड़े। |
|
| 121456. |
साधारण पुरुष और स्त्रियाँ कब वीर और वीरांगनाएँ बन जाती हैं? |
|
Answer» महान उद्देश्य की पूर्ति के लिए एक ऐसा महत्त्वपूर्ण समय आता है, जब साधारण पुरुष वीर और स्त्रियाँ वीरांगनाएँ बन जाती हैं। |
|
| 121457. |
Was Sachin sorry for his action. |
|
Answer» Yes, Sachin was sorry for his action. |
|
| 121458. |
What did he do there? |
|
Answer» He dug a hole in the ground, put a coin there and covered the hole with soil. |
|
| 121459. |
Where was Rohit one morning? |
|
Answer» Rohit was in the garden one morning. |
|
| 121460. |
रहिमन देखि बड़ेन को, लघु न दीजिए डारि।जहाँ काम आवै सुई, कहा करै तरवारि। |
|
Answer» कुछ लोग वस्तु के आकार-प्रकार को देखकर उसका मूल्य ऑकते हैं। वास्तव में वस्तु का महत्त्व उसके कद पर निर्भर नहीं होता। रहीमजी हमें यही समझाना चाहते हैं कि बड़ों को देखकर छोटों की अनदेखी नहीं करनी चाहिए। तलवार का आकार बड़ा है। वह युद्ध में बहुत उपयोगी है। उसकी तुलना में सुई बहुत छोटी होती है, फिर भी सुई का काम तलवार नहीं कर सकती। इसलिए हमें छोटों को भी बड़ों के समान ही महत्त्व देना चाहिए । |
|
| 121461. |
How can we keep our houses clean? |
|
Answer» We can keep our houses clean by observing the following ways:
|
|
| 121462. |
Fill in the blanks with the following words:peel, hurt, sadWe should put ____ in the dustbin.Meetu was ___ when she fell on the road.Her mother was ___. |
Answer»
|
|
| 121463. |
बुरी संगत का प्रभाव किस प्रकार के लोगों पर नहीं पड़ता है? |
|
Answer» बुरी संगत का प्रभाव अच्छे स्वभाव वाले लोगों पर नहीं पड़ता है। |
|
| 121464. |
सज्जन व्यक्तियों की तुलना वृक्षों और नदियों से क्यों की गई है? |
|
Answer» पेड़ फल देकर और नदी पानी बहाकर सबका भला करते हैं। इसी प्रकार सज्जन भी परोपकार करते हैं; अतः पेड़ और नदी से सज्जनों की तुलना की गई है। |
|
| 121465. |
मीरा ने कृष्ण के किस रूप का वर्णन किया है? |
|
Answer» मीरा ने कृष्ण के सुंदर रूप का वर्णन किया है। |
|
| 121466. |
श्रीकृष्ण की चोटी नागिन की तरह क्यों हो जाएगी? |
|
Answer» बार-बार बाल बनाने और गूंथने से श्रीकृष्ण की चोटी नागिन की तरह लंबी और मोटी हो जाएगी। |
|
| 121467. |
‘रहिमन देखि बड़ेन को, लघु न दीजिए डारि।’ |
|
Answer» लोग प्रायः बड़ों को महत्त्व देते हैं। समाज में धनीमानी लोगों को आदर-सम्मान दिया जाता है। गरीबों को लोग उपेक्षा की दृष्टि से देखते हैं। उपयोगिता की दृष्टि में देखें तो गरीब लोगों का काम भी कम महत्त्व का नहीं होता। किसान, मजदूर तथा छोटे काम करनेवाले जो देश की बहुमूल्य सेवा करते हैं, वह ऊंचे तबकेवाले नहीं कर सकते। इसलिए हमें बड़े लोगों को मान देते समय निम्नस्तर के लोगों की उपेक्षा नहीं करनी चाहिए। |
|
| 121468. |
निम्नलिखित पद्यांशों की सप्रसंग व्याख्या करेंरहिमन देखि बड़ेन को, लघु न दीजिये डारि।जहां काम आवे सुई, का करे तरवारि।। |
|
Answer» रहीम जी कहते हैं कि किसी बड़े व्यक्ति अथवा वस्तु को देखकर हमें छोटे व्यक्ति अथवा वस्तु को छोड़ नहीं देना चाहिए अथवा उसका तिरस्कार नहीं करना चाहिए क्योंकि आवश्यकता के समय जहाँ सुई काम आती है, वहाँ तलवार किसी काम नहीं आती। |
