Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

यदि `cottheta=4` हो तो `(5sintheta+3costheta)/(5sintheta-3costheta)` का मान बताएं ?A. `(-17)/(7)`B. `(1)/(3)`C. 3D. 9

Answer» Correct Answer - a
`cot theta=4` the value of
`(3sintheta+3costheta)/(5sin theta-3cos theta)=[(5+3cotheta)/(5-3 cot theta)]`
`rArr(5+3xx4)/(5-3xx4)`
`rArr(17)/(-7)`
52.

`x=a" "sectheta" "cosphi,y=b" "sectheta" "sinphi,Z=c" "tantheta,` है तो `(x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))` का मान क्या होगा?A. 1B. 4C. 9D. 0

Answer» Correct Answer - a
`x=a sec thetacos phi`
`y=b sec theta sin phi`
`z=c tan theta`
`(x)/(a)=sec theta.cos phi`
`(y)/(b)=sec theta. Sin phi`
`(z)/(c)=tan theta`
`therefore(x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))`
`rArrsec^(2)theta.cos^(2)phi+sec^(2)theta.sin^(2)phi-tan^(2)theta`
`rArrsec^(2)theta(cos^(2)phi+sin^(2)phi)-tan^(2)theta`
`rArrsec^(2)theta-tan^(2)theta=1`
53.

`((sintheta+sinphi)/(costheta+cosphi)+(costheta-cosphi)/(sintheta-sinphi))` का मान बताएं ?A. 1B. 2C. `1//2`D. 0

Answer» Correct Answer - d
`((sintheta+sinphi)/(costheta+cosphi)+(costheta-cosphi)/(sin theta-sinphi))`
Put `theta=90^(@)`
`phi=0^(@)`
`therefore((sin90+sin0)/(cos90+cos0)+(cos90-cos0)/(sin90-sin0))`
`rArr((1+0)/(0+1)+( 0-1)/(1-0))`
54.

Find the value of {[Tan A/(1 – Cot A)] + [Tan A/(1 + Cot A)]} × (1 – Cot2 A)1. 2 Tan A2. 2 Cot A3. Cosec A4. sin A

Answer» Correct Answer - Option 1 : 2 Tan A

Calculation:

{[Tan A/(1 – Cot A)]+ [Tan A/(1 – Cot A)]} × (1 – Cot 2A)

⇒ {[Tan A/(1 – Cot A) ]+ [Tan A/(1 – Cot A)]} × (1 – CotA) × (1 + CotA)

⇒ TanA × (1 + CotA) + TanA × (1 – CotA)

⇒ TanA × (1 + CotA + 1 – CotA)

⇒ TanA × 2

∴ 2TanA

55.

If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°) 1. \(\sqrt{2}\)2. \(\sqrt{6}\)3. \(\dfrac{1}{\sqrt{3}}\)4. 1

Answer» Correct Answer - Option 2 : \(\sqrt{6}\)

Given

4 cos2 θ - 3 sin2 θ + 2 = 0

Formula:

sin2θ + cos2θ = 1

tan2θ = sin2θ/cos2θ

Calculation:

4 cos2θ - 3 sin2θ + 2 = 0

⇒ 4 cos2θ - 3 (1 - cos2θ) + 2 = 0

⇒ 4 cos2θ - 3 + 3 cos2θ + 2 = 0

⇒ 7 cos2θ - 1 = 0

⇒ 7 cos2θ = 1

⇒ cos2θ = 1/7

sin2θ + cos2θ = 1

⇒ sin2θ = 1 - 1/7

⇒ sin2θ = 6/7

Now,

tan2θ = sin2θ/cos2θ

⇒ tan2θ = (6/7)/(1/7)

⇒ tan2θ = 6

∴ tanθ = √6

56.

cos 57° + sin 27° =1. cos 30°2. cos 3°3. sin 3°4. None of these

Answer» Correct Answer - Option 2 : cos 3°

Given 

cos 57° + sin 27° 

Formula Used 

cos(90° - θ) = sinθ 

sinC + sinD = 2 × sin(C + D)/2 × cos(C - D)/2

Calculation 

cos(90° - θ) = sinθ 

⇒ cos 57° + sin 27° = cos (90° - 33°) + sin 27° 

⇒ sin 33° + sin 27° 

⇒ 2sin (33° + 27°)/2 × cos(33° - 27°)/2

⇒ 2sin30° × cos 3° 

⇒ 2 × 1/2 cos 3° 

⇒ cos 3°

∴ The required answer is cos3°

57.

What is the value of cot 35°cot 40°cot 45°cot 50°cot 55°?1. 12. 03. 24. -1

Answer» Correct Answer - Option 1 : 1

Given:

cot 35°cot 40°cot 45°cot 50°cot 55°

Concept used:

cot 45° = 1

tan θ × cot θ = 1

tan A = cot B, if A + B = 90° 

Calculation:

cot 35°cot 40°cot 45°cot 50°cot 55°

⇒ cot 35° cot 40° cot 45° tan 40° tan 35° 

⇒ cot 35° tan 35° cot 40° tan 40° cot 45° 

⇒ cot 45° = 1

∴ The correct answer is 1.

58.

If sin x = 3/5 , cos y = − 12/13 , where x and y both lie in second quadrant, find the value of sin (x + y).

