InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The value of (cot30^(@)-cot75^(@))/(tan15^(@)-tan60^(@)))` is |
|
Answer» Correct Answer - d `(cot30^(@))/(tan15^(@)-tan60^(@))` `=(tan60^(@)-tan15^(@))/(tan15^(@)-tan60^(@))` `=(-(tan15^(@)-tan60^(@)))/(tan15^(@) -tan60^(@))=-1` |
|
| 2. |
The expression `(tan57^(@)-cot75^(@))/(tan15^(@)-tan60^(@))` isA. `tan30^(@)cot57^(@)`B. `tan57^(@)cot37^(@)`C. `tan33^(@)cot53^(@)`D. `tan33^(@)cot37^(@)` |
|
Answer» Correct Answer - b `(tan57^(@)+cot37^(@))/(tan33^(@)+cot53^(@))/(tan33^(@)+cot53^(@))` `((1)/(tan33^(@))+tam33^(@))/(tan33^(@)+(1)/(tan53^(@)))` `(1+tan53^(@)tan33^(@))/(tan33^(@).tan53^(@)+1)xx(tan53^(@))/(tan33^(@))` `=tan53^(@).cot33^(@)=cot37^(@).tan57^(@)` `=tan53^(@).cot33^(@)=cot37^(@).tan57^(@)` |
|
| 3. |
यदि `sin7x=cos11x`, है तो `tan9x+cot9x` का मान है?A. 1B. 2C. 3D. 4 |
|
Answer» Correct Answer - b `sin7x=cos11x` `7x+11x=90^(@)` `18x=90^(@)` `x=5^(@)` `rArrtan9x+cot9x` `rArrtan45^(@)+cot45^(@)` `rArr1+1rArr2` |
|
| 4. |
यदि `tan15^(@)=2-sqrt(3)`, है तो `tan15^(@)cot75^(@)+tan75^(@)cot15^(@)` का मान ज्ञात करे?A. 14B. 12C. 10D. 8 |
|
Answer» Correct Answer - a `tan15^(@)cot75^(@)+tan75^(@)cot15^(@)` `=tan15^(@)cot (90^(@)-15^(@))+tan (90^(@)-15^(@)).cot5^(@)` `=tan^(2)15^(@)+cot^(2)15^(@)=tan^(2)15 ^(@)+cot^(2)15^(@)`..........(i) Formula `cot(90^(@)-theta)=tan theta` `tan(90^(@)-theta)=cot theta` Put value of `tan 15^(@)` `[cot 15^(@)=(1)/(tan15^(@)) cot15^(@)=(1)/((2-sqrt(3)))rArr(1)/((2-sqrt(3)))xx ((2+sqrt(3)))/((2+sqrt(3)))]` `cot1 8^(@)=2+sqrt(3)` Now put value in eq (i) `tan^(2) 15^(@)cot^(2)15^(@)` `= (2-sqrt(3))^(2)+(2+sqrt(3))^(2)` `=4+3-4sqrt(3)+4+3+4sqrt(3)` =14 |
|
| 5. |
`tan10^(@)" "tan15^(@)" "tan75^(@)" "tan80^(@) `का मान है? |
|
Answer» Correct Answer - b `tan10^(@)tan15^(@)tan75^(@)tan80^(@)rArr(tan10^(@) tan80^(@))(tan15^(@)tan75^(@))` `rArr1xx1` `rArr(tanA tanB=1"if" A+B=90^(@))` `rArr1` |
|
| 6. |
Consider the following statements:I. -1 ≤ sinn θ ≤ 1 where n is odd integerII. -1 ≥ Cosecn θ ≥ 1 where n is odd integerFind which statement is/are correct?1. Only 12. Only 23. Both 1 and 24. Neither 1 nor 2 |
|
Answer» Correct Answer - Option 3 : Both 1 and 2 Calculation: We know that for range for odd power of sin function always lies between -1 ≤ sinn θ ≤ 1 and The range for odd power of cosec function always lies between -1 ≥ Cosecn θ ≥ 1 ∴ Both statements are correct Hence, option (3) is correct |
|
| 7. |
An observer 1.6 m tall is 20√3 m away from a tower. The angle of elevation from his eye to the top of the tower is 30°. The height of the tower is: 1. 21.6 m2. 23.2 m3. 24.72 m4. None of these |
|
Answer» Correct Answer - Option 1 : 21.6 m Given : Observer height is 1.6 m Height of tower = 20√3 Angle of elevation = 30° RQ = 20√ 3
Calculation : In ∆ PQR Tanθ = P/B Tan30° = PQ/RQ \(\frac{1}{{√ 3 }} = \frac{{PQ}}{{RQ}}\) PQ = 20 m Hence total height of tower = 20 + 1.6 = 21.6 m
|
|
| 8. |
If A, B and C is three angles of a ΔABC, whose area is Δ. Let a, b and c be the sides opposite to the angles A, B and C respectively. If \(s=\dfrac{a+b+c}{2}=6\), then the product \(\dfrac{1}{3}s^2 (s-a)(s-b)(s-c)\) is equal to 1. 2Δ 2. 2Δ23. \(\sqrt{2}\Delta\)4. Δ2 |
|
