InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
यदि `sintheta+co s ectheta=2` है तो `sin^(9)theta+co s ec^(9)theta` का मान है?A. 3B. 2C. 4D. 1 |
|
Answer» Correct Answer - b Shotcut method `sin theta+co s ectheta=2` Put, `theta=90^(@)` `1+1=2` (matched) So, `theta=90^(@)` `rArr sin^(2)theta=co s ec^(2)theta` `rArr sin^(2)theta+co s ec^(2)theta` `rArrsinA^(@)90^(@)+co s ec^(2)90^(@)` `rArr1^(@)+ 1 ^(@)` `rAr2` |
|
| 152. |
if `1+cos^(2)theta=3sinthetacostheta` then the integral value of `cottheta` is `(0 lt theta lt (pi)/(2))`A. 2B. 1C. 3D. 0 |
|
Answer» Correct Answer - b Given, `1+cos^(2)theta=3sintheta.cos theta` `[Oltthetaltpi//2]` ` 1+cos^(2)theta=3sin theta.cos theta` Dividing by `sin^(2)theta.cos theta` `rArrco s ec^(2)theta+cot^(2)theta=3cottheta` `rArr1+cot^(2)theta+cot^(2)theta=3cottheta` `because [1+cot^(2)theta=co s ec^(2)theta]` `rArr1+2cot^(2)theta=3cottheta` `rArr2cot^(2)theta=3cottheta-1` Let `theta=45^(@)` `because Cot 45^(@)=1` `2cot^(2)45^(@)-3cot45^(@)+1=0` 2-3+1=0 0=0 Therefore `cot theta=cot45^(@)=1` |
|
| 153. |
यदि `alpha+beta=90^(@)` और `alpha:beta=2:1,` तो `cosalpha` व `cosbeta` का अनुपात क्या है ?A. `1:sqrt(3)`B. `1:3`C. `1:sqrt(2)`D. `1:2` |
|
Answer» Correct Answer - a `alpha+beta=90` and `alpha:beta=2:1` `2x+x=90^(@)` `x=30^(@)` `alpha=60^(@)` `beta=30^(@)` `(cosalpha)/(cosbeta)=(cos60^(@))/(cos30^(@))=(1//2)/(sqrt(3)//2)` `=(1)/(2)xx(2)/sqrt(3)=(1)/sqrt(3)=1:sqrt(3)` |
|
| 154. |
यदि `(coalpha)/(cosbeta)=n` और `(cosalpha)/(cosbeta)=m`, है तो `cos^(2)beta` का मान क्या होगा?A. `(m^(2)-1)/(n^(2)-1)`B. `(m^(2)-3)/(n^(2)-4)`C. `(m^(2)+3)/(n^(2)+3)`D. `(n^(2))/(m^(2)+n^(2))` |
|
Answer» Correct Answer - d Given: `n=(cos alpha)/(sinbeta) m=(cosalpa)/(cosbeta)` `rArr cos alpha=n sin beta`, and `cos alpha=m cos beta` `cos^(2)alpha=n^(2)sin^(2)beta` ..........(i) `cos^(2)alpha=m^(2)cos^(2)beta` .........(ii) equation (i) and (ii) `rArr n^(2)sin^(2)beta=m^(2)cos^(2)beta` `rArrn^(2)(1-cos^(2)beta)=m^(2)cos^(2)beta` `rArrn^(2).n^(2)cos^(2)beta=m^(2)cos^(2)beta` `rArrn^(2)=m^(2)cos^(2)beta+n^(2)cos^(2)beta` `rArrn^(2)=cos^(2)beta(m^(2)=n^(2))` `cos^(2)beta=( n^(2))/(m^(2)+n^(2))` |
|
| 155. |
The numerical value of `(9)/(co s ec^(2)theta)+4cos^(2)theta+(5)/(1+tan^(2)theta)`A. 7B. 9C. 4D. 5 |
|
Answer» Correct Answer - b `(9)/(co s ec^(2)theta)+4cos^(2)theta+(5)/(1+tan^(2)theta)` `=9sin^(2)theta+4cos^(2)theta+(15)/(1+tan^(2)theta)` `because (1+tantheta=sec^(2)theta)` `=9sin^(2)theta+4cos^(2)theta+5cos^(2)theta` `=9(sin^(2)theta+cos^(2)theta)` `=9(sin^(2)theta+cos^(2)theta=1)` =9 |
|
| 156. |
`(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)` is equal toA. `1-tantheta-cottheta`B. `1+tantheta-cottheta`C. `1-tantheta-cottheta`D. `1+tantheta+cottheta` |
|
Answer» Correct Answer - d `(tantheta)/(1-cottheta) +(cottheta)/(1-tantheta)` `rArr(tan theta)/(1-(1)/(tantheta))+((1)/(tan))/(1-tantheta)` `rArr(tan^(2)theta)/(tantheta-1)+(1)/(tantheta(1-tantheta))` `rArr (tan^(2)theta-1)/(tantheta(tantheta-1))` `rArr((tantheta-1)(tan^(2)theta+tantheta+1))/(tantheta(tantheta-1))` `rArr(tan^(2)theta+tantheta+1)/(tan theta)` `rArrtan theta+cot theta+1` |
|
| 157. |
If tan(2x + y) tan(2x – y) = 1, then the value of tan(2x)1. 1/√32. 13. 1/24. 0 |
|