|
| 121469. |
निम्नलिखित पंक्तियों का भाव स्पष्ट करो-रूठे सुजन मनाइए, जो रूठे सौ बार।रहिमन फिरि-फिरि पोहिए टूटे मुक्ताहार॥ |
|
Answer» सौ बार रूठने पर भी सज्जनों को उसी तरह मना लेना चाहिए, जिस तरह, टूटे हुए हार के मोतियों को बार-बार पिरो लिया जाता है। |
|
| 121470. |
रावण से युद्ध करते हुए राम निराश क्यों हो गये थे? |
|
Answer» रावण के साथ महाशक्ति को देखकर राम को युद्ध में अपनी जीत का भरोसा नहीं रहा था। |
|
| 121471. |
बिहारी ने किस में धतूरे से भी अधिक मादकता बताई है? |
|
Answer» बिहारी ने सोने में धतूरे से भी अधिक मादकता बताई है। |
|
| 121472. |
Solve for x and y: 6(ax + by) = 3a + 2b, 6(bx – ay) = 3b – 2a |
|
Answer» The given equations are 6(ax + by) = 3a + 2b ⇒6ax + 6by = 3a + 2b ………(i) and 6(bx – ay) = 3b – 2a ⇒6bx – 6ay = 3b – 2a ………(ii) On multiplying (i) by a and (ii) by b, we get 6a2x + 6aby = 3a2 + 2ab ……….(iii) 6b2x - 6aby = 3b2 - 2ab ……….(iv) On adding (iii) and (iv), we get 6(a2 + b2)x = 3(a2 + b2) x = 3(a2+ b2)/6(a2+b2) = 1/2 On substituting x = 1/2 in (i), we get: 6a × 1/2 + 6by = 3a + 2b 6by = 2b y = 2b/6b = 1/3 Hence, the required solution is x = 1/2 and y = 1/3. |
|
| 121473. |
Find the cost price when SP = ₹657.60 and Loss = 4%. |
|
Answer» As the formula states CP = (100 / (100 – Loss %)) × SP= (100/ (100-4)) × 657.60 = (100/96) × 657.60 =658 ∴ The cost price is 658 |
|
| 121474. |
Find the cost price when SP = ₹34.40 and Gain = 7 ½ %. |
|
Answer» As the formula states CP = (100 / (100+ Gain %)) × SP= (100/ (100+ (15/2))) × 34.40 = (100/ (215/2)) × 34.40 = (200/215) × 34.40 =32 ∴ The cost price is 32 |
|
| 121475. |
Manjit bought an iron safe for Rs.12160 and paid Rs.340 for its transportation. Then, he sold it for Rs.12875. Find his gain per cent. |
|
Answer» Total Cost of an Iron Safe = Purchase Cost + Transportation = 12160 + 340 = 12500 Cost Price (CP) of Iron Safe = Rs.12500 Selling Price (SP) of an Iron Safe = Rs.12875 Gain on Sell = SP – CP = 12875 - 12500 = 375 Gain Percent = \(Gain\%=\frac{Gain\times100}{CP}\) \(=\frac{375\times100}{12500}\) = 3% So, Gain Percent on Iron Safe is 3%. |
|
| 121476. |
Manjit bought an iron safe for ₹12160 and paid ₹340 for its transportation. Then, he sold it for ₹12875. Find his gain percent. |
|
Answer» Lets solve by using, the total cost of iron safe = purchase cost + transportation = 12160 + 340 = 12500 CP of iron safe = 12500 SP of iron safe = 12875 Since, SP is more than CP so it’s a gain. Gain = SP – CP = 12875 – 12500 = 375 Gain % = (Gain × 100) / CP = (375 × 100) / 12500 = 3% ∴ The Gain percent is 3% |
|
| 121477. |
Mr Virmani purchased a house for Rs 365000 and spent Rs 135000 on its repairs. If he sold it for Rs 550000, find his gain percent. |
|