Answer» Correct Answer - Option 2 : 2Δ2 Concept: The area of any triangle can be defined as: A = \(\rm \sqrt{s(s-a)(s-b)(s-c)}\) where a, b and c are the sides of the triangle and \(\rm s=\dfrac{a+b+c}{2}\) Calculation: Given \(\rm s=\dfrac{a+b+c}{2}=6\) Area of the triangle = \(\rm \sqrt{s(s-a)(s-b)(s-c)}\) = Δ ⇒ s(s - a)(s - b)(s - c) = Δ2 Multiplying both side by s ⇒ s × s(s - a)(s - b)(s - c) = s × Δ2 ⇒ s2(s - a)(s - b)(s - c) = 6 Δ2 Multiplying both side by \(\rm 1\over 3\) ⇒ \(\boldsymbol{\rm 1\over 3}\) s2(s - a)(s - b)(s - c) = 2 Δ2 |
|
| 9. |
If α and β are positive angles such that \(α + β = \dfrac{\pi}{4}\), then what is (1 + tan α) (1 + tan β) equal to? |
|
Answer» Correct Answer - Option 3 : 2 Concept: \(\rm \tan (α + β) = \dfrac {tan \alpha + tan \beta }{1 -tan \alpha \;tan \beta }\)
Calculations: Given, α and β are positive angles such that \(α + β = \dfrac{\pi}{4}\), ⇒\(\rm \tan (α + β) = \tan (\dfrac{\pi}{4})\) ⇒\(\rm \dfrac {tan \alpha + tan \beta }{1 -tan \alpha \;tan \beta } = 1\) ⇒\(\rm {tan \alpha + tan \beta }= 1 -tan \alpha \;tan \beta \) ⇒\(\rm {tan \alpha +tan \alpha \;tan \beta + tan \beta } - 1 = 0 \) ⇒\(\rm {tan \alpha +tan \alpha \;tan \beta + tan \beta } +1-2= 0 \) ⇒\(\rm {tan \alpha +tan \alpha \;tan \beta + tan \beta } +1=2\) ⇒\(\rm tan \alpha (1 +tan \beta ) + (1+tan \beta)=2\) ⇒\(\rm (1+ tan \alpha )(1 +tan \beta )=2\) Hence, If α and β are positive angles such that \(α + β = \dfrac{\pi}{4}\), then (1 + tan α) (1 + tan β) equal to 2. |
|
| 10. |
What is the value of \(\sin^{-1} \frac{4}{5} + 2 \tan^{-1} \frac{1}{3} \ ?\)1. \(\dfrac{\pi}{3}\)2. \(\dfrac{\pi}{2}\)3. \(\dfrac{\pi}{4}\)4. \(\dfrac{\pi}{6}\) |
|
Answer» Correct Answer - Option 2 : \(\dfrac{\pi}{2}\) Concept: \(\rm sin^2x+cos^2x=1\) \(\rm \tan^{-1}(tanx)= x\) \(\rm 2 \tan^{-1} x= tan^{-1}(\frac{2x}{1-x^2})\)
Calculation: Let, \(\rm \sin^{-1} \dfrac{4}{5} =x\) sin x= 4/5 Now, \(\rm cos^2x=1-sin^2x=1-\frac{16}{25}=\frac{9}{25}\) ⇒ cos x = 3/5 Now, cot x = cos x/sin x = 3/4 ....(1) \(\rm 2 \tan^{-1} \dfrac{1}{3} =tan^{-1}(\frac{\frac 2 3}{1-\frac 19})\) ....(∵ \(\rm 2 \tan^{-1} x= tan^{-1}(\frac{2x}{1-x^2})\)) \(\rm =tan^{-1}(\frac{\frac 2 3}{\frac 89})\) \(\rm =tan^{-1}(\frac 3 4)\) \(\rm =tan^{-1}(cot x)\) ....(from 1) \(\rm =tan^{-1}(tan (\frac π 2-x))\) = π/2 - x .....(∵ \(\rm \tan^{-1}(tanx)= x\)) = \(\rm \frac \pi 2-\sin^{-1} \dfrac{4}{5} \) ∴ \(\sin^{-1} \dfrac{4}{5} + 2 \tan^{-1} \dfrac{1}{3} = \sin^{-1} \dfrac{4}{5}+\frac\pi 2 -\sin^{-1} \dfrac{4}{5}\) = \(\dfrac{\pi}{2}\) Hence, option (2) is correct. |
|
| 11. |
What is \(\left(\dfrac{\sec 18^\circ}{\sec 144^\circ} + \dfrac{\text{cosec} \ 18^\circ}{\text{cosec} \ 144^\circ}\right)\) equal to ?1. sec 18° 2. cosec 18° 3. -sec 18° 4. -cosec 18° |
|
Answer» Correct Answer - Option 3 : -sec 18° Concept: Trigonometric Formulas: \(\ \rm cosec \;\theta = \dfrac 1{\sin \;\theta}\) \(\sin \;(-\theta )= -\sin\;\theta\) sin (A - B) = sin A. sin B - cos A cos B
Calculations: Consider, \(\left(\dfrac{\sec 18^\circ}{\sec 144^\circ} + \dfrac{\text{cosec} \ 18^\circ}{\text{cosec} \ 144^\circ}\right)\) =\(\left(\dfrac{ \dfrac 1 {\cos 18^\circ}}{\dfrac 1 {\cos 144^\circ}} + \dfrac{\dfrac 1 {\sin\ 18^\circ}}{\dfrac 1 {\sin \ 144^\circ}}\right)\) =\(\left(\dfrac{\cos 144^\circ}{\cos 18^\circ} + \dfrac{\text{sin} \ 144^\circ}{\text{sin} \ 18^\circ}\right)\) =\(\left(\dfrac{\cos (180^\circ - 36^\circ)}{\cos 18^\circ} + \dfrac{\text{sin}( \ 180^\circ-36^\circ)}{\text{sin} \ 18^\circ}\right)\) =\(\left(\dfrac{\cos 36^\circ}{\cos 18^\circ} - \dfrac{\text{sin}36^\circ}{\text{sin} \ 18^\circ}\right)\) =\(\left(\dfrac{\cos 36^\circ \sin 18^\circ -{\sin}36^\circ\cos 18^\circ }{\text{sin} \ 18^\circ.\cos 18^\circ}\right)\) =\(\left(\dfrac{\sin (18^\circ -36^\circ) }{\text{sin} \ 18^\circ.\cos 18^\circ}\right)\) =\(-\left(\dfrac{\sin 18^\circ }{\text{sin} \ 18^\circ.\cos 18^\circ}\right)\) =\(-\left(\dfrac{1 }{\cos 18^\circ}\right)\) = -sec 18° Hence, \(\left(\dfrac{\sec 18^\circ}{\sec 144^\circ} + \dfrac{\text{cosec} \ 18^\circ}{\text{cosec} \ 144^\circ}\right) =-\sec 18^\circ\) |