Answer» Correct Answer - Option 2 : 1 Given: Our given expression is tan(2x + y) tan(2x – y) = 1 Formula used: When A + B = 90° then, tanA tanB = 1 and vice versa Calculation: Our given expression is tan(2x + y) tan(2x – y) = 1 ⇒ 2x + y + 2x – y = 90° ⇒ 4x = 90° ⇒ 2x = 45° Now, tan2x = tan45° = 1 ∴ The value of tan45° is 1 |
|
| 158. |
If 7 – 2sin2θ – 11cosθ = 0, where 0° < θ < 90° then find the value of θ 1. 90° 2. 60° 3. 30° 4. 45° |
|
Answer» Correct Answer - Option 2 : 60° Given: Our given expression is 7 – 2sin2θ – 11cosθ = 0 Formula used: cos2θ + sin2θ = 1 Calculation: Our given expression is 7 – 2sin2θ – 11cosθ = 0 ⇒ 7 – 2(1 – cos2θ) – 11cosθ = 0 ⇒ 7 – 2 + 2cos2θ – 11cosθ = 0 Put cosθ = t, then our equation becomes ⇒ 2t2 – 11t + 5 = 0 ⇒ (t – 5)(t – 1/2) = 0 ⇒ t = 5 or t = ½ Here t = 5 is not possible, so t = ½ ⇒ cosθ = ½ ∴ The value of θ is 60° |
|
| 159. |
In a triangle ABC, If angles A, B, C are in AP and ∠A = 30° then what is 2sinA + 3tanB - 4cosC equal to? 1. 1 - √3 2. 13. 1+√34. 1 + 3√3 |
|
Answer» Correct Answer - Option 4 : 1 + 3√3 Concept: In triangle ABC, A + B + C =180° If a, b,c are in AP then 2b = a + c tan 60 = √3 Calculation: Here, A, B, C are in AP, so 2B = A + C = 30 + C .....(1) ABC is a triangle, so A + B + C =180° ⇒ B = 150 - C .....(2) Add (1) and (2), we get 3B = 180 ⇒ B = 60° So, C = 90° 2sinA + 3tanB - 4cosC = 2(sin 30) + 3 tan (60) - 4 cos 90 = 2(1/2) + 3 √3 = 1 + 3√3 Hence, option (4) is correct. |
|
| 160. |
The value of `3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)xcos^(6)x)` isA. 14B. 11C. 12D. 13 |
|
Answer» Correct Answer - d `3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)` Put `x=90^(@)` `3(sin90^(@)-cos90^(@))^(2)+6(sin90^(@))` `=3(1-0)^(4)+ 6(1+0) ^(2)+4(1^(6)+0)` `=3+ 6+4= 13` |
|
| 161. |
The value of \(2 \tan^{-1} \frac 2 3 + \cos^{-1} \frac {12} {13}\) is:1. π / 22. π3. π / 44. π / 3 |
|
Answer» Correct Answer - Option 1 : π / 2 \(2{\tan ^{ - 1}}\left( {\frac{2}{3}} \right) + {\cos ^{ - 1}}\left( {\frac{{12}}{{13}}} \right)\) \( = {\tan ^{ - 1}}\left( {\frac{2}{3}} \right) + {\tan ^{ - 1}}\left( {\frac{2}{3}} \right) + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\;\) \(= {\tan ^{ - 1}}\left[ {\frac{{\frac{2}{3} + \frac{2}{3}}}{{1 - \frac{2}{3} \times \frac{2}{3}}}} \right] + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\) \( = {\tan ^{ - 1}}\left[ {\frac{{\frac{4}{3}}}{{1 - \frac{4}{9}}}} \right] + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\;\) \( = {\tan ^{ - 1}}\left[ {\frac{{\frac{4}{3}}}{{\frac{5}{9}}}} \right] + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\) \( = {\tan ^{ - 1}}\left[ {\frac{{36}}{{15}}} \right] + {\tan ^{ - 1}}\left[ {\frac{5}{{12}}} \right]\) \( = {\tan ^{ - 1}}\left[ {\frac{{12}}{5}} \right] + {\tan ^{ - 1}}\left[ {\frac{5}{{12}}} \right]\) \( = {\tan ^{ - 1}}\left[ {\frac{{12}}{5}} \right] + {\cot ^{ - 1}}\left[ {\frac{{12}}{5}} \right]\) \( = \frac{\pi }{2}\left[ {{{\tan }^{ - 1}}x + {{\cot }^{ - 1}}x = \frac{\pi }{2}} \right]\) |
|
| 162. |
If \(\frac {\sec θ + \tan θ }{\sec θ - \tan θ } = 2 \frac {51}{79},\) then the value of sin θ is equal to:1. \(\frac {35}{72}\)2. \(\frac {91}{144}\)3. \(\frac {65}{144}\)4. \(\frac {39}{72}\) |
|