Answer» Given Mr. Virmani spent to purchase the house = Rs. 365000 Amount he spent on repair = Rs. 135000 Total amount he spent on the house (CP) = Rs. (365000 + 135000) = Rs. 500000 Given SP of the house = Rs. 550000 Gain = SP – CP = Rs. (550000 – 500000) = Rs. 50000 Gain % = (Gain/CP) x 100 = (50000/500000) x 100 = 5000000/500000 Gain = 10% |
|
| 121478. |
Sudhir bought an almirah for ₹ 13600 and spent ₹ 400 on its transportation. He sold it for ₹ 16800. Find his gain percent. |
|
Answer» From the question, Sudhir bought an almirah for = ₹ 13600 = cost price Transportation cost = ₹ 400 The total cost price of almirah = ₹ (13600 + 400) = ₹ 14000 He sold it for = ₹ 16800 = Selling price By comparing SP and CP = SP > CP, so there is a gain Gain = SP – CP = 16800 – 14000 = ₹ 2800 Gain % = {(gain/CP) × 100} = {(2800/14000) × 100} = {2800/140} = 20% |
|
| 121479. |
Express linear equations in the form of ax + by + c = 0 and indicate the values of a, b and c in 93x = 12- 15y |
|
Answer» 93x = 12 – 15y ⇒ 93x + 15y -12 = 0 ⇒ 93x + 15y + (- 12) = 0 Here a = 93, b = 15 and c = – 12 |
|
| 121480. |
Show that the following system of equations has a unique solution:\(\frac{x}3+\frac{y}2=3\),x – 2y = 2. Also, find the solution of the given system of equations. |
|
Answer» The given system of equations is: x/3 + y/2 = 3 ⇒ 2x+3y/6 = 3 2x + 3y = 18 ⇒ 2x + 3y – 18 = 0 ….(i) and x – 2y = 2 x – 2y – 2 = 0 …..(ii) These equations are of the forms: a1x+b1y+c1 = 0 and a2x+b2y+c2 = 0 where, a1 = 2, b1= 3, c1 = -18 and a2 = 1, b2 = -2, c2 = -2 For a unique solution, we must have: a1/a2 ≠ b1/b2 , i.e., 2/1 ≠ 3/−2 Hence, the given system of equations has a unique solution. Again, the given equations are: 2x + 3y – 18 = 0 …..(iii) x – 2y – 2 = 0 …..(iv) On multiplying (i) by 2 and (ii) by 3, we get: 4x + 6y – 36 = 0 …….(v) 3x - 6y – 6 = 0 ……(vi) On adding (v) from (vi), we get: 7x = 42 ⇒x = 6 On substituting x = 6 in (iii), we get: 2(6) + 3y = 18 ⇒3y = (18 - 12) = 6 ⇒y = 2 Hence, x = 6 and y = 2 is the required solution. |
|
| 121481. |
Express linear equations in the form of ax + by + c = 0 and indicate the values of a, b and c in 2x = – 5y |
|
Answer» 2x = – 5y ⇒ 2x + 5y = 0 Here a = 2, b = 5 and c = 0 |
|
| 121482. |
Express linear equations in the form of ax + by + c = 0 and indicate the values of a, b and c in 8x + 5y – 3 = 0. |
|
Answer» 8x + 5y – 3 = 0 ⇒ 8x + 5y + (- 3) = 0 Here a = 8, b = 5 and c = – 3 |
|
| 121483. |
Express linear equations in the form of ax + by + c = 0 and indicate the values of a, b and c in x/3 + y/4 = 7 |
|
Answer» \(\frac x3 + \frac y4 = 7\) ⇒\(\frac x3 + \frac y4 -7=0\) ⇒\(\frac {4x+3y-84}{12} = 0\) ⇒ 4x + 3y – 84 = 0 Here a = 4, b = 3 and c = – 84 |
|
| 121484. |
Express linear equations in the form of ax + by + c = 0 and indicate the values of a, b and c in 3x + 5y = 12 |
|
Answer» 3x + 5y = 12 ⇒ 3x + 5y + (- 12) = 0 Here a = 3, b = 5 and c = – 12 |
|
| 121485. |