|
| 12. |
What is the value of \(\dfrac{\sin \theta + \cos \theta - \tan \theta}{\sec \theta + \text{cosec} \ \theta - \cot \theta}\) when \(\theta = \dfrac{3\pi}{4} ?\) |
|
Answer» Correct Answer - Option 2 : 1 Concept: In the first quadrant, the values for sin, cos and tan are positive. In the second quadrant, the values for sin and cosec are positive only. In the third quadrant, the values for tan are positive only. In the fourth quadrant, the values for cos are positive only. sin(π - θ) = sin θ
Calculation: Here, \(\dfrac{\sin \theta + \cos \theta - \tan \theta}{\sec \theta + \text{cosec} \ \theta - \cot \theta}\)and \(\theta = \dfrac{3\pi}{4} =\pi -\frac \pi 4\) \(\rm \dfrac{\sin \theta + \cos \theta - \tan \theta}{\sec \theta + \text{cosec} \ \theta - \cot \theta}=\)\(\dfrac{\sin (\pi -\frac \pi 4)+ \cos(\pi -\frac \pi 4) - \tan(\pi -\frac \pi 4)}{\sec (\pi -\frac \pi 4) + \text{cosec} \ (\pi -\frac \pi 4) - \cot (\pi -\frac \pi 4)}\) \(=\dfrac{\sin (\frac \pi 4)- \cos( \frac \pi 4) + \tan(\frac \pi 4)}{-\sec (\frac \pi 4) + \text{cosec} \ (\frac \pi 4) +\cot (\frac \pi 4)}\) \(=\frac{\frac{1}{\sqrt2}-\frac{1}{\sqrt2}+1}{-\sqrt2+\sqrt2+1}\) = 1 Hence, option (2) is correct. |
|
| 13. |
The value of following is `cos24^(@)+cos55^(@)+cos125^(@)+cos204^(@)+cos300^(@)`A. `-1//2`B. `1//2`C. `2`D. `1` |
|
Answer» Correct Answer - b The value of `cos24^(@)+cos55^(@)+cos125^(@)+cos204^(@)+cos300^(@)` We know that `cos(180^(@)+-theta)` `=-cos theta` `rArr cos24^(@)+cos55^(@)+cos(180^(@)-55^(@))+cos(180^(@)+24^(@))=cos(360^(@)-60^(@))` `rArrcos24^(@)+cos55^(@)-cos55^(@)-cos24^(@)+cos60^(@)` `rArrcos 60^(@)=(1)/(2)` |
|
| 14. |
What is the value of cos{cos-1(3/5) + cos-1(12/13)}1. 33/652. 20/653. 16/654. 36/65 |
|
Answer» Correct Answer - Option 3 : 16/65 Concept: cos(A + B) = cos A cos B - sin A sin B \(\rm sin^2x+cos^2x=1\)
Calculation: To find: cos{cos-1(3/5) + cos-1(12/13)} = ? Let, cos-1(3/5) = A ⇒cos A = 3/5 ⇒ sin A = \(\sqrt{({1-\frac{3^2}{5^2}})}\) = √ (16/25) = 4/5 Also, let cos-1(12/13) = B ⇒cos B = 12/13 ⇒ sin B = \(\sqrt{(1-\frac{12^2}{13^2})}=\sqrt{(\frac{169-144}{169})}\) = √(25/169) = 5/13 A + B = cos-1(3/5) + cos-1(12/13) cos{cos-1(3/5) + cos-1(12/13)} = cos(A + B) Now, we know, cos(A + B) = cos A cos B - sin A sin B \(=\frac{3}{5}\times \frac{12}{13}-\frac{4}{5}\times \frac{5}{13}\\ =\frac{36}{65}-\frac{20}{65}\) = 16/65 Hence, option (3) is correct. |
|
| 15. |
Find value of 7(cot2θ – cosec2θ) .1. 12. 73. -74. 0 |
|
Answer» Correct Answer - Option 3 : -7 Identity: cosec2θ - cot2θ = 1 Calculation: cosec2θ - cot2θ = 1 ⇒ cot2θ - cosec2θ = -1 ⇒ 7(-1) ∴ -7 The Correct option is 3 i.e. -7 |
|
| 16. |
If cosθ = (5/13), then find the value of (sec2θ - tan2θ) × (cosec2θ - cot2θ) |
|
Answer» Correct Answer - Option 4 : 1 Given - cosθ = (5/13) Formula used - sec2θ = 1 + tan2θ cosec2θ = 1 + cot2θ Solution - (sec2θ - tan2θ) × (cosec2θ - cot2θ) ⇒ By using above formula, ⇒ 1 × 1 ⇒ 1 Ans = 1.