Answer» Correct Answer - Option 3 : \(\frac {65}{144}\) Given : (sec θ + tan θ)/(sec θ - tan θ) = 209/79 Calculations : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaci4CaiaacwgacaGGJbGaeqiUdeNaey4kaSIa % ciiDaiaacggacaGGUbGaeqiUdehapaqaa8qacaWGZbGaamyzaiaado % gacqaH4oqCcqGHsislcaWG0bGaamyyaiaad6gacqaH4oqCaaaaaa!4A3F! \frac{{\sec θ + \tan θ }}{{secθ - tanθ }}\)sec θ + tan θ)/(sec θ - tan θ) = 209/79 Cross multiply both the sides 79 sec θ + 79 tan θ = 209 sec θ - 209 tan θ ⇒ 288 tan θ = 130 sec θ ⇒ sin θ/cos θ = (130/288) (1/cos θ) ⇒ sin θ = 65/144 ∴The value of sinθ will be 65/144 |
|
| 163. |
If (sec θ + tan θ) = 4, then find the value of sin θ.1. 17/82. 8/173. 17/154. 15/17 |
|
Answer» Correct Answer - Option 4 : 15/17 Given: sec θ + tan θ = 4 ----(i) Formula used: sec2 θ – tan2 θ = 1 (a2 – b2) = (a + b)(a – b) sec θ = Hypotenuse/Base sin θ = Perpendicular/Hypotenuse Calculations: Using the given identities, ⇒ (sec θ + tan θ)(sec θ – tan θ) = 1 ⇒ 4 × (sec θ – tan θ) = 1 ⇒ (sec θ – tan θ) = 1/4 (ii) Adding (i) and (ii), ⇒ 2sec θ = 17/4 ⇒ sec θ = 17/8 sin θ = √(172 – 82)/17 ⇒ sin θ = 15/17 ∴ The value of sin θ is 15/17 |
|
| 164. |
Let θ = sin-1 (sin (-600°)), then the value of θ is:1. π/3 2. π/23. 2π/34. -2π/3 |
|
Answer» Correct Answer - Option 1 : π/3 Explanation: θ = sin-1 (sin (-600°)) θ = sin-1 (sin (-600°)) θ = sin-1 (sin (-600°)) ----------(1) Since, sin (θ + (n × 360°)) = sin θ where n is a natural number Continuing from equation (1) θ = sin-1 (sin (-600°)) θ = sin-1 (sin (-600° + (2 × 360°))) θ = sin-1 (sin (-600° + 720°)) θ = sin-1 (sin 120°) θ = \(sin^{-1}(\frac{\sqrt{3}}{2})\) θ = π/3 Note: Range of inverse sine function is [-π/2 to π/2]. |
|
| 165. |
If sec A + tan A = m, sec A.tan A = n and sec4 A – tan4 A = m2/2, then which of the following is TRUE?1. m2 – 3n = 02. m2 – n = 03. m2 = n4. m2 = 4n |
|
Answer» Correct Answer - Option 4 : m2 = 4n GIVEN: sec A + tan A = m sec A. tan A = n sec4 A – tan4 A = m2/2 CONCEPT: Trigonometry CALCULATION: sec A + tan A = m ⇒ (sec A + tan A)2 = m2 ⇒ sec2 A + tan2 A + 2 sec A. tan A = m2 ⇒ sec2 A + tan2 A + 2n = m2 ⇒ sec2 A + tan2 A = m2 – 2n Now, sec4 A – tan4 A = m2/2 ⇒ (sec2 A – tan2 A) (sec2 A + tan2 A) = m2/2 [sec2 A – tan2 A = 1] ⇒ 1 (sec2 A + tan2 A) = m2/2 ⇒ m2 – 2n = m2/2 ⇒ 2m2 – 4n = m2 ⇒ m2 = 4n |
|
| 166. |
If \(\rm \frac{{\sin \left( {x\; + \;y} \right)}}{{\sin \left( {x\; - \;y} \right)}} = \frac 53\) then what is \(\rm \frac{{\tan x}}{{\tan y}}\) equal to?1. 22. 43. \(\frac 1 4\)4. \(\frac 12\) |
|
Answer» Correct Answer - Option 2 : 4 Concepts: If \(\rm \frac A B = \frac C D\), property of componendo and dividendo is given by, \(\rm \frac{A+B}{A-B}=\frac{C+D}{C-D}\) Formula:
Calculation: Given: \(\rm \frac{{\sin \left( {x\; + \;y} \right)}}{{\sin \left( {x\; - \;y} \right)}} = \frac 53\) \(\Rightarrow\rm \;\frac{{\sin x\cos y\; + \;\cos x\sin y}}{{\sin x\cos y\; - \;\cos x\sin y}} = \frac 53\) Using componendo and dividendo formula, we get \(\rm \Rightarrow \frac{{(\sin x\cos y + \cos x\sin y) + (\sin x\cos y - \cos x\sin y)}}{{(\sin x\cos y + \cos x\sin y) - (\sin x\cos y - \cos x\sin y)}} = \frac{5+3}{5-3}\) \(\rm \Rightarrow \;\frac{{2{\rm{\;sin}}x\cos y}}{{2\cos x\sin y}} = \frac{8}{2}\) \(\rm \therefore \frac{{\tan x}}{{\tan y}} = 4\) |
|
| 167. |
If angles A, B, C of a ΔABC form an increasing AP, then sin B =(a) 1/2(b) √3/2(c) 1(d) 1/√2 |
|
Answer» (b) In ΔABC, angles A,B,C are in A.P., B – A = C – B 2B = A + C ...(i) also, A + B + C = 180° (Angle sum Property) 2 B + B = 180° B = 60° Hence, sin B = sin60° = √3/2 |
|
| 168. |
If x = a (sin 0 + cos 0), y = b (sin 0 - cos 0), then \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) =1. 12. 03. 24. 4 |
|
Answer» Correct Answer - Option 3 : 2 Given: x = a (sin 0 + cos 0) y = b (sin 0 - cos 0) Formula used: sin 0 = 0 cos 0 = 1 Calculation: x = a(0 + 1) = a y = b(0 - 1) = - b \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = \(\dfrac{a^2}{a^2}+\dfrac{(- b)^2}{b^2}\) ⇒ \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = 1 + 1 ∴ \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = 2 |
|
| 169. |
The maximum value of 2 sin 0 + 3 cos 0 is1. √112. √133. √54. √7 |
|
Answer» Correct Answer - Option 2 : √13 Formula used: The maximum value of a sin x + b cos x = √(a2 + b2) Calculation: The maximum value of 2 sin 0 + 3 cos 0 = √(22 + 32) = √13 ∴ Maximum value of 2 sin 0 + 3 cos 0 = √13 |
|
| 170. |
If 4 – 2sin2 θ – 5cos θ = 0, 0° |
|
Answer» Correct Answer - Option 3 : \(\dfrac{1+2\sqrt{3}}{2}\) Given: 4 – 2sin2 θ – 5cos θ = 0 Identity used: sin2θ = 1 – cos2θ Calculation: 4 – 2sin2 θ – 5cos θ = 0 ⇒ 4 – 2 × (1 – cos2θ) – 5cosθ = 0 ⇒ 4 – 2 + 2cos2θ – 5cosθ = 0 ⇒ 2cos2θ – 5cosθ + 2 = 0 ⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0 ⇒ 2cosθ × (cosθ – 2) – 1 × (cosθ – 2) = 0 ⇒ (2cosθ – 1) × (cosθ – 2) = 0 ⇒ cosθ = 1/2 and cosθ = 2 Rejecting cosθ = 2 as 0° < θ < 90° So, cosθ will be 1/2 ⇒ θ = 60° The value of cos θ + tan θ = cos60° + tan60° ⇒ (1/2) + √3 ∴ The value of cos θ + tan θ is \(\dfrac{1+2\sqrt{3}}{2}\) |
|
| 171. |
(sin θ + cos θ)2 = 2, 0° |
|
Answer» Correct Answer - Option 3 : \(\frac{\pi}{4}\) Given: (sin θ + cos θ)2 = 2 Formula used: (A + B)2 = A2 + B2 + 2AB sin2θ + cos2θ = 1 sin2θ = 2sinθcosθ sin90º = 1 Calculation: (sin θ + cos θ)2 = 2 ⇒sin2θ + cos2 + 2sinθcosθ = 2 ⇒1 + 2sinθcosθ = 2 ⇒2sinθcosθ = 2 - 1 ⇒2sinθcosθ = 1 ⇒sin2θ = 1 ⇒sin2θ = sin90º ⇒2θ = 90º ⇒θ = 45º ⇒θ = π/4 |
|
| 172. |
If `cos^(4)theta-sin^(4)theta=(2)/(3)=(2)/(3)`, then the value of `2cos^(2)theta -1` is(यदि `cos^(4)theta-sin^(4)theta=(2)/(3)=(2)/(3)` है तो `2 cos^(2) theta-1` का मान ज्ञात क्या होगा ) |
|
Answer» Correct Answer - c `cos^(4)theta-sin^(4)theta+(2)/(3)` `[a^(4)-b^(4)=(a^(2)-b^(2))(a^(2)+b^(2)))` `rArr1xx(cos^(2)theta-sin^(2)theta)=(2)/(3)` `rArr1xx (cos^(2)theta-sin^(2)theta)=(2)/(5)` `[sin^(2)theta=1-cos^(2)theta]` `rArr 2cos^(2)theta-1=(2)/(3)` |
|
| 173. |
The value of x in the equation(निम्न्लिखित समीकरण का मान ज्ञात करे ) `"tan"^(2)(pi)/(4)-"cos"^(2)(pi)/(3)=x` `"sin" (pi)/(4) "cos"(pi)/(4)tan`(pi)/(3)is `A. `(3sqrt3)/(4)`B. `(2)/(sqrt3)`C. `(1)/(sqrt3)`D. `(sqrt3)/(2)` |
|
Answer» Correct Answer - d `tan^(2)(n)/(4)-cos^(2)(n)/(3)=x sin(pi)/(4)cos(n)/(4)tan(n)/(3)` `rArrtan^(2)45^(@)-cos^(2)60^(@)=xsin45^(@)` `rArr 1-(1)/(4)=xxx(1)/sqrt(2)xx(1)/sqrt(2)xxsqrt(3)` `rArr(3)/(4)=(x xxsqrt(3))/(2)` `rArrx=sqrt(3)/(2)` |
|
| 174. |
Value of the expression:(निम्न्लिखित वयंक का मान क्या है ) `(1+2 sin60^(@)cos60^(@))/(sin60^(@)+cos60^(@))+(1-2 sin60^(@)cos60^(@))/(sin60^(@)-cos60^(@))`A. `sqrt3`B. `2sqrt3`C. 0D. 2 |
|