Answer»

We know that  
sin (x + y) = sin x cos y + cos x sin y ... (1)  
Now cos2x = 1 – sin2x = 1 – 9/25 = 16/25  
Therefore cos x = ± 4/5.  
Since x lies in second quadrant, cos x is negative.  
Hence cos x = −4/5  
Now sin2y = 1 – cos2y = 1 – 144/169 = 25/169  
i.e. sin y = ± 5/13.  
Since y lies in second quadrant, hence sin y is positive

Therefore, sin y =5/13. 

Substituting the values of sin x, sin y, cos x and cos y in (1), we get  
sin(x + y) 3/5 × (-12/13) + (−4/5) × 5/13 = (-36/65) –(20/65) = -56/65

Therefore, sin(x+y) = -56/65

59.

Find the value of the trigonometric function tan(19π/3)

Answer»

Answer:

tan(19π/3)=√3=1.732

Explanation:

Every trigonometric function has a cycle of 2π, i.e. after 2π, the function is repeated. In fact functions tan and cot repeat after every π.

As tan(19π/3)=tan[(18π+π)/3]=tan(6π+π/3)=tan(π/3)

(as 6π is a multiple of π which is cycle for function tan)

and as tan(π/3)=√3, we have

tan(19π/3)=√3=1.732

60.

sin A = 7/25, find the value of 48 tan A - 21 cot A + 50 cos A.1. 252. 243. -104. 10

Answer» Correct Answer - Option 3 : -10

Given:

sinA= 7/25 

Concept used:

sinA = P/H 

tanA = P/B 

cotA = B/P 

cosA = B/H 

Phythagoras theorem 

H2 = P+ B2 

Where, 

P → Perpendicular 

B → Base 

H → Hypotenus 

Calculations:

sinA = 7/25 = P/H 

P = 7 and H = 25 

According to phythagoras theorem 

⇒ 252 = 72 + B2 

⇒ B2 = 625 – 49 

⇒ B = √576 = 24 

tanA = P/B = 7/24 

cotA = 24/7 

cosA = 24/25 

48 tan A - 21 cot A + 50 cos A.

⇒ 48 × (7/24) – 21 × (24/7) + 50 × (24/25) 

⇒ 14 – 72 + 48 

⇒ -10

∴ The correct answer is -10 

61.

If ysin30° = xsin45°, then find the value of y4/x4.1. 22. 1/23. 44. 1/4

Answer» Correct Answer - Option 3 : 4

Given

ysin30° = xsin45°

Formula

sin45° = 1/√2

sin30° = 1/2

Calculation

y × (1/2) = x × (1/√2)

⇒ y/x = (2/√2) = √2

⇒ y4/x4 = (√2)4

⇒ y4/x4 = 4
62.

Find the value of (tan9° - tan27° - tan63° + tan81°)  - 1. 12. 03. 34. 4

Answer» Correct Answer - Option 4 : 4

Given - 

(tan9° - tan27° - tan63° + tan81°)

Concept used - 

If tanθ + cotθ = x

then, x = (2/sin2θ) = 2 cosec2θ 

Formula used - 

sin(90° - θ) = cosθ 

tan(90° - θ) = cotθ 

cot(90° - θ) = tanθ 

tanθ = (sinθ/cosθ)

cotθ = (cosθ/sinθ) 

sinC - sinD = 2 cos{(C + D)/2} sin{(C - D)/2}

Solution - 

(tan9° - tan27° - tan63° + tan81°) 

⇒ tan9° - tan27° - tan (90° - 27°) + tan (90° - 9°)

⇒ tan9° + cot9° - (tan27° + cot27°)

⇒ (2/sin18°) - (2/sin54°)

⇒ 2 × {(sin54° - sin18°)/sin18°sin54°)}

⇒ 2 × 2 (cos36° × sin18°)/(sin18° sin54°)

⇒ 4

∴ Ans = 4.

 

63.

If sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3 then find the value of tan (α2 – β2)?1. tan 8/92. tan 93. tan 124. tan 15

Answer» Correct Answer - Option 1 : tan 8/9

Given:

Sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3

Concept Used:

Basic concept of trigonometric ratio and identities

We know that

2 – β2) = (α - β) × (α + β)

sin -1a × cosec -1a = 1

Calculation:

It is given that sin (α - β) = 2√2/3

∴ (α - β) = sin -1 2√2/3      ---(1)

And cosec (α + β) = 2√2/3

∴ (α + β) = cosec -1 2√2/3      ---(2)

By multiplying equation (1) and (2)

∴ (α - β) × (α + β) = sin -1 2√2/3 × cosec -1 2√2/3

⇒ (α2 – β2) = 8/9

Now, tan (α2 – β2) = tan 8/9

Hence, option (1) is correct

64.

Consider the following for real numbers α, β, γ and δ:1. sec α = 1/52. tan β = 153. cosec γ = 1/34. cos δ = 4How many of the above statements are not possible?1. One2. Two3. Three4. Four

Answer» Correct Answer - Option 3 : Three

1) sec ∝ Range is [- ∞, 1] ⋃ [1, ∞]

sec ∝ = 1/5 (Not possible)

2) tanβ range is [-∞, ∞]

tanβ = 15 (possible)

3) cosec γ Range is [-∞, 1] ⋃ [1, ∞]

cosec γ = 1/3 (Not possible)

4) cos δ Range is [-1, 1]

cos δ = 4 (Not possible)

So, 3 statements are not possible.
65.