|
|
| 17. |
Consider the following statements:I. 1/(1 + cosθ) + 1/(1 - cosθ) = 2cosec2θII. (1 + tan2θ)/ cosec2θ = tan2θWhich of the following statements are correct.1. Only 12. Only 23. Both 1 and 24. Neither 1 nor 2 |
|
Answer» Correct Answer - Option 3 : Both 1 and 2 Given: Two identities are given Formula Used: Basic concept of trigonometric ratio and identities We know that (a2 – b2) = (a + b)(a - b) sin2θ + cos2θ = 1 1 + tan2θ = sec2θ sinθ = 1/cosecθ Calculation: The given identity is 1/(1 + cosθ) + 1/(1 - cosθ) = 2cosec2θ L.H.S. Take LCM of denominators ⇒ 2/(1 + cosθ) × (1 - cosθ) ⇒ 2/(1 - cos2θ) ⇒ 2/sin2θ ⇒ 2 cosec2θ = R.H.S. So, statement 1 is correct Now, the given identity is (1 + tan2θ)/ cosec2θ = tan2θ L.H.S. ⇒ (1 + tan2θ)/cosec2θ ⇒ sec2θ/cosec2θ ⇒ sin2θ/cos2θ ⇒ tan2θ = R.H.S. So, statement 2 is correct Hence, option (3) is correct |
|
| 18. |
If sinθ + cosecθ = 2, then find the value of sin2θ + cos4θ - 2cosec2θ.1. -12. 13. -24. 2 |
|
Answer» Correct Answer - Option 1 : -1 Given: sinθ + cosecθ = 2 Formula used: sin90° = 1 cos90° = 0 cosec90° = 1 sinθ = 1/cosecθ Calculation: sinθ + cosecθ = 2 ⇒ sinθ + (1/sinθ) = 2 But the above equation possible when sinθ = 1 ⇒ sinθ = sin90° After comparing we get θ = 90° sin2θ + cos4θ - 2cosec2θ ⇒ sin290° + cos490° - 2cosec290° ⇒ (1)2 + (0)4 - 2 × (1)2 ⇒ 1 + 0 - 2 ⇒ -1 ∴ The value is -1. |
|
| 19. |
If the value of tanθ + cotθ = √3, then find the value of tan6θ + cot6θ.1. -22. -13. -34. -4 |
|
Answer» Correct Answer - Option 1 : -2 Given: tanθ + cotθ = √3 Formula used: a3 + b3 = (a + b)3 - 3ab(a + b) a2 + b2 = (a + b)2 - 2(a × b) tanθ × cotθ = 1 Calculation: tanθ + cotθ = √3 Taking cube on both sides, we get (tanθ + cotθ)3 = (√3)3 ⇒ tan3θ + cot3θ + 3 × tanθ × cotθ × (tanθ + cotθ) = 3√3 ⇒ tan3θ + cot3θ + 3√3 = 3√3 ⇒ tan3θ + cot3θ = 0 Taking square on the both sides (tan3θ + cot3θ)2 = 0 ⇒ tan6θ + cot6θ + 2 × tan3θ × cot3θ = 0 ⇒ tan6θ + cot6θ + 2 = 0 ⇒ tan6θ + cot6θ = - 2 ∴ The value of tan6θ + cot6θ is - 2. |
|
| 20. |
If tanθ = (5/12). Find the value of (cosθ - sinθ)/(cosθ + sinθ).1. 17/72. 7/173. 12/174. 12/7 |
|
Answer» Correct Answer - Option 2 : 7/17 Given: tanθ = 5/12 Calculation: (cosθ - sinθ)/(cosθ + sinθ) After taking cosθ common from both numerator and denominator we get, ⇒ [1 - (sinθ/cosθ)]/[1 + (sinθ/cosθ)] ⇒ [1 - tanθ]/[1 + tanθ] ⇒ [1 - (5/12)]/[1 + (5/12)] ⇒ [(12 - 5)/12]/[(12 + 5)/12] ⇒ [7/12]/[17/12] ⇒ 7/17 ∴ The value is 7/17. |
|
| 21. |
If secθ – tanθ = 2, then find the value of cosθ 1. 3/52. 5/43. 2/54. 4/5 |
|
Answer» Correct Answer - Option 4 : 4/5 Given: Our equation is (secθ – tanθ) = 2 Formula used: sec2θ – tan2θ = 1 Concept used: (secθ – tanθ)(secθ + tanθ) = 1 If (secθ – tanθ) = p, then (secθ + tanθ) = 1/p Calculation: Our given expression is (secθ – tanθ) = 2 ----(1) ⇒ (secθ + tanθ) = ½ ----(2) Adding equation (1) and (2) ⇒ 2secθ = 2 + 1/2 ⇒ secθ = 5/4 ∴ The value of cosθ is 4/5 |
|
| 22. |
If cosθ = 3/5, then find the value of tanθ.1.4/52. 4/33. 3/44. 5/4 |
|
Answer» Correct Answer - Option 2 : 4/3 Given: cosθ = 3/5 Concept used: In a right-angled triangle cosθ = base/hypotenuse tanθ = perpendicular/base Pythagorus theorem (Hypotenuse)2 = (Perpendicular)2 + (Base)2 Calculation: Base = 3, Hypotenuse = 5 By using pythagorus theorem ⇒ (Perpendicular)2 = (5)2 – (3)2 ⇒ (Perpendicular)2 = 25 – 9 ⇒ (Perpendicular)2 = 16 ⇒ Perpendicular = 4 tanθ = perpendicular/base ⇒ tanθ = 4/3 ∴ The value of tanθ is 4/3. |
|
| 23. |
If √3cotθ = 1, 0 ≤ θ ≤ 90°, then the value of cos2θ - sin2θ is1. 1/22. -1/23. 1/√24. None of the above |
|
Answer» Correct Answer - Option 2 : -1/2 Given √3cotθ = 1 Calculation cotθ = 1/√3 ⇒ θ = 60° ⇒ cos2θ - sin2θ ⇒ cos260 - sin260 ⇒ (1/2)2 - (√3/2)2 ⇒ 1/4 - 3/4 = -2/4 ⇒ -1/2 ∴ The value of cos2θ - sin2θ is -1/2 |
|
| 24. |
If sinθ = 0.96, then find cotθ 1. 0.29162. 0.45633. 0.48764. 0.3456 |
|