Answer» Correct Answer - a The value of `rArr=(1+2sin60^(@) cos60^(@))/(sin60^(@)+cos60^(@))+(1-2sin60^(@)cos60^(@))/(sin60^(@)-cos60^(@))` `rArr(1+ 2 xxsqrt(3)/(2)(1)/(2))/(sqrt(3)/(2)+(1)/(2))+(1-2xxsqrt(3)/(2)xx(1)/(2))/(sqrt(3)/(2)-(1)/(2))` `rArr(2+sqrt(3))/(sqrt(3)+1)+(2-sqrt(3))/(sqrt(3)-1)` `rArr(2sqrt(3)+3-2-sqrt(3)+2- sqrt(3))/(sqrt(3)^(2)-1^(2))` `rArr(4sqrt(3))/(2)rArrsqrt(3)` |
|
| 175. |
If √3sinθ = 3 cosθ then fin the value of sec2θ – 2?1. 52. 23. 74. 9 |
|
Answer» Correct Answer - Option 2 : 2 Given: The given condition is √3sinθ = 3 cosθ Formula Used: Basic concept of trigonometric ratio and identities We know that tanθ = sinθ/cosθ tan60° = √3 and Sec60° = 2 Calculation: By rearranging the expression ∴ √3sinθ = 3 cosθ ⇒ Sinθ/cosθ = 3/√3 ⇒ tanθ = 3/√3 Now, by rationalizing the denominator ∴ tanθ = √3 Also, tan60° = √3 ∴ tanθ = tan60° ⇒ θ = 60° Now, the value of sec2θ – 2 ∴ sec2(60°) – 2 ⇒ 4 – 2 = 2 Hence, option (2) is correct |
|
| 176. |
If sin3θ.sec6θ = 1 then find the value of 3tan23θ?1. 12. 23. 54. 7 |
|
Answer» Correct Answer - Option 1 : 1 Given: It is given that sin3θ.sec6θ = 1 Formula Used: Basic concept of trigonometric ratio and identities We know that Secθ = 1/cosθ Cos(90 - θ) = sin θ tan30° = 1/√3 Calculation: As we know that reciprocal of secθ is equal to cosθ ∴ Sin3θ/cos6θ = 1 ⇒ sin3θ = cos6θ ∵ Cos(90 - θ) = sin θ ∴ sin3θ = sin(90 - 6θ) ⇒ 3θ = 90 - 6θ ⇒ θ = 10° Now, 3tan23θ ∴ 3tan23θ = 3tan230° = 3 × (1/√3)2 = 1 Hence, option (1) is correct |
|
| 177. |
If \(\frac{{\sin x + \cos x}}{{\sin x - \cos x}} = \frac{6}{5}\), then the value of \(\frac{{{{\tan }^2}x + 1}}{{{{\tan }^2}x - 1}}\) is:1. \(\frac{{35}}{{61}}\)2. \(\frac{{61}}{{60}}\)3. \(\frac{{60}}{{61}}\)4. \(\frac{{61}}{{35}}\) |
|
Answer» Correct Answer - Option 2 : \(\frac{{61}}{{60}}\) Given: \(\frac{{\sin x + \cos x}}{{\sin x - \cos x}} = \frac{6}{5}\) Concept Used: Componendo & dividendo a/b = c/d then (a + b)/(a - b) =(c + d)/(c - d) Calculation: \(\frac{{\sin x + \cos x}}{{\sin x - \cos x}} = \frac{6}{5}\) By using componendo & dividendo (sinx + cosx + sinx - cos x)/(sinx + cosx - sinx + cosx) = (6 + 5)/(6 - 5) (2sinx/2cosx) = (sinx/cosx) = 11/1 tan2x = (sin2x/cos2x) = 112/12 = 121 tan2x + 1 = 121 +1 =122 tan2x - 1 = 121 - 1 = 120 \(\frac{{{{\tan }^2}x + 1}}{{{{\tan }^2}x - 1}}\) = 122/120 = 61/60 ∴ The value of \(\frac{{{{\tan }^2}x + 1}}{{{{\tan }^2}x - 1}}\) is 61/60 |
|
| 178. |
If sec (A + B) = √2 and sin (A - B) = 1 then find the value of 2A + B?1. 112.5°2. 87.5°3. 92.5°4. 109.5° |
|
Answer» Correct Answer - Option 1 : 112.5° Given: It is given that sec (A + B) = √2 and sin (A - B) = 1 Formula Used: Basic concept of trigonometric ratio and identities We know that Sec 45° = √2 and sin 90° = 1 Calculation: The equation sec (A + B) = √2 can be written as ∵ Sec 45° = √2 ∴ Sec (A + B) = Sec 45° ⇒ A + B = 45° ---(1) And sin (A - B) = 1 so it can be written as ∵ Sin 90° = 1 ∴ sin (A - B) = Sin 90° ⇒ A - B = 90° ---(2) By equation (1) and (2) we get ∴ A = 67.5° and B = -22.5 ° Now, we have to find the value of 2A + B ∴ 2 × 67.5 + (-22.5) = 112.5° Hence, option (1) is correct |
|
| 179. |
What is \(\rm \cot{\frac{A}{2}}+ \tan {\frac{A}{2}}\) equal to?1. 2 sec A2. 2 cosec A3. sin A4. sec A |
|
Answer» Correct Answer - Option 2 : 2 cosec A Concept:
