InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
यदि `cottheta=4` हो तो `(5sintheta+3costheta)/(5sintheta-3costheta)` का मान बताएं ?A. `(-17)/(7)`B. `(1)/(3)`C. 3D. 9 |
|
Answer» Correct Answer - a `cot theta=4` the value of `(3sintheta+3costheta)/(5sin theta-3cos theta)=[(5+3cotheta)/(5-3 cot theta)]` `rArr(5+3xx4)/(5-3xx4)` `rArr(17)/(-7)` |
|
| 52. |
`x=a" "sectheta" "cosphi,y=b" "sectheta" "sinphi,Z=c" "tantheta,` है तो `(x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))` का मान क्या होगा?A. 1B. 4C. 9D. 0 |
|
Answer» Correct Answer - a `x=a sec thetacos phi` `y=b sec theta sin phi` `z=c tan theta` `(x)/(a)=sec theta.cos phi` `(y)/(b)=sec theta. Sin phi` `(z)/(c)=tan theta` `therefore(x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))` `rArrsec^(2)theta.cos^(2)phi+sec^(2)theta.sin^(2)phi-tan^(2)theta` `rArrsec^(2)theta(cos^(2)phi+sin^(2)phi)-tan^(2)theta` `rArrsec^(2)theta-tan^(2)theta=1` |
|
| 53. |
`((sintheta+sinphi)/(costheta+cosphi)+(costheta-cosphi)/(sintheta-sinphi))` का मान बताएं ?A. 1B. 2C. `1//2`D. 0 |
|
Answer» Correct Answer - d `((sintheta+sinphi)/(costheta+cosphi)+(costheta-cosphi)/(sin theta-sinphi))` Put `theta=90^(@)` `phi=0^(@)` `therefore((sin90+sin0)/(cos90+cos0)+(cos90-cos0)/(sin90-sin0))` `rArr((1+0)/(0+1)+( 0-1)/(1-0))` |
|
| 54. |
Find the value of {[Tan A/(1 – Cot A)] + [Tan A/(1 + Cot A)]} × (1 – Cot2 A)1. 2 Tan A2. 2 Cot A3. Cosec A4. sin A |
|
Answer» Correct Answer - Option 1 : 2 Tan A Calculation: {[Tan A/(1 – Cot A)]+ [Tan A/(1 – Cot A)]} × (1 – Cot 2A) ⇒ {[Tan A/(1 – Cot A) ]+ [Tan A/(1 – Cot A)]} × (1 – CotA) × (1 + CotA) ⇒ TanA × (1 + CotA) + TanA × (1 – CotA) ⇒ TanA × (1 + CotA + 1 – CotA) ⇒ TanA × 2 ∴ 2TanA |
|
| 55. |
If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°) 1. \(\sqrt{2}\)2. \(\sqrt{6}\)3. \(\dfrac{1}{\sqrt{3}}\)4. 1 |
|
Answer» Correct Answer - Option 2 : \(\sqrt{6}\) Given 4 cos2 θ - 3 sin2 θ + 2 = 0 Formula: sin2θ + cos2θ = 1 tan2θ = sin2θ/cos2θ Calculation: 4 cos2θ - 3 sin2θ + 2 = 0 ⇒ 4 cos2θ - 3 (1 - cos2θ) + 2 = 0 ⇒ 4 cos2θ - 3 + 3 cos2θ + 2 = 0 ⇒ 7 cos2θ - 1 = 0 ⇒ 7 cos2θ = 1 ⇒ cos2θ = 1/7 sin2θ + cos2θ = 1 ⇒ sin2θ = 1 - 1/7 ⇒ sin2θ = 6/7 Now, tan2θ = sin2θ/cos2θ ⇒ tan2θ = (6/7)/(1/7) ⇒ tan2θ = 6 ∴ tanθ = √6 |
|
| 56. |
cos 57° + sin 27° =1. cos 30°2. cos 3°3. sin 3°4. None of these |
|
Answer» Correct Answer - Option 2 : cos 3° Given cos 57° + sin 27° Formula Used cos(90° - θ) = sinθ sinC + sinD = 2 × sin(C + D)/2 × cos(C - D)/2 Calculation cos(90° - θ) = sinθ ⇒ cos 57° + sin 27° = cos (90° - 33°) + sin 27° ⇒ sin 33° + sin 27° ⇒ 2sin (33° + 27°)/2 × cos(33° - 27°)/2 ⇒ 2sin30° × cos 3° ⇒ 2 × 1/2 cos 3° ⇒ cos 3° ∴ The required answer is cos3° |
|
| 57. |
What is the value of cot 35°cot 40°cot 45°cot 50°cot 55°?1. 12. 03. 24. -1 |
|
Answer» Correct Answer - Option 1 : 1 Given: cot 35°cot 40°cot 45°cot 50°cot 55° Concept used: cot 45° = 1 tan θ × cot θ = 1 tan A = cot B, if A + B = 90° Calculation: cot 35°cot 40°cot 45°cot 50°cot 55° ⇒ cot 35° cot 40° cot 45° tan 40° tan 35° ⇒ cot 35° tan 35° cot 40° tan 40° cot 45° ⇒ cot 45° = 1 ∴ The correct answer is 1. |
|
| 58. |
If sin x = 3/5 , cos y = − 12/13 , where x and y both lie in second quadrant, find the value of sin (x + y). |
|