If \(2{\cos ^2}θ - 5\cos θ + 2 = 0\), 0º

Answer» Correct Answer - Option 1 : \(\frac{{\sqrt 3 }}{3}\)

Given:          

2cos2θ – 5cosθ + 2 = 0

Formula used:

Cos60° = 1/2

Cosec60° = 2/(√3)

Cot60° = 1/√3

Calculation:

2cos2θ – 5cosθ + 2 = 0

⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0

⇒ 2cosθ(cosθ – 2) –1(cosθ – 2) = 0

⇒ (cosθ – 2)(2cosθ – 1) = 0

⇒  (cosθ – 2) = 0 or, (2cosθ – 1) = 0

⇒ cosθ = 2 or, cosθ = 1/2

0º < θ < 90º 

So, cosθ = 1/2 = cos60° 

⇒ θ = 60° 

1/(cosecθ + cotθ) = 1/(cosec60° + cot60°)

⇒ 1/[2/(√3) + 1/√3]

⇒ √3/3

∴ The value of 1/(cosecθ + cotθ) is √3/3.

66.

Find the value: 1 + tan15°tan75° 1. sec215° 2. sec275° 3. 24. \(1 + {{1 + \sqrt 3} \over 2}\)

Answer» Correct Answer - Option 3 : 2

Formula used:

tanθ = cot(90° – θ)

cotθ = 1/tanθ 

Calculation:

tan75° = cot(90° – 75°)

⇒ tan75° = cot15° 

cot15° = 1/tan15° 

We have to find the value of 1 + tan15°tan75° 

⇒ 1 + tan15° × cot15° 

⇒ 1 + tan15°/tan15° 

⇒ 1 + 1 = 2

∴ The value of the given expresison is 2

67.

If cosec \(A = \frac{25}{7}\), then what is the value of Tan A?1. \(\frac{7}{25}\)2. \(\frac{7}{24}\)3. \(\frac{25}{24}\)4. \(\frac{24}{25}\)

Answer» Correct Answer - Option 2 : \(\frac{7}{24}\)

Given:

Cosec A = 25/7

Formula Used:

Cosec A = Hypotenuse/Perpendicular

Tan A = Perpendicular/Base

Calculation:

Cosec A = Hypotenuse/Perpendicular = 25/7

From here we deduce that Hypotenuse = 25 Units and Perpendicular = 7 Units

Using Pythagoras Theorem in right angle triangle ABC, where AB is perpendicular, BC is Base, and AC is Hypotenuse.

AC2 = AB2 + BC2

⇒ (25)2 = (7)2 + (BC)2

⇒ 625 = 49 + BC2

⇒ BC2 = 625 -49 = 576

⇒ BC = √576 = 24 Units (Base)

Tan A = 7/24

The value of Tan A is 7/24

68.

If A + B = 90° and Sin A = 3/5 find the value of tan B1. 3/42. 4/33. - 3/44. - 4/3

Answer» Correct Answer - Option 2 : 4/3

Given:

A + B = 90° and SinA = 3/5 

Concept Used:

Sinθ = Perpendicular/Hypotenuse

tanθ = Perpendicular/Base

Hypotenuse2 = Perpendicular2 + Base2

tan(90° - θ) = cotθ 

Calculation:

SinA = 3/5 = Perpendicular/Hypotenuse

⇒ Perpendicular = 3k and Hypotenuse = 5k  [Where, k is a constant]

Base = √(Hypotenuse2 - Perpendicular)

⇒ Base = √(5k)2 - (3k)2

⇒ Base = 4k

tanA = Perpendicular/Base

⇒ tanA = 3k/4k = 3/4

⇒ tan(90° - B) = 3/4

⇒ cotB = 3/4

⇒ tanB = 4/3

∴ tanB = 4/3

69.

\(\frac{{\sqrt {\ cosec x - 1} }}{{\sqrt {\ cosec x + 1} }}\) is equal to:1. \(\tan x - \sec x\)2. \(\sec x.\tan x\)3. \(\tan x + \sec x\)4. \(\sec x - \tan x\)

Answer» Correct Answer - Option 4 : \(\sec x - \tan x\)

Given:

√(cosecx – 1)/√(cosecx + 1)  

Trigonometry identities used:

sin2x + cos2x = 1

Formula used:

 a2 – b2 = (a + b) (a – b)

Calculation:

√(cosecx – 1)/√(cosecx + 1) 

(Here cosecx = 1/sinx

√[(1/sinx) – 1]/√[(1/sinx) + 1]

= √(1 – sinx)/√(1 + sinx)

Rationalization

=  [√(1 – sinx)/√(1 + sinx)] ×  [√(1 – sinx)/√(1 – sinx)]   

= √(1 – sinx)2/√(1 + sinx) (1 – sinx)

Here a2 – b2 = (a + b) (a – b)

= (1 – sinx)/√(1 – sin2x)

Here 1 – sin2x = cos2x

= (1 – sinx)/√cos2x

= (1 – sinx)/cosx

= (1/cosx) – (sinx/cosx)

Here 1/cosx = secx, sinx/cosx = tanx

= secx – tanx    

70.