Calculation: Consider the expression \(\rm \cot{\frac{A}{2}}+ \tan {\frac{A}{2}}\). = \(\rm \frac{\cos\frac{A}{2}}{\sin\frac A2}+ \frac{\sin \frac{A}{2}}{\cos\frac{A}{2}}\) = \(\rm \frac{\cos^2\frac{A}{2}+\sin^2\frac{A}{2}}{\sin\frac A2\cos\frac{A}{2}}\) = \(\rm \frac{1}{\sin\frac A2\cos\frac{A}{2}}\) = \(\rm \frac{2}{2\sin\frac A2\cos\frac{A}{2}}\) = \(\rm \frac {2}{\sin A}\) = 2 cosec A |
|
| 180. |
If will be the value of sec279° - (1/tan211°)? |
|
Answer» Correct Answer - Option 2 : 1 Given: The given expression is sec279° – (1/tan211°) Formula Used: Basic concept of trigonometric ratio and identities We know that Sec2 θ – tan2 θ = 1 1/tan θ = cot θ Cot (90 – θ) = tan θ Calculation: The given expression sec279° – (1/tan211°) can be written as sec279° – cot211° ∵ 1/tan θ = cot θ Now, sec279° – cot211° = sec279° – cot2(90 – 79°) = sec279° – tan2 79° ∵ sec2θ – tan2θ = 1 ∴ sec279° – tan279° = 1 Hence, option (2) is correct |
|
| 181. |
If sec α × sin 59 ° = 1 then what is the value of α?1. 31°2. 21°3. 59°4. 39° |
|
Answer» Correct Answer - Option 1 : 31° Given: It is given that sec α × sin 59 ° = 1 Formula Used: Basic concept of trigonometric ratio and identities We know that 1/cosec θ = sin θ Cosec (90 - θ) = sec θ Calculation: We know that the reciprocal of sin θ is cosec θ ∴ Sec α × sin 59 ° = 1 can be written as sec α × 1/cosec 59 ° = 1 ⇒ Sec α = cosec 59 ° ⇒ Sec α = cosec (90 - 31) ° ∵ Cosec (90 - θ) = sec θ ∴ Sec α = sec 31° ⇒ α = 31° Hence, option (1) is correct |
|
| 182. |
What is tan A + sec A equal to?1. \(\rm \tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)2. \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)3. \(\rm 2\tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)4. \(\rm 2\cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\) |
|
Answer» Correct Answer - Option 2 : \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\) Concept:
Calculation: Consider, tan A + sec A. = \(\rm \frac {\sin A}{\cos A} + \frac {1}{\cos A}\) = \(\rm \frac {\sin A+1}{\cos A}\) = \(\rm \frac {2\sin \frac{A}{2}\cos \frac{A}{2}+\sin^2\frac{A}{2}+\cos^2\frac{A}{2}}{\cos^2 \frac{A}{2}-\sin^2\frac{A}{2}}\) = \(\rm \frac {\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)^2}{\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right)}\) = \(\rm \frac {\sin \frac{A}{2}+\cos \frac{A}{2}}{\cos \frac{A}{2}-\sin \frac{A}{2}}\) Dividing by \(\rm \sin\frac{A}{2}\), we get: = \(\rm \frac {\cot\frac{A}{2}+1}{\cot\frac{A}{2}-1}\) Using \(\rm \cot\frac{\pi}{4}=1\), it can be written as; = \(\rm \frac {\cot\frac{\pi}{4}\cot\frac{A}{2}+1}{\cot\frac{A}{2}-\cot\frac{\pi}{4}}\) = \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\) |
|
| 183. |
If tan2x° = cot(x+6)°, then find the value of x?1. 44° 2. 25° 3. 38° 4. 28° |
|
Answer» Correct Answer - Option 4 : 28° Given: tan2x° = cot(x+6)° Concept used: tan(90° - θ) = cotθ Calculation: tan2x° = cot(x+6)° ⇒ tan2x° = tan[90° - (x+6)°] [tan(90° - θ) = cotθ] ⇒ 2x° = 90° - (x+6)° ⇒ 2x° = 90° - x° - 6° ⇒ 3x° = 84° ⇒ x = 28° ∴ The value of x is 28°. |
|
| 184. |
If sin x + cos x = √3 cos x, then the value of cot x is:1. \(\frac{{\sqrt 3 + 1}}{2}\)2. √33. 14. \(\frac{{\sqrt 3 -1}}{2}\) |
|