Answer» We know that Therefore, sin y =5/13. Substituting the values of sin x, sin y, cos x and cos y in (1), we get Therefore, sin(x+y) = -56/65 |
|
| 59. |
Find the value of the trigonometric function tan(19π/3) |
|
Answer» Answer: tan(19π/3)=√3=1.732 Explanation: Every trigonometric function has a cycle of 2π, i.e. after 2π, the function is repeated. In fact functions tan and cot repeat after every π. As tan(19π/3)=tan[(18π+π)/3]=tan(6π+π/3)=tan(π/3) (as 6π is a multiple of π which is cycle for function tan) and as tan(π/3)=√3, we have tan(19π/3)=√3=1.732 |
|
| 60. |
sin A = 7/25, find the value of 48 tan A - 21 cot A + 50 cos A.1. 252. 243. -104. 10 |
|
Answer» Correct Answer - Option 3 : -10 Given: sinA= 7/25 Concept used: sinA = P/H tanA = P/B cotA = B/P cosA = B/H Phythagoras theorem H2 = P2 + B2 Where, P → Perpendicular B → Base H → Hypotenus Calculations: sinA = 7/25 = P/H P = 7 and H = 25 According to phythagoras theorem ⇒ 252 = 72 + B2 ⇒ B2 = 625 – 49 ⇒ B = √576 = 24 tanA = P/B = 7/24 cotA = 24/7 cosA = 24/25 48 tan A - 21 cot A + 50 cos A. ⇒ 48 × (7/24) – 21 × (24/7) + 50 × (24/25) ⇒ 14 – 72 + 48 ⇒ -10 ∴ The correct answer is -10 |
|
| 61. |
If ysin30° = xsin45°, then find the value of y4/x4.1. 22. 1/23. 44. 1/4 |
|
Answer» Correct Answer - Option 3 : 4 Given ysin30° = xsin45° Formula sin45° = 1/√2 sin30° = 1/2 Calculation y × (1/2) = x × (1/√2) ⇒ y/x = (2/√2) = √2 ⇒ y4/x4 = (√2)4 ⇒ y4/x4 = 4 |
|
| 62. |
Find the value of (tan9° - tan27° - tan63° + tan81°) - 1. 12. 03. 34. 4 |
|
Answer» Correct Answer - Option 4 : 4 Given - (tan9° - tan27° - tan63° + tan81°) Concept used - If tanθ + cotθ = x then, x = (2/sin2θ) = 2 cosec2θ Formula used - sin(90° - θ) = cosθ tan(90° - θ) = cotθ cot(90° - θ) = tanθ tanθ = (sinθ/cosθ) cotθ = (cosθ/sinθ) sinC - sinD = 2 cos{(C + D)/2} sin{(C - D)/2} Solution - (tan9° - tan27° - tan63° + tan81°) ⇒ tan9° - tan27° - tan (90° - 27°) + tan (90° - 9°) ⇒ tan9° + cot9° - (tan27° + cot27°) ⇒ (2/sin18°) - (2/sin54°) ⇒ 2 × {(sin54° - sin18°)/sin18°sin54°)} ⇒ 2 × 2 (cos36° × sin18°)/(sin18° sin54°) ⇒ 4 ∴ Ans = 4.
|
|
| 63. |
If sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3 then find the value of tan (α2 – β2)?1. tan 8/92. tan 93. tan 124. tan 15 |
|
Answer» Correct Answer - Option 1 : tan 8/9 Given: Sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3 Concept Used: Basic concept of trigonometric ratio and identities We know that (α2 – β2) = (α - β) × (α + β) sin -1a × cosec -1a = 1 Calculation: It is given that sin (α - β) = 2√2/3 ∴ (α - β) = sin -1 2√2/3 ---(1) And cosec (α + β) = 2√2/3 ∴ (α + β) = cosec -1 2√2/3 ---(2) By multiplying equation (1) and (2) ∴ (α - β) × (α + β) = sin -1 2√2/3 × cosec -1 2√2/3 ⇒ (α2 – β2) = 8/9 Now, tan (α2 – β2) = tan 8/9 Hence, option (1) is correct |
|
| 64. |
Consider the following for real numbers α, β, γ and δ:1. sec α = 1/52. tan β = 153. cosec γ = 1/34. cos δ = 4How many of the above statements are not possible?1. One2. Two3. Three4. Four |
|
Answer» Correct Answer - Option 3 : Three 1) sec ∝ Range is [- ∞, 1] ⋃ [1, ∞] sec ∝ = 1/5 (Not possible) 2) tanβ range is [-∞, ∞] tanβ = 15 (possible) 3) cosec γ Range is [-∞, 1] ⋃ [1, ∞] cosec γ = 1/3 (Not possible) 4) cos δ Range is [-1, 1] cos δ = 4 (Not possible) So, 3 statements are not possible. |