The value of \(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\) is:

Answer» Correct Answer - Option 2 : 1

Given:

\(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\)

Trigonometry properties:

cosecθ = 1/sinθ 

sin(90 – θ ) = cosθ 

secθ = 1/cosθ 

cos(90 – θ ) = sinθ 

sin2θ + cos2θ = 1

tan 45o = 1

Calculation:

\(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\)

According to the trigonometry properties 

⇒ {cos 29o (1/sin 61o) tan 45o + 2 sin 35o (1/cos 55o)}/ 3sin42o + 3sin2(90o – 48o)

⇒ {(cos 29o/cos61o)tan 45o + 2 sin 35o/cos 55o}/3(sin 42o + cos42o)

⇒ {(cos29o/sin(90 o – 61o))× 1 + 2 sin 35o/cos(90o – 55o)}/3 × 1

⇒ {cos 292/cos 292 + 2 sin 35o/sin 35o}/3

⇒ (1 + 2)/3

⇒ 1

∴ The value of \(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\) is 1.

71.

if sinA = 3/5 then what is the value of tanA + cosA?1. 31/202. 23/203. 21/204. 19/20

Answer» Correct Answer - Option 1 : 31/20

Given:

It is given that sinA = 3/5

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

Sinθ = Perpendicular/Hypotenuse

Cosθ = Base/ Hypotenuse

Tanθ = Perpendicular/Base

(Hypotenuse)2 = (Perpendicular)2 + (Base)2

Calculation:

sinA = 3/5

∴ P = 3 and h = 5

Now, by the help of Pythagoras theorem

∴ B2 = 25 – 9 = 16

⇒ B = 4

Now we have to find the value of tanA + cosA

∴ tanA + cosA = P/B + B/H = 3/4 + 4/5 = 31/20

Hence, option (1) is correct

72.

If a SinA + b cosA = c, then a cosA - b sinA is equal to:1. \(\sqrt {{a^2} + {b^2} + {c^2}}\)2. \(\sqrt {{a^2} - {b^2} + {c^2}}\)3. \(\sqrt {{a^2} + {b^2} - {c^2}}\)4. \(\sqrt {{a^2} - {b^2} - {c^2}}\)

Answer» Correct Answer - Option 3 : \(\sqrt {{a^2} + {b^2} - {c^2}}\)

GIven:

a SinA + b cosA = c

Formula used:

If a Sinθ + b Cosθ = c

Then, a Cosθ – b Sinθ = \(\sqrt {{a^2} + {b^2} - {c^2}}\)

Calculation:

Apply above formula on a SinA + b cosA = c 

We get

⇒ a CosA – b SinA = \(\sqrt {{a^2} + {b^2} - {c^2}}\)

∴ a CosA – b SinA is equla to  \(\sqrt {{a^2} + {b^2} - {c^2}}\)

73.

In a triangle XYZ, tan X = 2 and tan Y = 4. Then, what is the value of tan Z?1. 6/52. 5/63. 6/74. 7/6

Answer» Correct Answer - Option 3 : 6/7

GIVEN:

tan X = 2; tan Y = 4, tan Z =?

FORMULA:

If XYZ is triangle, then, X + Y + Z = 180°

tan X + tan Y + tan Z = tan X tan Y tan Z

CALCULATION:

tan X + tan Y + tan Z = tan X tan Y tan Z

⇒ 2 + 4 + tan Z = 2 × 4 × tan Z

⇒ 6 + tan Z = 8tanZ

⇒ 7tan Z = 6

⇒ tan Z = 6/7

74.

यदि `2(cos^(2)theta-sin^(2)theta)=1` (`theta` एक धनात्मक न्यूनकोण है) तो `cottheta` किसके बराबर है?A. `-sqrt(3)`B. `(1)/(sqrt(3))`C. 1D. `sqrt(3)`

Answer» Correct Answer - d
`2 (cos^(2)theta-sin^(2)theta)=1`
`rArrcos^(2)theta-(1-cos^(2)theta)=(1)/(2)`
`rArrcos^(2) theta=(3)/(4)`
`rArrsec^(2)theta=(4)/(5)`
`rArr1+tan^(2)theta=(4)/(3)`
`rArrtan^(2)theta=(4)/(3)-1=(1)/(3)`
`rArr tantheta=(1)/sqrt(3)rArr cottheta=sq rt(3)`
Alternate
`2(cos^(2)theta-sin^(2)theta)=1`
`rArrcos^(2)theta-(1-cos^(2)theta)=(1)/(2)`
`rArr2cos^(2) theta=1+(1)/(2)rArr(3)/(2)`
`rArrcos^(2)theta=(3)/(4)`
`rArrcos theta=sqrt(3)/(2)`
`theta=30^(@)`
Hence,
`cot theta=cot30^(@)=sqrt(3)`
75.

यदि `cospix=x^(2)-x+(5)/(4)` है तो का मान ज्ञात करे ?

Answer» Correct Answer - d
`cospi x=x^(2)-x+(5)/(4)`
`=x^(2)-2xx x xx(1)/(2)+(1)/(4)-(1)/(4)+( 5)/(4)`
`=(x-(1)/(2))^(2)+1gt1`
`=-1lecosexle1`
`therefore` so value of x is none of the above
76.