Answer» Correct Answer - Option 1 : 0.2916 Given: sinθ = 0.96 Formula used: sinθ = perpendicular/hypotenuse, cotθ = base/perpendicular By Pythagoras theorem, Hypotenuse2 = Perpendicular2 + Base2 Calculation: According to the question: sinθ = 0.96 = 96/100 = 24/25 Perpendicular = 24 ⇒ Hypotenuse = 25 Hypotenuse2 = Perpendicular2 + Base2 ⇒ 252 = 242 + Base2 ⇒ 625 = 576 + Base2 ⇒ 625 – 576 = Base2 ⇒ Base2 = 49 ⇒ Base = √49 ⇒ Base = √(7 × 7) = 7 Now, cotθ = base/perpendicular ⇒ 7/24 = 0.2916 ∴ The value of cotθ = 0.2916. |
|
| 25. |
In Sin3θ = cos(θ - 26°), where 3θ and (θ - 26°) are acute angles, then value of θ 1. 30°2. 27°3. 26°4. 29° |
|
Answer» Correct Answer - Option 4 : 29° Given sin 3θ = cos(θ - 26°) Formula Used sinθ = cos(90° - θ) cos θ = sin(90° - θ) Calculation sin 3θ = sin [90° - (θ - 26°)] ⇒ 3θ = 90° - (θ - 26°) ⇒ 4θ = 116° ⇒ θ = 29° ∴ The answer is 29° |
|
| 26. |
Find the value of sin15°. 1. (√3 + 1)/2√22. (√3 + 1)/23. (√3 – 1)/2√24. (√3 – 1)/2 |
|
Answer» Correct Answer - Option 3 : (√3 – 1)/2√2 Formula Used: sin(A – B) = sinA × cosB – sinB × cosA Calculation: Now, from the above used formula ⇒ sin15° = sin(45° – 30°) ⇒ sin45° × cos30° – sin30° × cos45° ⇒ (1/√2) × (√3/2) – (1/√2) × (1/2) ⇒ (√3 – 1)/(2 × √2) ∴ (√3 – 1 )/ 2√2 |
|
| 27. |
If \(cos x = \frac{3}{5}\), then find the value of sin x - sin3 x.1. 0.4762. 0.2883. 0.3584. 0.389 |
|
Answer» Correct Answer - Option 2 : 0.288 Given: Cos x = 3/5 Formula used: Sin x = perpendicular/hypotenuse, Cos x = base/hypotenuse, By Pythagoras theorem, Hypotenuse2 = Perpendicular2 + Base2 Calculation: According to the question: Cos x = 3/5 Base = 3 ⇒ Hypotenuse = 5 Hypotenuse2 = Perpendicular2 + Base2 ⇒ 52 = 32 + Perpendicular2 ⇒ 25 = 9 + Perpendicular2 ⇒ 25 – 9 = Perpendicular2 ⇒ Perpendicular2 = 16 ⇒ Perpendicular = √16 ⇒ Perpendicular2 = √(4 × 4) ⇒ Perpendicular = 4 Now, (Sin x – Sin3 x) ⇒ [(perpendicular/hypotenuse) – (perpendicular/hypotenuse)3] ⇒ [4/5 – (4/5)3] ⇒ [4/5 – 64/125] ⇒ (100 – 64)/125 ⇒ 36/125 = 0.288 ∴ The answer is 0.288. |
|
| 28. |
Find the value of cosec(75° + x) – sec(15° - x) + tan(55° + x) – cot(35° - x)1. 12. 03. 24. 1/2 |
|
Answer» Correct Answer - Option 2 : 0 Concept used: cosec(90° – x) = sec x tan(90° – x) = cot x Calculation: ⇒ cosec(75° + x) – sec(15° – x) + tan(55° + x) – cot(35° – x) ⇒ cosec[90° – (15° - x)] – sec(15° – x) + tan[90° – (35° – x)] – cot(35° – x) ⇒ sec(15° – x) – sec(15° – x) + cot(35° – x) – cot(35° – x) ⇒ 0 + 0 = 0 ∴ The value of cosec(75° + x) – sec(15° – x) + tan(55° + x) – cot(35° – x) is 0 |
|
| 29. |
If sin (A + 2B) = √3/2 and cos (A + 4B) = 0, find A and B. (a) 30°, 15° (b) 45°, 60° (c) 0, 90° (d) 45°, 45° |
|
Answer» (a) Here, sin(A + 2B) = √3/2 sin(A + 2B) = sin 60° A + 2B = 60° ...(i) and cos(A + 4B) = 0 cos (A + 4B) = cos 90° A + 4B = 90° A = – 4B + 90° ...(ii) Put the value of A in eq. (ii), A + 2B = 60° or – 4B + 2B + 90° = 60° – 2B = 60° – 90° – 2B = – 30° B = 15° and A = – 4B + 90° = – 4(15°) + 90° A = 30° |
|
| 30. |
If a cos 60° = b cosec 45° then find the value of 7(a/2b)2?1. 142. 213. 74. 8 |
|
Answer» Correct Answer - Option 1 : 14 Given: It is given that a cos 60° = b cosec 45° Formula Used: Basic concept of trigonometric ratio and identities We know that Cos 60° = 1/2 and cosec 45° = √2 Calculation: We have to find the value of 7(a/2b)2 = 7a2/4b2 By rearranging the terms we get ∴ a/b = cosec 45°/ Cos 60° ⇒ a/b = 2√2 Now, squaring both the sides ∴ (a/b)2 = (2√2)2 ⇒ a2/b2 = 8 Now, multiply both the side by 7/4 ∴ 7/4 × a2/b2 = 7/4 × 8 = 14 Hence, option (1) is correct |
|
| 31. |
The sides a, b, c (taken in order) of a ΔABC are in A.P. If \(\rm \cos \alpha =\frac{a}{b+c}\), \(\rm \cos \beta =\frac{b}{c+a}\), \(\rm \cos \gamma =\frac{c}{a+b}\), then \(\rm \tan^{2}\frac{\alpha }{2}+\tan^{2}\dfrac{\gamma }{2}\) is equal to:[Note: All symbols used have usual meanings in triangle ΔABC.]1. 12. \(\rm \frac12\)3. \(\rm \frac23\)4. \(\rm \frac13\) |
|
Answer» Correct Answer - Option 3 : \(\rm \frac23\) Concept: Trigonometry: \(\rm \cos 2\theta =\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\).