|
| 65. |
If \(2{\cos ^2}θ - 5\cos θ + 2 = 0\), 0º |
|
Answer» Correct Answer - Option 1 : \(\frac{{\sqrt 3 }}{3}\) Given: 2cos2θ – 5cosθ + 2 = 0 Formula used: Cos60° = 1/2 Cosec60° = 2/(√3) Cot60° = 1/√3 Calculation: 2cos2θ – 5cosθ + 2 = 0 ⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0 ⇒ 2cosθ(cosθ – 2) –1(cosθ – 2) = 0 ⇒ (cosθ – 2)(2cosθ – 1) = 0 ⇒ (cosθ – 2) = 0 or, (2cosθ – 1) = 0 ⇒ cosθ = 2 or, cosθ = 1/2 0º < θ < 90º So, cosθ = 1/2 = cos60° ⇒ θ = 60° 1/(cosecθ + cotθ) = 1/(cosec60° + cot60°) ⇒ 1/[2/(√3) + 1/√3] ⇒ √3/3 ∴ The value of 1/(cosecθ + cotθ) is √3/3. |
|
| 66. |
Find the value: 1 + tan15°tan75° 1. sec215° 2. sec275° 3. 24. \(1 + {{1 + \sqrt 3} \over 2}\) |
|
Answer» Correct Answer - Option 3 : 2 Formula used: tanθ = cot(90° – θ) cotθ = 1/tanθ Calculation: tan75° = cot(90° – 75°) ⇒ tan75° = cot15° cot15° = 1/tan15° We have to find the value of 1 + tan15°tan75° ⇒ 1 + tan15° × cot15° ⇒ 1 + tan15°/tan15° ⇒ 1 + 1 = 2 ∴ The value of the given expresison is 2 |
|
| 67. |
If cosec \(A = \frac{25}{7}\), then what is the value of Tan A?1. \(\frac{7}{25}\)2. \(\frac{7}{24}\)3. \(\frac{25}{24}\)4. \(\frac{24}{25}\) |
|
Answer» Correct Answer - Option 2 : \(\frac{7}{24}\) Given: Cosec A = 25/7 Formula Used: Cosec A = Hypotenuse/Perpendicular Tan A = Perpendicular/Base Calculation: Cosec A = Hypotenuse/Perpendicular = 25/7 From here we deduce that Hypotenuse = 25 Units and Perpendicular = 7 Units Using Pythagoras Theorem in right angle triangle ABC, where AB is perpendicular, BC is Base, and AC is Hypotenuse. AC2 = AB2 + BC2 ⇒ (25)2 = (7)2 + (BC)2 ⇒ 625 = 49 + BC2 ⇒ BC2 = 625 -49 = 576 ⇒ BC = √576 = 24 Units (Base) Tan A = 7/24 ∴ The value of Tan A is 7/24 |
|
| 68. |
If A + B = 90° and Sin A = 3/5 find the value of tan B1. 3/42. 4/33. - 3/44. - 4/3 |
|
Answer» Correct Answer - Option 2 : 4/3 Given: A + B = 90° and SinA = 3/5 Concept Used: Sinθ = Perpendicular/Hypotenuse tanθ = Perpendicular/Base Hypotenuse2 = Perpendicular2 + Base2 tan(90° - θ) = cotθ Calculation: SinA = 3/5 = Perpendicular/Hypotenuse ⇒ Perpendicular = 3k and Hypotenuse = 5k [Where, k is a constant] Base = √(Hypotenuse2 - Perpendicular) ⇒ Base = √(5k)2 - (3k)2 ⇒ Base = 4k tanA = Perpendicular/Base ⇒ tanA = 3k/4k = 3/4 ⇒ tan(90° - B) = 3/4 ⇒ cotB = 3/4 ⇒ tanB = 4/3 ∴ tanB = 4/3 |
|
| 69. |
\(\frac{{\sqrt {\ cosec x - 1} }}{{\sqrt {\ cosec x + 1} }}\) is equal to:1. \(\tan x - \sec x\)2. \(\sec x.\tan x\)3. \(\tan x + \sec x\)4. \(\sec x - \tan x\) |
|
Answer» Correct Answer - Option 4 : \(\sec x - \tan x\) Given: √(cosecx – 1)/√(cosecx + 1) Trigonometry identities used: sin2x + cos2x = 1 Formula used: a2 – b2 = (a + b) (a – b) Calculation: √(cosecx – 1)/√(cosecx + 1) (Here cosecx = 1/sinx √[(1/sinx) – 1]/√[(1/sinx) + 1] = √(1 – sinx)/√(1 + sinx) Rationalization = [√(1 – sinx)/√(1 + sinx)] × [√(1 – sinx)/√(1 – sinx)] = √(1 – sinx)2/√(1 + sinx) (1 – sinx) Here a2 – b2 = (a + b) (a – b) = (1 – sinx)/√(1 – sin2x) Here 1 – sin2x = cos2x = (1 – sinx)/√cos2x = (1 – sinx)/cosx = (1/cosx) – (sinx/cosx) Here 1/cosx = secx, sinx/cosx = tanx = secx – tanx |
|
| 70. |
The value of \(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\) is: |
|