If `sinalpha+cosbeta=2,(0^(@) le beta lt alpha90^(@))`, then `sin((2alpha+beta)/(3))=?`A. `sin((alpha)/(2))`B. `cos((alpha)/(3))`C. `sin((alpha)/(3))`D. `cos((2alpha)/(3))`

Answer» Correct Answer - b
`sinalpha+cos beta= 2`
shortest method
put, `alpha=90^(@),beta=0^(@)`
`sin90^(@)+cos0^(@)=2`
`1+1=2`
2=2matched
So, `alpha=90^(@),beta=0^(@)`
`rArrsin((2alpha+beta)/(3))^(2)`
`=sin((2xx90+0)/(3))^(2)`
`=sin((180)/(3))^(2)`
`=sin60^(@)=cos30^(@)=sqrt(3)/(2)`
Take `cos(alpha)/(3)=cos(90^(@))/(2)`
`=cos30^(@)`
So, this is answer
77.

यदि `sin((pix)/(2))=x^(2)-2x+2` है तो x का मान ज्ञात करे?

Answer» Correct Answer - b
`sin(pi x)/(2)=x^(2)-2x+2`
Put value of x from options
x=1
`sin(pi)/(2)xx1=1-2xx1+2`
`sin90^(@)=1-2+2`
=1
78.

If `cos^(2)alpha+cos^(2)beta=2`, then the value of `tan^(3)alpha+sin^(5)beta` isA. `-1`B. `0`C. `1`D. `(1)/(sqrt(3))`

Answer» Correct Answer - b
`cos^(2)alpha+cosbeta=2`
Put value of `alpha=beta=0^(@)`
`rArrcos^(2)0^(@)+cos^(2)0^(@)=2`
`rArr(1)^(2)+(1)^(2)=2`
`rArr2=2` [it satisfies the equation]
`=tan^(2)alpha+sin^(3)beta`
`=tan^(2)alpha+sin^(2)beta`
`=tan^(2)0^(@)+sin^(2)0^(@)`
`=0+0=0`
79.

यदि `2sin((pix)/(2))=x^(2)+(1)/(x^(2))` है तो `(x-(1)/(x))` का मान ज्ञात करे?A. `-1`B. `2`C. `1`D. 2

Answer» Correct Answer - d
`2 sin [(pi x)/(2)]=x^(2)=(1)/(x^(2))`
Let x=1
`2 sin90=1^(2)+(1)/(1 ^(2))`
`2xx1=1+1`
2-2 matched so x=3
so, `x-(1)/(x)`
`rArr1-(1)/(1)=0`
80.

A triangle is NOT said to be right - angled triangle if its sides measure:1. 5 cm, 12 cm and 13 cm2. 3 cm, 4 cm and 5 cm3. 6 cm, 8 cm and 10 cm4. 5 cm, 7 cm and 9 cm

Answer» Correct Answer - Option 4 : 5 cm, 7 cm and 9 cm

Ans: 4

Formula used:

(hypotenuse)2 = (base)2 + (height)2

Calculation:

This question will be solved by taking option

First we pick option 1

⇒ 52 + 122 = 25 + 144 = 169 = 132

∴ option 1 satisfies condition of right angle triangle.

Now we take option 2

⇒ 32 + 42 = 9 + 16 = 25 = 52

∴ option 2 also  satisfies condition of right angle triangle.

Now we take option 3

⇒ 62 + 82 = 36 + 64 = 100 = 102

∴ option 3 also satisfies condition of right angle triangle.

Now we take option 4

⇒ 52 + 72 = 25 + 49 = 74 ≠ 92

∴ values of option 4 are not satisfying condition of right angle triangle. 

81.

\(\frac{{sin\theta [\left( {1 - tan\theta } \right)tan\theta + {{\sec }^2}\theta ]}}{{\left( {1 - \sin \theta } \right)\tan \theta \left( {1 + tan\theta } \right)\left( {sec\theta + tan\theta } \right)}}\) is equal to:1. sinθ cosθ 2. -13. cosecθ secθ 4. 1

Answer» Correct Answer - Option 4 : 1

GIVEN:

\(\frac{{sinθ [\left( {1 - tanθ } \right)tanθ + {{\sec }^2}θ ]}}{{\left( {1 - \sin θ } \right)\tan θ \left( {1 + tanθ } \right)\left( {secθ + tanθ } \right)}}\)

FORMULA USED:

\({\sec ^2}θ - \;{\tan ^2}θ = 1\), sin2θ + cos2θ = 1. tanθ = sinθ/cosθ, secθ = 1/cosθ 

CALCULATION:

\(\frac{{sinθ [\left( {1 - tanθ } \right)tanθ + {{\sec }^2}θ ]}}{{\left( {1 - \sin θ } \right)\tan θ \left( {1 + tanθ } \right)\left( {secθ + tanθ } \right)}}\)

\( ⇒ \;\frac{{\sin θ \;[\tan θ - \;{{\tan }^2}θ + \;1 + \;{{\tan }^2}θ ]}}{{(1 - \;\sin θ )\;\tan θ \;(1 + \;\tan θ )\;(\sec θ + \;\tan θ )}}\)

\( ⇒ \frac{{\sin θ \;(1 + \;\tan θ )}}{{(1 - \sin θ )\;\tan θ \;(1 + \;\tan θ )\;(\sec θ + \;\tan θ )}}\)

\(⇒ \;\frac{{\sin θ }}{{(1 - \;\sin θ )\;\frac{{\sin θ }}{{\cos θ }}\;(\sec θ + \;\tan θ )}}\)

\(⇒ \;\frac{{\cos θ }}{{(1 - \;\sin θ )\;\left( {\frac{1}{{\cos θ }} + \;\frac{{\sin θ }}{{\cos θ }}} \right)}}\)

\( ⇒ \frac{{{{\cos }^2}θ }}{{(1 - \sin θ )\;(1 + \;\sin θ )}}\)

\(⇒ \frac{{{{\cos }^2}θ }}{{(1 - \;{{\sin }^2}θ )}}\)

\(⇒ \;\frac{{{{\cos }^2}θ }}{{{{\cos }^2}θ }}\)

⇒ 1

82.