Answer» Correct Answer - Option 1 : \(\frac{{\sqrt 3 + 1}}{2}\) Given: sin x + cos x = √3 cos x Concept used: Rationalization method used. Formula used: Tanθ = Sinθ/Cosθ a2 – b2 = (a + b) × (a – b) Calculation: sin x + cos x = √3 cos x ⇒ (sin x + cos x)/cos x = √3 ⇒ (sin x/cos x + cos x/cos x ) = √3 ⇒ tan x + 1 = √3 ⇒ tan x = √3 – 1 ⇒ 1/cot x = √3 – 1 ⇒ cot x = 1/(√3 – 1) ⇒ cot x = (√3 + 1)/[(√3 – 1) × (√3 + 1)] ⇒ cot x = (√3 + 1)/[(√3)2 – 1] ⇒ cot x = (√3 + 1)/(3 – 1) ⇒ cot x = (√3 + 1)/2 ∴ The value of cot x is (√3 + 1)/2. |
|
| 185. |
What is the value of sin35° × cos55°?1. cos235° 2. sin235° 3. sin255° 4. tan255° |
|
Answer» Correct Answer - Option 2 : sin235° Given: sin35° × cos55° Concept used: sin(90° - θ) = cosθ cos(90° - θ) = sinθ Calculation: sin35° × cos55° ⇒ sin35° × cos(90° - 35°) ⇒ sin35° × sin35° ⇒ sin235° ∴ The value is sin235°. |
|
| 186. |
If 0 |
|
Answer» Correct Answer - Option 3 : 9 Given: 3b cosecθ = a secθ 3a secθ - b cosecθ = 8 Formula used: sin2θ + cos2θ = 1 Calculation: ∵ 3b cosecθ = a secθ ⇒ 9b cosecθ = 3a secθ ------(1) ∵ 3a secθ - b cosecθ = 8 ⇒ 9b cosecθ - b cosecθ = 8 ------(From 1) ⇒ 8b cosecθ = 8 ⇒ b cosecθ = 1 ⇒ b = 1/cosecθ ------(2) ⇒ b = sinθ ------(3) ∵ 3a secθ - b cosecθ = 8 ⇒ 3a secθ - (cosecθ/cosecθ) = 8 ⇒ 3a secθ - 1 = 8 ⇒ 3a secθ = 9 ⇒ a secθ = 3 ⇒ a = 3/secθ ⇒ a = 3cosθ ------(4) Putting the values of 'a' and 'b' from (3) and (4) in 9b2 + a2 = 9 (sinθ)2 + (3cosθ)2 = 9 sin2θ + 9 cos2θ = 9(sin2θ + cos2θ) = 9 × 1 = 9 |
|
| 187. |
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is (a) 1 (b) 0 (c) 7 (d) 13 |
|
Answer» (a) sinA + sin2A = 1 sinA = cos2A sin2A = cos4A cos4A = 1– cos2A cos2A + cos4A = 1 |
|
| 188. |
The value of `sin^(2)2^(@)+sin^(2)4+sin^(2)6^(@)+...+sin^(2)90^(@)` isA. 23B. 0C. 44D. 22 |
|
Answer» Correct Answer - a According to the qeustion `rArrsin^(2)2^(@)+sin^(2)4^(@)+sin^(2)6^(@)+........+sin^(2)60^(@)`. Number of terms `=(l-a)/(d)+1` `=(90-2)/(2)+1=45` But `sin^(2)90^(@)=1` So, `22` pairs +`sin^(2)90^(@)` 23+1=23 |
|
| 189. |
If `costheta+sectheta =sqrt(3)`, then the value of `(cos^(3)theta+sec^(3)theta)` isA. `(1)/(sqrt(2))`B. 1C. 0D. `sqrt(2)` |
|
Answer» Correct Answer - c `cos theta+sec theta=sqrt(3)` cubing both sides `cos^(3)theta+sec^(3)theta+3cos thetasec theta` `(cos theta+sec theta)=3sqrt(3)` `cos^(3)theta+sec^(3)theta+3sqrt(3)=3sqrt(3)` `cos^(3)theta+sec^(3)theta=0` |
|
| 190. |
`theta` के वास्तविक मान के लिए `1+sin((x)/(4)+theta)+2cos((x)/(4)-theta)` का अधिकतम मान क्या होगा ?A. 3B. 4C. 5D. 6 |
|
Answer» Correct Answer - a `1+sin((x)/(4)+theta)+2 cos((x)/(4)-theta)` इस समीकरण के अधिकतम मान के लिए `sin((x)/(4)+theta)=1,cos((x)/(4)-theta)=1` `(x)/(4)+theta=90^(@)` `(x)/(4)-theta=0^(@)` From Eq. (i) `&` (ii) We get `x=180^(@),theta=45^(@)` then max value `=1+1+2=4` |
|
| 191. |
`0^(@) lt theta lt 90^(@)` के लिए इनमे से कौन सत्य है?A. `costheta le costheta^(2)theta`B. `costheta lt cos^(2)theta`C. `costheta gt cos^(2) theta`D. `costheta ge cos^(2)theta` |
|
Answer» Correct Answer - c Put, `theta=60^(@)` `rArrcos thetagtcos^(2)theta` `rArr cos 60^(@)gtcos^(2)60^(@)` `rArrcos 60^(@)gtcos^(2)60^(@)` `rArr(1)/(2)gt(1)/(4)` `cos thetagtcos^(2)theta` |
|
| 192. |
`sin^(4)theta+cos^(4)theta` का अधिकतम मान क्या होगा?A. 2B. 3C. `(1)/(2)`D. 1 |
|
Answer» Correct Answer - d `sin^(2)theta+cos^(2)theta=1` Squaring both sides `sin^(4)theta+cos^(4)theta` `=1-2 sin^(2)theta.cos^(2)theta` Put `theta= 90^(@)` `=1-2sin^(2)90^(@).cos^(2)90^(@)=1-0=1` |