Answer» Correct Answer - Option 2 : 1 Given: \(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\) Trigonometry properties: cosecθ = 1/sinθ sin(90 – θ ) = cosθ secθ = 1/cosθ cos(90 – θ ) = sinθ sin2θ + cos2θ = 1 tan 45o = 1 Calculation: \(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\) According to the trigonometry properties ⇒ {cos 29o (1/sin 61o) tan 45o + 2 sin 35o (1/cos 55o)}/ 3sin2 42o + 3sin2(90o – 48o) ⇒ {(cos 29o/cos61o)tan 45o + 2 sin 35o/cos 55o}/3(sin 42o + cos42o) ⇒ {(cos29o/sin(90 o – 61o))× 1 + 2 sin 35o/cos(90o – 55o)}/3 × 1 ⇒ {cos 292/cos 292 + 2 sin 35o/sin 35o}/3 ⇒ (1 + 2)/3 ⇒ 1 ∴ The value of \(\frac{{\cos \,{{29}^ \circ }\cos ec\,{{61}^ \circ }\tan \,{{45}^ \circ } + 2\sin \,{{35}^ \circ }\sec \,{{55}^ \circ }}}{{3{{\sin }^2}\,{{42}^ \circ } + 3{{\sin }^2}\,{{48}^ \circ }}}\) is 1. |
|
| 71. |
if sinA = 3/5 then what is the value of tanA + cosA?1. 31/202. 23/203. 21/204. 19/20 |
|
Answer» Correct Answer - Option 1 : 31/20 Given: It is given that sinA = 3/5 Formula Used: Basic concept of trigonometric ratio and identities We know that Sinθ = Perpendicular/Hypotenuse Cosθ = Base/ Hypotenuse Tanθ = Perpendicular/Base (Hypotenuse)2 = (Perpendicular)2 + (Base)2 Calculation: ∵ sinA = 3/5 ∴ P = 3 and h = 5 Now, by the help of Pythagoras theorem ∴ B2 = 25 – 9 = 16 ⇒ B = 4 Now we have to find the value of tanA + cosA ∴ tanA + cosA = P/B + B/H = 3/4 + 4/5 = 31/20 Hence, option (1) is correct |
|
| 72. |
If a SinA + b cosA = c, then a cosA - b sinA is equal to:1. \(\sqrt {{a^2} + {b^2} + {c^2}}\)2. \(\sqrt {{a^2} - {b^2} + {c^2}}\)3. \(\sqrt {{a^2} + {b^2} - {c^2}}\)4. \(\sqrt {{a^2} - {b^2} - {c^2}}\) |
|
Answer» Correct Answer - Option 3 : \(\sqrt {{a^2} + {b^2} - {c^2}}\) GIven: a SinA + b cosA = c Formula used: If a Sinθ + b Cosθ = c Then, a Cosθ – b Sinθ = \(\sqrt {{a^2} + {b^2} - {c^2}}\) Calculation: Apply above formula on a SinA + b cosA = c We get ⇒ a CosA – b SinA = \(\sqrt {{a^2} + {b^2} - {c^2}}\) ∴ a CosA – b SinA is equla to \(\sqrt {{a^2} + {b^2} - {c^2}}\) |
|
| 73. |
In a triangle XYZ, tan X = 2 and tan Y = 4. Then, what is the value of tan Z?1. 6/52. 5/63. 6/74. 7/6 |
|
Answer» Correct Answer - Option 3 : 6/7 GIVEN: tan X = 2; tan Y = 4, tan Z =? FORMULA: If XYZ is triangle, then, X + Y + Z = 180° tan X + tan Y + tan Z = tan X tan Y tan Z CALCULATION: tan X + tan Y + tan Z = tan X tan Y tan Z ⇒ 2 + 4 + tan Z = 2 × 4 × tan Z ⇒ 6 + tan Z = 8tanZ ⇒ 7tan Z = 6 ⇒ tan Z = 6/7 |
|
| 74. |
यदि `2(cos^(2)theta-sin^(2)theta)=1` (`theta` एक धनात्मक न्यूनकोण है) तो `cottheta` किसके बराबर है?A. `-sqrt(3)`B. `(1)/(sqrt(3))`C. 1D. `sqrt(3)` |
|
Answer» Correct Answer - d `2 (cos^(2)theta-sin^(2)theta)=1` `rArrcos^(2)theta-(1-cos^(2)theta)=(1)/(2)` `rArrcos^(2) theta=(3)/(4)` `rArrsec^(2)theta=(4)/(5)` `rArr1+tan^(2)theta=(4)/(3)` `rArrtan^(2)theta=(4)/(3)-1=(1)/(3)` `rArr tantheta=(1)/sqrt(3)rArr cottheta=sq rt(3)` Alternate `2(cos^(2)theta-sin^(2)theta)=1` `rArrcos^(2)theta-(1-cos^(2)theta)=(1)/(2)` `rArr2cos^(2) theta=1+(1)/(2)rArr(3)/(2)` `rArrcos^(2)theta=(3)/(4)` `rArrcos theta=sqrt(3)/(2)` `theta=30^(@)` Hence, `cot theta=cot30^(@)=sqrt(3)` |
|
| 75. |
यदि `cospix=x^(2)-x+(5)/(4)` है तो का मान ज्ञात करे ? |
|