If secθ = x, write the value of tanθ.

Answer»

As, tan2θ = sec2θ - 1

so, tanθ = \(\sqrt{sec^2θ-1}\) = \(\sqrt{x^2-1}\)

83.

If \(sec\theta = \frac{a}{b},b \ne 0,then\frac{{1 - {{\tan }^2}\theta }}{{2 - {{\sin }^2}\theta }}\)=?1. \(\frac{{{b^2}\left( {2{b^2} - {a^2}} \right)}}{{{a^2}\left( {{a^2} + {b^2}} \right)}}\)2. \(\frac{{{b^2}\left( {2{b^2} + {a^2}} \right)}}{{{a^2}\left( {{a^2} + {b^2}} \right)}}\)3. \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\)4. \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{a^2}\left( {{a^2} - {b^2}} \right)}}\)

Answer» Correct Answer - Option 3 : \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\)

Given-

secθ = a/b

Concept Used- 

secθ = H/B, tanθ = P/B, sinθ = P/H and H2 = P2 + B2 [where H = hypotenuse, B = base and P = perpendicular] 

Calculation-

According to Question -

H/B = a/b

P = √(a2 - b2), H = a and B = b

tan2θ = (a2 - b2)/b2

sin2θ = (a2 - b2)/a2

(1 - tan2θ)/(2 - sin2θ)

⇒ {(2b2 - a2)/b2}/{(a2 + b2)/a2}

\(\Rightarrow \frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\)

\(\frac{{1 - {{\tan }^2}\theta }}{{2 - {{\sin }^2}\theta }}=\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\)

84.

5cos20° - 4sin230° + 6cosec245° = ?A. 12B. 8C. 4D. 161. C2. A3. D4. B

Answer» Correct Answer - Option 3 : D

Given:

5cos2 4sin230° + 6cosec245° = ?

Concept used:

using the concept of trigonometric ratios

Calculation:

5cos20°  4sin230° + 6cosec245° = ?

⇒ 5 × (1)2  4 × (1/2)2 + 6 × (√2)2 = ?

⇒ 5 – 4 × 1/4 + 6 × 2 = ?

⇒ 5 – 1 + 12 = ?

⇒ 4 + 12 = ?

⇒ ? = 16

∴ The value of ? is 16. 

85.

If \(\cot x = \dfrac{5}{12}\) , then sin x + cos x = ?A. \(\dfrac{31}{17}\)B. \(\dfrac{27}{13}\)C. \(\dfrac{13}{17}\)D. \(\dfrac{17}{13}\) 1. B2. D3. C4. A

Answer» Correct Answer - Option 2 : D

Given:

Cotx = 5/12

Formula used:

Using basic trigonometric functions.

1) Cotx = B/P

2) Sinx = P/H

3) Cosx = B/H

Where B is base, P is perpendicular and H is the hypotenuse

Calculation:

Cotx = 5/12 = B/P

H2 = B2 + P2 

⇒ H2 = 52 + 122 = 25 + 144

⇒ H2 = 169

⇒ H = 13

Sinx + Cosx = P/H + B/H = 12/13 + 5/13

∴ Sinx + Cosx is 17/13

86.

If `xsin^(2)60^(@)-(3)/(2)sec60^(@)" "tan^(2)30^(@)+(4)/(5)sin^(2)45^(@)tan^(@)60^(@)=0` then x isA. `-(1)/(15)`B. `-4`C. `-(4)/(15)`D. `-2`

Answer» Correct Answer - c
`x sin^(2)60-(3)/(2)sec60^(@)tan^(2)3 0^(@)`
`+(4)/(5)sin^(2)45^(@) tan^(2)60=0`
`rArrx((sqrt(3))/(2))^(2)-(3)/(2)xx2-((1)/sqrt(3))^(2)+(4)/(5)((1)/sqrt(2))^(2)`
`=(sqrt(3))^(2)=0`
`rArr(3x)/(4)-(3)/(2)xx2xx(1)/(2)xx3=0`
`rArr(3x)/(4)- 1+(6)/(5)=0`
`rArr(3x)/(4)=1-(6)/(5)rArr(5-6)/(5)=(-1)/(5)`
`x=-(1)/(5)xx(4)/(3)=-(4)/(15)`
87.

यदि `alpha` और `beta` धनात्मक कोण है `sin(4alpha-beta)=1` और `cos(2alpha+beta)=(1)/(2)` है तो `sin(alpha+2beta)` का मान ज्ञात करे?

Answer» Correct Answer - d
`sin(4alpha-beta)=1=sin90^(@)`
`cos(2alpha+beta)=(1)/(2)=cos60^(@)`
`ralpha-beta=90^(@)`
` 2alpha+beta=60^(@)`
adding `6alpha=150^(@)`
`alpha=25 ^(@)`
`rArr beta=10^(@)`
`rArrsin(alpha+2beta)`
`rArrsin(25^(@)+2xx10^(@))`
`rArr45^(@)=(1)/sqrt(2)`
88.