Express the linear equations in the form of ax + by + c = 0 and indicate the value of a, b, c : 9x – 5y = 10 |
|
Answer» 9x- 5y = 10 ⇒ 9x- 5y – 10 = 0 Here a = 9, b = -5, c = -10 |
|
| 121486. |
Express the linear equations in the form of ax + by + c = 0 and indicate the value of a, b, c : 2x = y |
|
Answer» 2x = y ⇒ 2x – y = 0 Here a = 2, b = – 1 and c = 0 |
|
| 121487. |
Express the linear equations in the form of ax + by + c = 0 and indicate the value of a, b, c : x/2 - y/3 -5 = 0 |
|
Answer» \(\frac x2 - \frac y3-5 =0\) \(\frac {3x-2y-30}{6} = 0\) ⇒ 3x – 2y – 30 = 0 Here a = 3, b = – 2 and c = – 30 |
|
| 121488. |
Replace ‘?’ with appropriate fraction. |
|
Answer» Appropriate fraction is 0.00001 |
|
| 121489. |
Replace ‘?’ with appropriate fraction. |
|
Answer» Appropriate fraction is 500 |
|
| 121490. |
What is the Error in the question. In the pattern 1/3 + 1/4 + 1/5 + ........ which fraction makes the sum greater than 1 (first time)? Explain. |
|
Answer» Correct answer is 1/7 |
|
| 121491. |
Will the quotient (7 1/6) ÷ (3 2/3) be a fraction greater than 1.5 or less than 1.5? |
|
Answer» Crrect answer is Greater than |
|
| 121492. |
Express the linear equations in the form of ax + by + c = 0 and indicate the value of a, b, c : 3x + 2y = 9 |
|
Answer» 3x + 2y = 9 ⇒ 3x + 2y – 9 = 0 Here a = 3, b = 2, c = -9 |
|
| 121493. |
The distance between the graph of the equations x = -3 and x = 2 is A. 1 B. 2 C. 3 D. 5 |
|
Answer» Option : (D) Distance between the graph of the equations x = -3 and x=2 is = 2 – (-3) = 5 units |
|
| 121494. |
If (2k - 1,k) is a solution of the equation 10x - 9y = 12, then k = A. 1 B. 2 C. 3 D. 4 |
|
Answer» Option : (B) Given, (2k - 1,k) is a solution of the equation 10x - 9y = 12 ⇒ 20x – 10 – 9k = 12 ⇒ 11k = 22 ⇒ k = 2 |
|
| 121495. |
If (0, a) and (b, 0) are the solutions of linear equations. Find a and b : 3x = 7y – 21 |
|
Answer» Given that (0, a) and (b, 0) are the solutions of 3x = 7y – 21 ⇒ 3x – 7y = – 21 ∴ 3(0) – 7(a) = -21 and 3(b) – 7(0) = -21 ⇒ a = -21/-7 and b = -21/3 ⇒ a = 3 and b = -7 |
|
| 121496. |
Replace ‘?’ with appropriate fraction. |
|
Answer» Appripriate fraction is 3/2 |
|
| 121497. |
Write each of the following as an equation in two variables:(i) 2x = -3 (ii) y = 3 (iii) 5x = 7/2 (iv) y = 3/2x |
|
Answer» (i) Given equation, 2x = -3 The above equation can be written in two variables as, 2x + 0y + 3 = 0 (ii) Given equation, y = 3 The above equation can be written in two variables as, 0x + y – 3 = 0 (iii) Given equation, 5x = 7/2 The above equation can be written in two variables as, 5x + 0y – 7/2 = 0 or 10x + 0y – 7 = 0 (iv) Given equation, y = 3/2 x The above equation can be written in two variables as, 2y = 3x 3x – 2y = 0 3x – 2y + 0 = 0 |
|
| 121498. |
Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case:(i) -2x +3y = 12(ii) x - y/2 -5 = 0(iii) 2x +3y = 9.35 bar(iv) 3x = -7y(v) 2x +3 = 0(vi) y -5 = 0(vii) 4 = 3x(viii) = y = x/2 |
|
Answer» (i) We have -2x +3y = 12 -2x +3y -12 = 0 On comparing this equation with ax +by +c = 0 we obtain a = -2, b =3 and c = -12. (ii) Given that x - y/2 -5 = 0 1x - y/2 -5 = 0 On comparing this equation with ax +by +c = 0 we obtain a =1, b = 1/2 and c = -5 (iii) Given that 2x + 3y = 9.35 bar 2x +3y - 9.35 bar = 0 On comparing this equation with ax +by +c = 0 we get a = 2, b =3 and c = -9.35 bar (iv) 3x = -7y 3x +7y +0 = 0 On comparing this equation with ax +by +c = 0 we get a =3, b =7 and c = 0 (v) We have 2x +3 = 0 2x + 0(y) +3 =0 On comparing this equation with ax + by + c = 0 we get a =2, b=0, and c =3 (vi) Given that y -5 = 0 0x + 1y -5 = 0 On comparing this equation with ax + by +c = 0 we get a =0, b =1 and c = -5 (vii) We have 4 = x -3x + 0.y +4 = 0 On comparing the equation with ax + by +c = 0 we get a = -3, b = 0 and c =4 (viii) Given that, y = x/2 2y = x x -2y +0 =0 On comparing this equation with ax +by +c = 0 we get a =1, b =-2 and c= 0 |
|
| 121499. |
Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case: (i) -2x + 3y = 12(ii) x – y/2 – 5 = 0(iii) 2x + 3y = 9.35(iv) 3x = -7y (v) 2x + 3 = 0 (vi) y – 5 = 0 (vii) 4 = 3x (viii) y = x/2 |
|
Answer» (i) Given equation, -2x + 3y = 12 Or – 2x + 3y – 12 = 0 Comparing the given equation with ax + by + c = 0 We get, a = – 2; b = 3; c = -12 (ii) Given equation, x – y/2 – 5 = 0 Comparing the given equation with ax + by + c = 0, We get, a = 1; b = -1/2, c = -5 (iii) Given equation, 2x + 3y = 9.35 or 2x + 3y – 9.35 = 0 Comparing the given equation with ax + by + c = 0 We get, a = 2 ; b = 3 ; c = -9.35 (iv) Given equation, 3x = -7y or 3x + 7y = 0 Comparing the given equation with ax+ by + c = 0, We get, a = 3 ; b = 7 ; c = 0 (v) Given equation, 2x + 3 = 0 or 2x + 0y + 3 = 0 Comparing the given equation with ax + by + c = 0, We get, a = 2 ; b = 0 ; c = 3 (vi) Given equation, y – 5 = 0 or 0x + y – 5 = 0 Comparing the given equation with ax + by+ c = 0, We get, a = 0; b = 1; c = -5 (vii) Given equation, 4 = 3x or 3x + 0y – 4 = 0 Comparing the given equation with ax + by + c = 0, We get, a = 3; b = 0; c = -4 (viii) Given equation, y = x/2 Or x – 2y = 0 Or x – 2y + 0 = 0 Comparing the given equation with ax + by + c = 0, We get, a = 1; b = -2; c = 0 |
|
| 121500. |
Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b, c in each case:(i) x = 3y(ii) 2x = -5y(iii) 3x + 2 = 0 |
|
Answer» (i) x = 3y 1x − 3y + 0 = 0 Comparing this equation with ax + by + c = 0, a = 1, b = −3, c = 0 (ii) 2x = −5y 2x + 5y + 0 = 0 Comparing this equation with ax + by + c = 0, a = 2, b = 5, c = 0 (iii) 3x + 2 = 0 3x + 0.y + 2 = 0 Comparing this equation with ax + by + c = 0, a = 3, b = 0, c = 2 |
|