Answer» Correct Answer - d `cospi x=x^(2)-x+(5)/(4)` `=x^(2)-2xx x xx(1)/(2)+(1)/(4)-(1)/(4)+( 5)/(4)` `=(x-(1)/(2))^(2)+1gt1` `=-1lecosexle1` `therefore` so value of x is none of the above |
|
| 76. |
If `sinalpha+cosbeta=2,(0^(@) le beta lt alpha90^(@))`, then `sin((2alpha+beta)/(3))=?`A. `sin((alpha)/(2))`B. `cos((alpha)/(3))`C. `sin((alpha)/(3))`D. `cos((2alpha)/(3))` |
|
Answer» Correct Answer - b `sinalpha+cos beta= 2` shortest method put, `alpha=90^(@),beta=0^(@)` `sin90^(@)+cos0^(@)=2` `1+1=2` 2=2matched So, `alpha=90^(@),beta=0^(@)` `rArrsin((2alpha+beta)/(3))^(2)` `=sin((2xx90+0)/(3))^(2)` `=sin((180)/(3))^(2)` `=sin60^(@)=cos30^(@)=sqrt(3)/(2)` Take `cos(alpha)/(3)=cos(90^(@))/(2)` `=cos30^(@)` So, this is answer |
|
| 77. |
यदि `sin((pix)/(2))=x^(2)-2x+2` है तो x का मान ज्ञात करे? |
|
Answer» Correct Answer - b `sin(pi x)/(2)=x^(2)-2x+2` Put value of x from options x=1 `sin(pi)/(2)xx1=1-2xx1+2` `sin90^(@)=1-2+2` =1 |
|
| 78. |
If `cos^(2)alpha+cos^(2)beta=2`, then the value of `tan^(3)alpha+sin^(5)beta` isA. `-1`B. `0`C. `1`D. `(1)/(sqrt(3))` |
|
Answer» Correct Answer - b `cos^(2)alpha+cosbeta=2` Put value of `alpha=beta=0^(@)` `rArrcos^(2)0^(@)+cos^(2)0^(@)=2` `rArr(1)^(2)+(1)^(2)=2` `rArr2=2` [it satisfies the equation] `=tan^(2)alpha+sin^(3)beta` `=tan^(2)alpha+sin^(2)beta` `=tan^(2)0^(@)+sin^(2)0^(@)` `=0+0=0` |
|
| 79. |
यदि `2sin((pix)/(2))=x^(2)+(1)/(x^(2))` है तो `(x-(1)/(x))` का मान ज्ञात करे?A. `-1`B. `2`C. `1`D. 2 |
|
Answer» Correct Answer - d `2 sin [(pi x)/(2)]=x^(2)=(1)/(x^(2))` Let x=1 `2 sin90=1^(2)+(1)/(1 ^(2))` `2xx1=1+1` 2-2 matched so x=3 so, `x-(1)/(x)` `rArr1-(1)/(1)=0` |
|
| 80. |
A triangle is NOT said to be right - angled triangle if its sides measure:1. 5 cm, 12 cm and 13 cm2. 3 cm, 4 cm and 5 cm3. 6 cm, 8 cm and 10 cm4. 5 cm, 7 cm and 9 cm |
|
Answer» Correct Answer - Option 4 : 5 cm, 7 cm and 9 cm Ans: 4 Formula used: (hypotenuse)2 = (base)2 + (height)2 Calculation: This question will be solved by taking option First we pick option 1 ⇒ 52 + 122 = 25 + 144 = 169 = 132 ∴ option 1 satisfies condition of right angle triangle. Now we take option 2 ⇒ 32 + 42 = 9 + 16 = 25 = 52 ∴ option 2 also satisfies condition of right angle triangle. Now we take option 3 ⇒ 62 + 82 = 36 + 64 = 100 = 102 ∴ option 3 also satisfies condition of right angle triangle. Now we take option 4 ⇒ 52 + 72 = 25 + 49 = 74 ≠ 92 ∴ values of option 4 are not satisfying condition of right angle triangle. |
|
| 81. |
\(\frac{{sin\theta [\left( {1 - tan\theta } \right)tan\theta + {{\sec }^2}\theta ]}}{{\left( {1 - \sin \theta } \right)\tan \theta \left( {1 + tan\theta } \right)\left( {sec\theta + tan\theta } \right)}}\) is equal to:1. sinθ cosθ 2. -13. cosecθ secθ 4. 1 |
|
Answer» Correct Answer - Option 4 : 1 GIVEN: \(\frac{{sinθ [\left( {1 - tanθ } \right)tanθ + {{\sec }^2}θ ]}}{{\left( {1 - \sin θ } \right)\tan θ \left( {1 + tanθ } \right)\left( {secθ + tanθ } \right)}}\) FORMULA USED: \({\sec ^2}θ - \;{\tan ^2}θ = 1\), sin2θ + cos2θ = 1. tanθ = sinθ/cosθ, secθ = 1/cosθ CALCULATION: \(\frac{{sinθ [\left( {1 - tanθ } \right)tanθ + {{\sec }^2}θ ]}}{{\left( {1 - \sin θ } \right)\tan θ \left( {1 + tanθ } \right)\left( {secθ + tanθ } \right)}}\) \( ⇒ \;\frac{{\sin θ \;[\tan θ - \;{{\tan }^2}θ + \;1 + \;{{\tan }^2}θ ]}}{{(1 - \;\sin θ )\;\tan θ \;(1 + \;\tan θ )\;(\sec θ + \;\tan θ )}}\) \( ⇒ \frac{{\sin θ \;(1 + \;\tan θ )}}{{(1 - \sin θ )\;\tan θ \;(1 + \;\tan θ )\;(\sec θ + \;\tan θ )}}\) \(⇒ \;\frac{{\sin θ }}{{(1 - \;\sin θ )\;\frac{{\sin θ }}{{\cos θ }}\;(\sec θ + \;\tan θ )}}\) \(⇒ \;\frac{{\cos θ }}{{(1 - \;\sin θ )\;\left( {\frac{1}{{\cos θ }} + \;\frac{{\sin θ }}{{\cos θ }}} \right)}}\) \( ⇒ \frac{{{{\cos }^2}θ }}{{(1 - \sin θ )\;(1 + \;\sin θ )}}\) \(⇒ \frac{{{{\cos }^2}θ }}{{(1 - \;{{\sin }^2}θ )}}\) \(⇒ \;\frac{{{{\cos }^2}θ }}{{{{\cos }^2}θ }}\) ⇒ 1 |
|
| 82. |
If secθ = x, write the value of tanθ. |
|
Answer» As, tan2θ = sec2θ - 1 so, tanθ = \(\sqrt{sec^2θ-1}\) = \(\sqrt{x^2-1}\) |
|
| 83. |
If \(sec\theta = \frac{a}{b},b \ne 0,then\frac{{1 - {{\tan }^2}\theta }}{{2 - {{\sin }^2}\theta }}\)=?1. \(\frac{{{b^2}\left( {2{b^2} - {a^2}} \right)}}{{{a^2}\left( {{a^2} + {b^2}} \right)}}\)2. \(\frac{{{b^2}\left( {2{b^2} + {a^2}} \right)}}{{{a^2}\left( {{a^2} + {b^2}} \right)}}\)3. \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\)4. \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{a^2}\left( {{a^2} - {b^2}} \right)}}\) |
|
Answer» Correct Answer - Option 3 : \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\) Given- secθ = a/b Concept Used- secθ = H/B, tanθ = P/B, sinθ = P/H and H2 = P2 + B2 [where H = hypotenuse, B = base and P = perpendicular] Calculation- According to Question - H/B = a/b P = √(a2 - b2), H = a and B = b tan2θ = (a2 - b2)/b2 sin2θ = (a2 - b2)/a2 (1 - tan2θ)/(2 - sin2θ) ⇒ {(2b2 - a2)/b2}/{(a2 + b2)/a2} \(\Rightarrow \frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\) ∴\(\frac{{1 - {{\tan }^2}\theta }}{{2 - {{\sin }^2}\theta }}=\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\) |
|
| 84. |
5cos20° - 4sin230° + 6cosec245° = ?A. 12B. 8C. 4D. 161. C2. A3. D4. B |
|
Answer» Correct Answer - Option 3 : D Given: 5cos20° – 4sin230° + 6cosec245° = ? Concept used: using the concept of trigonometric ratios Calculation: 5cos20° – 4sin230° + 6cosec245° = ? ⇒ 5 × (1)2 – 4 × (1/2)2 + 6 × (√2)2 = ? ⇒ 5 – 4 × 1/4 + 6 × 2 = ? ⇒ 5 – 1 + 12 = ? ⇒ 4 + 12 = ? ⇒ ? = 16 ∴ The value of ? is 16. |
|
| 85. |
If \(\cot x = \dfrac{5}{12}\) , then sin x + cos x = ?A. \(\dfrac{31}{17}\)B. \(\dfrac{27}{13}\)C. \(\dfrac{13}{17}\)D. \(\dfrac{17}{13}\) 1. B2. D3. C4. A |
|
Answer» Correct Answer - Option 2 : D Given: Cotx = 5/12 Formula used: Using basic trigonometric functions. 1) Cotx = B/P 2) Sinx = P/H 3) Cosx = B/H Where B is base, P is perpendicular and H is the hypotenuse Calculation: Cotx = 5/12 = B/P H2 = B2 + P2 ⇒ H2 = 52 + 122 = 25 + 144 ⇒ H2 = 169 ⇒ H = 13 Sinx + Cosx = P/H + B/H = 12/13 + 5/13 ∴ Sinx + Cosx is 17/13 |
|
| 86. |
If `xsin^(2)60^(@)-(3)/(2)sec60^(@)" "tan^(2)30^(@)+(4)/(5)sin^(2)45^(@)tan^(@)60^(@)=0` then x isA. `-(1)/(15)`B. `-4`C. `-(4)/(15)`D. `-2` |
|
Answer» Correct Answer - c `x sin^(2)60-(3)/(2)sec60^(@)tan^(2)3 0^(@)` `+(4)/(5)sin^(2)45^(@) tan^(2)60=0` `rArrx((sqrt(3))/(2))^(2)-(3)/(2)xx2-((1)/sqrt(3))^(2)+(4)/(5)((1)/sqrt(2))^(2)` `=(sqrt(3))^(2)=0` `rArr(3x)/(4)-(3)/(2)xx2xx(1)/(2)xx3=0` `rArr(3x)/(4)- 1+(6)/(5)=0` `rArr(3x)/(4)=1-(6)/(5)rArr(5-6)/(5)=(-1)/(5)` `x=-(1)/(5)xx(4)/(3)=-(4)/(15)` |
|
| 87. |