यदि `0^(@) lt A lt 90^(@)` है तो `tan^(2)A+cot^(@)A-sec^(2)Aco s ec^(@)A` का मान क्या होगा?

Answer» Correct Answer - d
`tan^(2)A+cot^(2)A-sec^(2)Aco s ec^(2)A`
shortest method .
Put `A=45^(@)`
`rArrtan^(2)45^(@)+cot^(2)45^(@)-sec^(2)45^(@)`
`rArr1+1-(sqrt(2)^(2)(sqrt(2))^(2)`
`rArr2-4=-2`
89.

If `(sec^(2)70^(@)-cot^(2)20^(@))/(2(co s ec^(2)59^(@)-tan^(2)31^(@)))=(2)/(m)`, then m is equal toA. 2B. 3C. 4D. 1

Answer» Correct Answer - c
`(sec^(2)70^(@)-cot^(2)20^(@))/(2(co s ec^(2)59^(@)-tan^(2)(90^(@)-59^(@))))=(2)/(m)`
`(sec^(2)70^(@)-cot^(2)(90^(@)-70^(@)))/( 2(cose c^(2)59^(@)-tan^(2)(90^(@)-59^(@))))=(2)/(m)`
`(sec^(2)70^(@)-tan^(2)70^(@))/(2(co s ec^(2)59^(@)-tan^(2)(90-59^(@))))=(2)/(m)`
`=(1)/(2)=(2)/(m)[sec^(2)theta-tan^(2)70^(@) co s ec^(2)theta-cot^(2)theta =1]`
`m=2xx2=4`
90.

If `sec theta=x(1)/(4x)(0^(@) lt 0 lt 90^(@))` then `sec theta+tan theta` is equal to (यदि `sec theta=x(1)/(4x)(0^(@) lt 0 lt 90^(@))` है तो `sec theta+tan theta` किसके बराबर होगा?)A. `(x)/(2)`B. 2xC. xD. `(1)/(2x)`

Answer» Correct Answer - b
`sec theta=(4x^(2)+1)/(4x)`
`tan theta=sqrt(sec^(2)theta-1)`
`=sqrt([(4x^(2)+1)/(4x )]^(2)-1)`
`=sqrt(((4x^(2)+ 1)^(2)-(4x)^(2))/((4x) ^(2)))`
`=sqrt((16x^(4)+ 1+8x^(2)-16x^ (2))/((4x)^(2)))`
`=sqrt((16x^(2)+1- 8x^(2))/((4x )^(2)))`
`=sqrt(((4x^(2)-1)^(2))/((4x)^(2)))`
` =(4x^(2)-1)/(4x)`
`therefore theta+tan theta=(4x^(2)+1)/(4x) +(4x^(2)-1)/(4x)`
`=(4x^(2)+1 +4x^(2)-1)/(4x )=(8x^(2))/(4 x)=2x`
Alternate
`sec theta=x+(1)/(4x)`
Put x =1
`sec theta=1+(1)/(4)=(5)/(4)=(H)/(B)`
`tan theta=(P)/(B)=(3)/(4)`
Now,
`sectheta+tan theta`
`=(5)/(4)+(3)/(4)=(5+3)/(4)=(8)/(4)=2xx1=2x`,
(x=1)
91.

यदि `tan^(2)theta=1-e^(2)` है तो `sectheta+tan^(3)thetaco s ectheta` का मैं क्या होगा?A. `(2+e^(2))^((3)/(2))`B. `(2-e^(2))^((1)/(2))`C. `(2+e^(2))^((1)/(2))`D. `(2-e^(2))^((3)/(2))`

Answer» Correct Answer - d
`tan^(2)theta=1-e^(2)`
`therefore sec theta+tan^(2)theta.co s ec theta`
`rArrsectheta+tan^(2)theta.tantheta.co s ectheta`
`rArr sec theta+tan^(2)theta.(sintheta)/(cos theta).(1)/(sin theta)`
`rArr sec theta+tan^(@)theta.sec theta`
`rArrsec theta(1+tan^(2)theta)=sqrt(1+tan^(2)theta)`
`(1+tan^(2)theta)`
`rArr(1+tan^(2)theta)^(3//2)=(1+1-e^(2))^(3//2)`
`rArr(2-e^(2))^(3//2)`
92.

`4tan^(2)theta+9cot^(2)theta` का न्यूनतम मान क्या होगा?A. 1B. 2C. 12D. 13

Answer» Correct Answer - c
`4tan^(2)theta+9cot^(2)theta`
`rArr` minimum value `=2sqrt(ab)`
`a=4`
` b=9`
`rArr2sqrt(9xx4)`
`rArr2xx6=12`
93.

Find the value of cos (–1710°).

Answer»

We know that values of cos x repeats after an interval of 2π or 360°.
Therefore, cos (–1710°) = cos (–1710° + 5 x 360°)
= cos (–1710° + 1800°) = cos 90° = 0.

94.