Calculation: Since a, b and c are in A.P., we have 2b = a + c ⇒ c = 2b - a. It is given that \(\rm \cos \alpha =\frac{a}{b+c}\). Using the half-angle formula \(\rm \cos 2\theta =\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\) and the fact that c = 2b - a, we get: ⇒ \(\rm \frac{1-{{\tan }^{2}}\frac{\alpha }{2}}{1+{{\tan }^{2}}\frac{\alpha }{2}}=\frac{a}{3b-a}\) ⇒ \(\rm \frac{2{{\tan }^{2}}\tfrac{\alpha }{2}}{2}=\frac{(3b-a)-a}{(3b-a)+a}\) ⇒ \(\rm {{\tan }^{2}}\frac{\alpha }{2}=\frac{3b-2a}{3b}\) ...(1) Similarly, \(\rm {{\tan }^{2}}\frac{\gamma }{2}=\frac{2a-b}{3b}\) ...(2) Now, \(\rm {{\tan }^{2}}\frac{\alpha }{2}+{{\tan }^{2}}\frac{\gamma }{2}\) = \(\rm \frac{3b-2a}{3b}+\frac{2a-b}{3b}\) ... [Using (1) and (2)] = \(\rm \frac{2b}{3b}\) = \(\frac{2}{3}\) |
|
| 32. |
If \(\rm \frac{cos(x+y)}{cos(x-y)}=\frac{a+b}{a-b}\), What is tan(x) tan(y) equal to?1. b/a2. a/b3. -b/a4. 2b/a |
|
Answer» Correct Answer - Option 3 : -b/a Concept: \(\rm cosA + cosB = 2cos(\frac{A+B}{2})cos(\frac{A-B}{2})\) \(\rm cosA - cosB = -2sin(\frac{A+B}{2})sin(\frac{A-B}{2})\)
Calculation: Here, \(\rm \frac{\cos(x+y)}{\cos(x-y)}=\frac{a+b}{a-b}\) Applying componendo and dividendo, we get \(\rm \frac{cos(x+y)+cos(x-y)}{cos(x+y)-cos(x-y)}=\frac{a+b + a-b}{a+b-a + b}\) \(⇒ \rm \frac{2cos(\frac{x+y+x-y}{2})cos(\frac{x+y-x+y}{2})}{-2sin(\frac{x+y+x-y}{2})sin(\frac{x+y-x+y}{2})}=\frac{2a}{2b}\) ⇒ cot(x) cot(y) = -a/b ⇒ tan(x) tan(y) = -b/a Hence, option (3) is correct. |
|
| 33. |
The value of ` (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-co s ec^(2)20^(@))`A. `-1`B. 0C. 1D. 2 |
|
Answer» Correct Answer - a `(sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-co s ec^(2)20^(@))` `=(sin25^(@)cos(90^(@)-25^(@))+cos25^(@) sin(90^(@)-25 ^(@)) )/(tan^(2)70^(@)-co s ec ^(2)20^(@))` `=(sin^(2)25^(@)+cos^(2)25^(@))/(tan^(2)70^(@)-sec^(2)70^(@))` `=(1)/(-1)=-1` |
|
| 34. |
If x = Sec A/(1 – Cos A), then Sin2A/(Sec A + 1) is equal to?1. (1 – Cos A)/ Sec A2. cot A/(1 – Sec A)3. Tan A/(1 + Cot A)4. Sec A/(1 + Cos A) |
|
Answer» Correct Answer - Option 1 : (1 – Cos A)/ Sec A Identity used: Sin2A = 1 – Cos2A Calculation: x = {[Sec A/(1 – Cos A)] × (1 + CosA)/(1 + CosA) ⇒ x = (Sec A + Sec A Cos A)/(1 – CosA) × (1 + CosA) ⇒ x = (SecA + 1)/(1 – Cos2A) ⇒ x = (Sec A + 1)/Sin2A ⇒ 1/x = Sin2A/(Sec A + 1) So, value of Sin A/(Sec A + 1) is (1 – Cos A)/Sec A |
|
| 35. |
If `cos_(theta)+sin_(theta)=sqrt2` then `cos_(theta)-sin_(theta)` is(यदि`cos_(theta)+sin_(theta)=sqrt2` है तो `cos_(theta)-sin_(theta)`)A. `sqrt2 tan theta`B. `-sqrt2 cos theta`C. `-sqrt2 sin theta`D. `-sqrt2 sin` |
|
Answer» Correct Answer - d `sin theta-cos theta=(1)/(2)` ......(i) `rArr sin theta++cos theta=m` (ii) then, `a^(2)+b^(2)=c^(2)+d^(2)` `1^(@)+1^(2)=((1)/(2))^(2)+m^(2)` `2=(1)/(4)+m^(2)` `m^(2)=2-(1)/(4)=(7)/(4)` `rArrm=sqrt(7)/(2)` |
|
| 36. |
If `cosx+cos^(2)x=1` , the numberical value of(यदि `cosx+cos^(2)x=1` है तो का अंकित मान क्या होगा )A. `-1`B. 2C. 0D. 1 |
|