यदि `alpha` और `beta` धनात्मक कोण है `sin(4alpha-beta)=1` और `cos(2alpha+beta)=(1)/(2)` है तो `sin(alpha+2beta)` का मान ज्ञात करे? |
|
Answer» Correct Answer - d `sin(4alpha-beta)=1=sin90^(@)` `cos(2alpha+beta)=(1)/(2)=cos60^(@)` `ralpha-beta=90^(@)` ` 2alpha+beta=60^(@)` adding `6alpha=150^(@)` `alpha=25 ^(@)` `rArr beta=10^(@)` `rArrsin(alpha+2beta)` `rArrsin(25^(@)+2xx10^(@))` `rArr45^(@)=(1)/sqrt(2)` |
|
| 88. |
यदि `0^(@) lt A lt 90^(@)` है तो `tan^(2)A+cot^(@)A-sec^(2)Aco s ec^(@)A` का मान क्या होगा? |
|
Answer» Correct Answer - d `tan^(2)A+cot^(2)A-sec^(2)Aco s ec^(2)A` shortest method . Put `A=45^(@)` `rArrtan^(2)45^(@)+cot^(2)45^(@)-sec^(2)45^(@)` `rArr1+1-(sqrt(2)^(2)(sqrt(2))^(2)` `rArr2-4=-2` |
|
| 89. |
If `(sec^(2)70^(@)-cot^(2)20^(@))/(2(co s ec^(2)59^(@)-tan^(2)31^(@)))=(2)/(m)`, then m is equal toA. 2B. 3C. 4D. 1 |
|
Answer» Correct Answer - c `(sec^(2)70^(@)-cot^(2)20^(@))/(2(co s ec^(2)59^(@)-tan^(2)(90^(@)-59^(@))))=(2)/(m)` `(sec^(2)70^(@)-cot^(2)(90^(@)-70^(@)))/( 2(cose c^(2)59^(@)-tan^(2)(90^(@)-59^(@))))=(2)/(m)` `(sec^(2)70^(@)-tan^(2)70^(@))/(2(co s ec^(2)59^(@)-tan^(2)(90-59^(@))))=(2)/(m)` `=(1)/(2)=(2)/(m)[sec^(2)theta-tan^(2)70^(@) co s ec^(2)theta-cot^(2)theta =1]` `m=2xx2=4` |
|
| 90. |
If `sec theta=x(1)/(4x)(0^(@) lt 0 lt 90^(@))` then `sec theta+tan theta` is equal to (यदि `sec theta=x(1)/(4x)(0^(@) lt 0 lt 90^(@))` है तो `sec theta+tan theta` किसके बराबर होगा?)A. `(x)/(2)`B. 2xC. xD. `(1)/(2x)` |
|
Answer» Correct Answer - b `sec theta=(4x^(2)+1)/(4x)` `tan theta=sqrt(sec^(2)theta-1)` `=sqrt([(4x^(2)+1)/(4x )]^(2)-1)` `=sqrt(((4x^(2)+ 1)^(2)-(4x)^(2))/((4x) ^(2)))` `=sqrt((16x^(4)+ 1+8x^(2)-16x^ (2))/((4x)^(2)))` `=sqrt((16x^(2)+1- 8x^(2))/((4x )^(2)))` `=sqrt(((4x^(2)-1)^(2))/((4x)^(2)))` ` =(4x^(2)-1)/(4x)` `therefore theta+tan theta=(4x^(2)+1)/(4x) +(4x^(2)-1)/(4x)` `=(4x^(2)+1 +4x^(2)-1)/(4x )=(8x^(2))/(4 x)=2x` Alternate `sec theta=x+(1)/(4x)` Put x =1 `sec theta=1+(1)/(4)=(5)/(4)=(H)/(B)` `tan theta=(P)/(B)=(3)/(4)` Now, `sectheta+tan theta` `=(5)/(4)+(3)/(4)=(5+3)/(4)=(8)/(4)=2xx1=2x`, (x=1) |
|
| 91. |
यदि `tan^(2)theta=1-e^(2)` है तो `sectheta+tan^(3)thetaco s ectheta` का मैं क्या होगा?A. `(2+e^(2))^((3)/(2))`B. `(2-e^(2))^((1)/(2))`C. `(2+e^(2))^((1)/(2))`D. `(2-e^(2))^((3)/(2))` |
|
Answer» Correct Answer - d `tan^(2)theta=1-e^(2)` `therefore sec theta+tan^(2)theta.co s ec theta` `rArrsectheta+tan^(2)theta.tantheta.co s ectheta` `rArr sec theta+tan^(2)theta.(sintheta)/(cos theta).(1)/(sin theta)` `rArr sec theta+tan^(@)theta.sec theta` `rArrsec theta(1+tan^(2)theta)=sqrt(1+tan^(2)theta)` `(1+tan^(2)theta)` `rArr(1+tan^(2)theta)^(3//2)=(1+1-e^(2))^(3//2)` `rArr(2-e^(2))^(3//2)` |
|
| 92. |
`4tan^(2)theta+9cot^(2)theta` का न्यूनतम मान क्या होगा?A. 1B. 2C. 12D. 13 |
|
Answer» Correct Answer - c `4tan^(2)theta+9cot^(2)theta` `rArr` minimum value `=2sqrt(ab)` `a=4` ` b=9` `rArr2sqrt(9xx4)` `rArr2xx6=12` |
|
| 93. |
Find the value of cos (–1710°). |
|
Answer» We know that values of cos x repeats after an interval of 2π or 360°. |
|
| 94. |
If tan 4θ = cot (θ - 2) then find the value of 7θ?1. 102.2°2. 125.5°3. 118.3°4. 128.8° |
|