If tan 4θ = cot (θ - 2) then find the value of 7θ?1. 102.2°2. 125.5°3. 118.3°4. 128.8°

Answer» Correct Answer - Option 4 : 128.8°

Given:

The given condition is tan 4θ = cot (θ - 2)

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

tan θ = cot (90 – θ)

Calculation:

∵ Cot θ = tan (90 – θ)

∴ cot (90 – 4θ) = cot (θ - 2)

⇒ (90 – 4θ) = (θ - 2)

⇒ θ = 18.4°

Now, we have to find the value of 7θ = 7 × 18.4° = 128.8°

Hence, option (4) is correct

95.

The value of tan \(\frac{\pi }{8}\) is equal to1. √2 - 12. \(\frac{1}{{\sqrt 2 - 1}}\)3. -√2 - 14. \(\frac{1}{2}\)

Answer» Correct Answer - Option 1 : √2 - 1

Concept:

\(\rm \tan (x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\)

Calculation:

Let x = tan \(\pi\over8\)

x = tan (\({\pi\over4} - {\pi\over8}\))

x = \(\tan {\pi\over4} - \tan {\pi\over8}\over1+\tan {\pi\over4}\times\tan {\pi\over8}\)

x = \(\rm 1 - x\over 1+ x\)

x(1 + x) = 1 - x

x2 + 2x - 1 = 0

\(\rm x = {-2 \pm \sqrt{2^2-4(-1)} \over 2}\)

\(\rm x = {-2 \pm 2\sqrt2 \over 2}\)

x = -1 + √2 or -1 - √2

Negative value cannot be possible in first quadrant 

∴ tan \(\pi\over8\) = x = √2 - 1

96.

If tanx/tany = a, find the value of sin (x + y)/sin (x - y)?1. a2 -12. (a + 1)/(a - 1)3. (a - 1)/(a + 1)4. 2a

Answer» Correct Answer - Option 2 : (a + 1)/(a - 1)

Given:

tanx/tany = a

Formula used:

sin (x + y) = sinx.cosy + cosx.siny

sin (x - y) = sinx.cosy - cosx.siny

tan θ = sin θ/cos θ 

Calculation:

∵ tanx/tany = a

⇒ sinx.cosy/cosx.siny = a

⇒ sinx.cosy = a × (cosx.siny)      ------(1)

∵ sin (x + y)/sin (x - y) = (sinx.cosy + cosx.siny)/(sinx.cosy - cosx.siny)

⇒ [a × (cosx.siny) + cosx.siny]/[a × (cosx.siny) - cosx.siny]

⇒ [cosx.siny(a + 1)]/[cos.siny(a - 1)]

⇒ (a + 1)/(a - 1)

97.

3tan-1 x + cot-1 x = π then x equal to1. 1/22. -13. 14. 0

Answer» Correct Answer - Option 3 : 1

Concept:

cos-1 x = \(π\over2\) - sin-1​ x

cot-1 x = \(π\over2\) - tan-1​ x

sec-1 x = \(π\over2\) - cosec-1 x

Calculation:

Given 3tan-1 x + cot-1 x = π

∵ cot-1 x = \(π\over2\) - tan-1​ x

3tan-1 x + (\(π\over2\) - tan-1​ x) = π

2tan-1 x + \(π\over2\) = π

2tan-1 x = \(\pi\over2\)

tan-1 x = \(\pi\over4\)

x = tan \(\pi\over4\) = 1

98.

What is the value of Sec275° – Cot215° + Cosec265° – Cot265°?1. 12. 23. 34. 0

Answer» Correct Answer - Option 2 : 2

Concept

Sec2A – Tan2A = 1

Cosec2A – Cot2A = 1

Cot(90° – A) = TanA

Calculation

Sec275° – Cot215° + Cosec265° – Cot265°

Sec2 75° – Cot2(90° – 75°) + 1

⇒  Sec275° – Tan2 75° + 1

⇒  1 + 1

∴ 2

99.

If cosec A + sec A = 2√2, then what is sin A equal to?

Answer» Correct Answer - Option 2 : 1/√2

Given

cosec A + sec A = 2√2

Concept

cosec 45° = √2

sec 45° = √2

Calculation

cosec A + sec A = 2√2

L.H.S

cosec 45 °+ sec 45°

⇒  √2 + √2

⇒  2√2

So, A is 45°

Now, sin 45° = 1/√2

100.

What is [(1 – Cos A)2 + (1 – tan A)2 +  (1 – Sin A)2]/ [2 – (cos A + tan A + sin A) + Tan2A]?1. 62. 93. 54. 2

Answer» Correct Answer - Option 4 : 2

Calculation

(1 + Cos2A – 2 Cos A) + (1 + tan2A – 2 tan A) + (1 + sin2A – 2 Sin A)/ [2 – (cos A + tan A + sin A) + Tan2 A]

⇒  (1 + 1 + 1 + Cos2A + Sin2A – 2cos A – 2 tan A – 2 sin A + Tan2 A)/ [2 – (cos A + tan A + sin A) + Tan2 A

⇒  [1 + 1 + 1 + 1 – 2(cos A + tan A + sin A) + Tan2 A]/[2 – (cos A + tan A + sin A) + Tan2 A]

⇒  {[4 – 2(cos A + tan A + sin A) ]+ Tan2 A}/ [2 – (cos A + tan A + sin A) + Tan2 A]

⇒  2{[2 – (cos A + tan A + sin A) ]+ Tan 2 A}/[2 – (cos A + tan A + sin A) + Tan 2 A]

⇒  2