Answer» Correct Answer - c `cos theta+sintheta=sqrt(2)cos theta` Squaring both sides `cos^(2)theta+sin^(2)theta+2cos thetasintheta=2cos^(2)theta` `rArr 2cos^(2)theta-cos^(2)theta-sin^(2)theta=2` `cos theta sintheta` `rArrcos^(2)theta-sin^(20theta=2sin theta cos theta` `rArr(cos theta-sin theta)(sqrt(2)cos theta)=` `2sin theta.cos theta` `rArr(cos theta-sin theta)=(2sinthetacos theta)/(sqrt(2costheta))` Alternate Let `sqrt(2)cos theta=alpha` `therefore cos theta+-sin theta=a` `cos thea+-sintheta=sqrt(2-a^(2))` `=sqrt(2(1-cos^(2)theta))` `=sqrt(2sin^(2)theta)=sqrt(2)sin theta` |
|
| 37. |
If the sujm and difference of two angles are `135^(@)` and`(pi)/(12)` respectively, then the value of the angles in degree measure are (यदि दो कोनो का योग तथा अंतर क्रमश `135^(@)` और `(pi)/(12)` है तो डिग्री में कोणो की माप ज्ञात करे )A. `70^(@),65^(@)`B. `70^(@),60^(@)`C. `45^(@),90^(@)`D. `80^(@),55^(@)` |
|
Answer» Correct Answer - b `sin^(12)x+3sin^(10)x+3sin^(8)x+sin^(6)x-1` `rArr(sin^(4)x+sin^(2)x)^(3)-1` `rArr(cos^(2)x+sin^(2)x)^(2)-1` `[cos x+cos^(2)x=1 cos x=1-cos^(2)x=sin^(2)x]` `rArr1-1=0` |
|
| 38. |
`((3pi)/(5))` radians is equal to ( `((3pi)/(5))` रेडियम किसके बराबर होगा)A. `100^(@)`B. `120^(@)`C. `108^(@)`D. `180^(@)` |
|
Answer» Correct Answer - c `angle A+angleB=135^(@)` .........(i) `angleA-angleB=(pi)/(12)=15^(@)` .......(ii) adding both equation ` 2angleA=150^(@)rARrangleA=75^(@)` `angleB=60^(@)` |
|
| 39. |
यदि `cos20^(@)=n` और `70^(@)=n` है तो `m^(2)+n^(2)` का मान बताएंA. `(1)/(2)`B. `1`C. `(3)/(2)`D. `(1)/(sqrt(2))` |
|
Answer» Correct Answer - b `cos20^(@)=m` `cos70^(@)=n` So, `m^(2)+ n^(2)+cos^(2)20^(@)+cos^(2)70^(@)` ` [cos^(2)A+cos^(2)B=1 "If" A+B=90^(@)]` |
|
| 40. |
If `alpha+beta90^(@)` then the expression `(tanalpha)/(tanbeta)+sin^(2)alpha+sin^(2)beta` is equal to:A. `tan^(2)alpha`B. `tan^(2)beta`C. `sin^(2)beta`D. `sec^(2)beta` |
|
Answer» Correct Answer - d Given: `alpha+beta=90^(@)` to find `(tanalpha)/(tan beta)+sin^(@)alpha+sin^(2)beta=?` `becausealpha+beta=90^(@)` `rArralpha=90-beta` `rArralpha,beta` are complementary angles `rArr(tan alpha)/(tan(90-alpha))+sin^(2)alpha+sin^(2)(90-alpha)` `rArr(tanalpha)/(cotalpha)+sin^(2)alpha+cos^(2)alpha` `rArrtan^(2)alpha+1` `(because sin^(2)alpha+cos^(2)alpha=1)` `rArrsec^(2)alpha(because 1+tan^(2)alpha=sec^(2)alpha)` |
|
| 41. |
The value of `(sin43^(@))/(cos47^(@))+(cos19^(@))/(sin71^(@))-8cos^(2)60^(@)` |
|
Answer» Correct Answer - a `(sin43^(@))/(cos47^(@))+(cos19^(@))/(sin71^(@))-8cos^(2)60^(@)` `rArr1+1 -(8xx((1)/(2))^(2))` `sinA=cosB ` (if`A+B=90^(@)`) `[(sinA)/(cosB)=1"or"(cosB)/(sinA)=1]` `rArr2-2=0` |
|
| 42. |
The value of tan24.tan48.tan42.tan66 is. |
|
Answer» Correct Answer - Option 4 : 1 Given: tan24.tan48.tan42.tan66 Formula used: tanθ = cot(90 – θ) tanθ = 1/(cotθ) Calculation: tan48 = cot(90 – 48) = cot42 tan66 = cot (90 – 66) = cot24 Now we have tan24.cot24.tan42.cot42 ⇒ tan24.(1/tan24).tan42.(1/tan42) = 1 ∴ The value of tan24.tan48.tan42.tan66 is 1. |
|
| 43. |
The value of esxpression `sin^(2)1^(@)+sin^(2)11^(@)+sin^(2)21^(@)+sin^(2)31^(@)+sin^(2)41^(@)+sin^(2)45^(@)+sin^(2)49^(@)+sin^(2)59^(@)+sin^(2)69^(@)+sin^(2)79^(@)+sin^(2)89^(@)` is |
|