Answer» Correct Answer - Option 4 : 128.8° Given: The given condition is tan 4θ = cot (θ - 2) Formula Used: Basic concept of trigonometric ratio and identities We know that tan θ = cot (90 – θ) Calculation: ∵ Cot θ = tan (90 – θ) ∴ cot (90 – 4θ) = cot (θ - 2) ⇒ (90 – 4θ) = (θ - 2) ⇒ θ = 18.4° Now, we have to find the value of 7θ = 7 × 18.4° = 128.8° Hence, option (4) is correct |
|
| 95. |
The value of tan \(\frac{\pi }{8}\) is equal to1. √2 - 12. \(\frac{1}{{\sqrt 2 - 1}}\)3. -√2 - 14. \(\frac{1}{2}\) |
|
Answer» Correct Answer - Option 1 : √2 - 1 Concept: \(\rm \tan (x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\) Calculation: Let x = tan \(\pi\over8\) x = tan (\({\pi\over4} - {\pi\over8}\)) x = \(\tan {\pi\over4} - \tan {\pi\over8}\over1+\tan {\pi\over4}\times\tan {\pi\over8}\) x = \(\rm 1 - x\over 1+ x\) x(1 + x) = 1 - x x2 + 2x - 1 = 0 \(\rm x = {-2 \pm \sqrt{2^2-4(-1)} \over 2}\) \(\rm x = {-2 \pm 2\sqrt2 \over 2}\) x = -1 + √2 or -1 - √2 Negative value cannot be possible in first quadrant ∴ tan \(\pi\over8\) = x = √2 - 1 |
|
| 96. |
If tanx/tany = a, find the value of sin (x + y)/sin (x - y)?1. a2 -12. (a + 1)/(a - 1)3. (a - 1)/(a + 1)4. 2a |
|
Answer» Correct Answer - Option 2 : (a + 1)/(a - 1) Given: tanx/tany = a Formula used: sin (x + y) = sinx.cosy + cosx.siny sin (x - y) = sinx.cosy - cosx.siny tan θ = sin θ/cos θ Calculation: ∵ tanx/tany = a ⇒ sinx.cosy/cosx.siny = a ⇒ sinx.cosy = a × (cosx.siny) ------(1) ∵ sin (x + y)/sin (x - y) = (sinx.cosy + cosx.siny)/(sinx.cosy - cosx.siny) ⇒ [a × (cosx.siny) + cosx.siny]/[a × (cosx.siny) - cosx.siny] ⇒ [cosx.siny(a + 1)]/[cos.siny(a - 1)] ⇒ (a + 1)/(a - 1) |
|
| 97. |
3tan-1 x + cot-1 x = π then x equal to1. 1/22. -13. 14. 0 |
|
Answer» Correct Answer - Option 3 : 1 Concept: cos-1 x = \(π\over2\) - sin-1 x cot-1 x = \(π\over2\) - tan-1 x sec-1 x = \(π\over2\) - cosec-1 x Calculation: Given 3tan-1 x + cot-1 x = π ∵ cot-1 x = \(π\over2\) - tan-1 x 3tan-1 x + (\(π\over2\) - tan-1 x) = π 2tan-1 x + \(π\over2\) = π 2tan-1 x = \(\pi\over2\) tan-1 x = \(\pi\over4\) x = tan \(\pi\over4\) = 1 |
|
| 98. |
What is the value of Sec275° – Cot215° + Cosec265° – Cot265°?1. 12. 23. 34. 0 |
|
Answer» Correct Answer - Option 2 : 2 Concept Sec2A – Tan2A = 1 Cosec2A – Cot2A = 1 Cot(90° – A) = TanA Calculation Sec275° – Cot215° + Cosec265° – Cot265° Sec2 75° – Cot2(90° – 75°) + 1 ⇒ Sec275° – Tan2 75° + 1 ⇒ 1 + 1 ∴ 2 |
|
| 99. |
If cosec A + sec A = 2√2, then what is sin A equal to? |
|
Answer» Correct Answer - Option 2 : 1/√2 Given cosec A + sec A = 2√2 Concept cosec 45° = √2 sec 45° = √2 Calculation cosec A + sec A = 2√2 L.H.S cosec 45 °+ sec 45° ⇒ √2 + √2 ⇒ 2√2 So, A is 45° Now, sin 45° = 1/√2 |
|
| 100. |
What is [(1 – Cos A)2 + (1 – tan A)2 + (1 – Sin A)2]/ [2 – (cos A + tan A + sin A) + Tan2A]?1. 62. 93. 54. 2 |
|
Answer» Correct Answer - Option 4 : 2 Calculation (1 + Cos2A – 2 Cos A) + (1 + tan2A – 2 tan A) + (1 + sin2A – 2 Sin A)/ [2 – (cos A + tan A + sin A) + Tan2 A] ⇒ (1 + 1 + 1 + Cos2A + Sin2A – 2cos A – 2 tan A – 2 sin A + Tan2 A)/ [2 – (cos A + tan A + sin A) + Tan2 A ⇒ [1 + 1 + 1 + 1 – 2(cos A + tan A + sin A) + Tan2 A]/[2 – (cos A + tan A + sin A) + Tan2 A] ⇒ {[4 – 2(cos A + tan A + sin A) ]+ Tan2 A}/ [2 – (cos A + tan A + sin A) + Tan2 A] ⇒ 2{[2 – (cos A + tan A + sin A) ]+ Tan 2 A}/[2 – (cos A + tan A + sin A) + Tan 2 A] ⇒ 2 |
|