Answer» Correct Answer - b `sin^(2)1+sin^(2)11^(@)+sin^(2)21^(@)+sin^(2)31^(@)+sin^(2)41^(@)+sin^(2)45^(@)+sin^(@)49+sin^(2)59^(@)+sin^(2) 69^(@)+sin^(2)79^(@)+sin^(2)89^(@)` `rArr(sin^(2)79^(@))+sin^(2)89^(@))+(sin^(2)11^(@)+sin^(2)8=79^(@) )+(sin^(2)21 ^(@)+sin^(@)69^(@))+(sin^(2)31^(@)+sin^(2)59^(@))+(sin^(2)41^(@)+sin^(2)49^(@))+sin^(2)45^(@)` `rArr1+1+1+1+(1)/(2)` `(sin^(2)A+sin^(2)B=1` if `A+B=90^(@))rArr5(1)/(2)` |
|
| 44. |
The value of `cot41^(@).cot42^(@).cot47^(@).cot48^(@).cot49^(@)`.A. `(sqrt(3))/(2)`B. `1`C. `0`D. `(1)/(sqrt(2))` |
|
Answer» Correct Answer - b `cot41^(@).cot42^(@).cot43^(@).cot44^(@)` `45^(@).cot46^(@)cot47^(@).cot48^(@)` `cot49^(@)` `rARr(cot41^(@).cot49^(@)).(cot42^(@).cot48^(@))` `cot45^(@)(cotA.cotB=1)` (if `A+B=90^(@)`) |
|
| 45. |
निम्नलिखित का मान है ? `((sin47^(@))/(cos43^(@)))^(2)+((cos43^(@))/(sin47^(@)))^(2)-4cos^(2)45^(@)`A. 1B. `(1)/(2)`C. `-1`D. 0 |
|
Answer» Correct Answer - d `((sin47^(@))/(cos43^(@)))^(2)+((cos43^(@))/(sin47^(@))^2)-4xx(1)/(2)` `=1+1-2` =0 |
|
| 46. |
निम्नलिखित का मान है? `((tan20^(@))^(2))/((co s ec70^(@))^(2))+((cot20^(@))^(2))/((sec70^(@))^(@))+tan` `15^(@).tan45^(@).tan75^(@)`.A. 1B. 2C. 4D. 3 |
|
Answer» Correct Answer - d value of `rArr((tan20^(@))^(2))/((co s ec70^(@)))+((cot20^(@))/(sec70^(@)))^(2)` `+2 tan15^(@)tan45^(@)tan75^(@)` `rArr((tan20^(@))^(2))/(sec^(2)20^(@))+((cot20^(@))/(sec70^(@)))^(2)` `+2 tan15^(@)tan45^(@)tan75^(@)` `rArr((tan20^(@))^(2))/(sec^(2)20^(@))+((cot20^(@))^(2))/(co s ec20^(@))` `+2 tan 15^(@)tan75^(@)` `[tan 5^(@) tan75^(@)=1"if"A+B=90^(@)]` `rArr[sin^(2)20^(@)+cos^(2)20^(@)]+2` 1+2=3 |
|
| 47. |
यदि `cosx,cosy+sinx.siny=-1` हो तो `cosx+cosy` का मान होगा ?A. -2B. 1C. 0D. 2 |
|
Answer» Correct Answer - c ` cosx.cosy+sinx.siny=-1` `cosx=y=-1` `cos(x-y)=cos180^(@)` `x -y=180^(@)` `x- y=180^(@)` `cosx+cosy=2cos(x+y)/(2).cos` `(x-y)/(2)` `=2cos(x+y)/(2).cos(180)/(2)` `=2cos(x+y)/(2)cos90^(@)` `cos90^(@)=0` `cos x+cosy=0` |
|
| 48. |
if `tantheta=(4)/(3)`, then the value of `(3sintheta+2costheta)/(3sintheta-2costheta)` isA. 0.5B. `-0.5`C. `3.0`D. `-3.0` |
|
Answer» Correct Answer - c `(3sintheta+2costheta)/(3sintheta-2costheta)` divide numerator `&` denominator by `cos theta` `=(3(sintheta)/(costheta)+(2costheta)/(costheta))/((3sintheta)/(cos theta)-(2cos theta)/(cos theta))[(sintheta)/(costheta)=tantheta]` `=(3tantheta+2)/(3 tan theta-2)` Put value of `tan theta` `=(3xx(4)/(3)+2)/(3xx(4)/(3)-2)=(6)/(2)=3` |
|
| 49. |
Find value of the following `3(sin^(4)theta+cos^(4)theta)+2sin^(6)theta+cos^(6)theta)+12sin^(2)thetacos^(2)theta` :A. 3B. 2C. 0D. 5 |
|
Answer» Correct Answer - d The value of `3sin^(2)theta+cos^(4)theta)+2` `(sin^(6)theta+cos^(6)theta)+12sin^(2)thetacos^(2)theta` Using `theta=0^(@)` `because sin0^(@)=0^(@)` `cos0^(@)=0^(@)` `cos 0^(@)=1` `rArr3(0+1^(4))+2(0+1^(6))+1.2xx0xx1` `rArr1+2=5` |
|
| 50. |
if `theta+phi=(pi)/(2) and sintheta=(1)/(2)` then the value of `sinphi` isA. 1B. `(1)/(sqrt(2))`C. `(1)/(2)`D. `(sqrt(3))/(2)` |
|
Answer» Correct Answer - d `theta+phi=(pi)/(2)` `theta+phi=90^(@)` `sin theta=(1)/(2)` `sin theta=sin30^(@)=(1)/(2)`...........(ii) put `theta=30^(@)`(in equation) (i) ` 30^(@)+phi=90^(@)` `phi=60^(@)` `phi=60^(@)` `sin phi=sin60^(@)=sqrt(2)/(2)` |
|