|
| 193. |
If `0ltthetalt 90^(@)+sintheta=m and tan_(theta)-sin_(theta)=n`where m=b then the value of `m^(2)-n^(2)` isA. `2(tan^(2)theta+sin^(2)theta)`B. 4mmC. `4sqrtmm`D. `2(m^(2)+n^(2))` |
|
Answer» Correct Answer - c `tan theta+sintheta= m` squaring both sides `tan^(2)theta+sin^(2)theta+2 tan thetasintheta=m^(2)` `tan theta-sin theta=n` squaring both sides `tan^(2)theta+sin^(2)theta-2tan theta sin theta=n^(2)` Subtract from (i) `&` (ii) `m^(2)-n^(2)=tan^(2)theta+sin^(2)+2tan theta` `sin theta-tan^(2)theta-sin^(2)theta+2tan theta` `sin theta` `m^(2)-n^(2)=4tan theta sin theta` ` 4sqrt(tan^(2)thetasin^(2)theta)` `=4sqrt(tan^(2)theta(1-cos^(1)theta))` `=4sqrt(tan^(2)theta-sin^(2)theta)` `=4sqrt(mm)` |
|
| 194. |
If `(sin theta+cos theta)/(sin theta-cos theta)` then the value of `sin^(4)theta` isA. `(16)/(25)`B. `(2)/(5)`C. `(1)/(5)`D. `(3)/(5)` |
|
Answer» Correct Answer - a `(sin theta+cos theta)/(sin theta-cos theta)=(3)/(1)` find `sin^(4)theta=`? `(sin theta+cos theta)/(sin theta-cos theta)=(3+1)/(3-1)` `rArr tan theta=2` `tan theta=("perpendicular")/("Base")=(2)/(T)` `rArr sin^(4)theta=((2)/sqrt(5))^(2)=16//25` |
|
| 195. |
The value of `(2cos^(2)theta-1)((1+tantheta)/(1-tantheta)+(1-tantheta)/(1+tantheta))` is-A. 4B. 1C. 3D. 2 |
|
Answer» Correct Answer - d `(2cos^(2)theta-1)[(1+tantheta)/(1-tantheta)+(1-tantheta)/(1+tantheta)]` Shortcut Method: Put `theta=0^(@)` `(2xx1-1)[(1+0)/(1-0),(1-0)/(1+0)]` `1xx2=2` |
|
| 196. |
The numerical value of `((1)/(costheta)+(1)/(cot theta))((1)/(costheta)-(1)/(costheta))` is |
|
Answer» Correct Answer - c `[(1)/(costheta)+(1)/(cottheta)][(1)/(costheta)-(1)/(cottheta)]` `=(sectheta+tantheta)(sectheta-tantheta)` `=sec^(2)theta-tan^(2)theta[1+tan^(2)theta=sec^(2)]` =1 |
|
| 197. |
यदि `tantheta-tan^(2)theta=1` है, तो `sec^(2)theta- sec^(4)theta` का मान क्या होगा ?A. 1B. -1C. 2D. 0 |
|
Answer» Correct Answer - a `tan theta-tan^(2)theta=1` `tan theta=1+tan^(2)theta=sec^(2)theta` `tan theta=sec^(2)theta` Now, `sec^(2)theta-sec^(4)theta` `=tantheta-tan^(2)theta=1` |
|
| 198. |
यदि `xsin60^(@).tan30^(@)=sec60^(@).cot45^(@)` है तो x का मान ज्ञात करेA. 2B. `2sqrt(3)`C. `4`D. `4sqrt(3)` |
|
Answer» Correct Answer - c `x sin60^(@)tan30^(@)=sec60^(@)`. `cot45^( @)` `xsqrt(3)/(2).(1)/sqrt(3)=2.1` `rArr(x)/(x)xx 2rArr x=4` |
|
| 199. |
If `4 sin^(2)_(theta)-1=0` and angle `theta` is less than `90^(@)`. The value of `cos^(2)_(theta)+tan^(2)_(theta)` is(यदि `4 sin^(2)_(theta)-1=0` और कोण `theta lt 90^(@)` से काम है तो `cos^(2)_(theta)+tan^(2)_(theta)` का मान क्या होगा)A. `(13)/(12)`B. `(12)/(11)`C. `(11)/(9)`D. `(17)/(15)` |
|
Answer» Correct Answer - a `(x-xtan^(2)30^(@))/(1+tan^(2)30^(@))` `=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)` `(x(1-tan^(2)30^(@)))/(1+tan^(2)30^(@))=((1)/(2))^(2)+4xx1-(2)^(2)` `rArr(3)/(4)+(1)/(3)rArr(13)/(12)` |
|
| 200. |
if `(1+sinalpha)(1-sinbeta)(1-singamma)=(1-sinalpha)(gamma-sinbeta)(1-singamma)=?`A. `+-cosalphacosbetacosgamma`B. `+-sinalphasinbetasingamma`C. `+-sinalphaalphabetasecgamma`D. `+-sinalphasinbetacosgamma` |
|
Answer» Correct Answer - a `(1+sinalpha)(1-sinbeta)(1-siny)=x` `therefore x x=(1+sinalpha)(1-sinalpha)(1+sinbeta)` `(1-sinbeta)(1+sinv)(1-siny)` `x^(2)rArr(1-sin^(2)alpha)(1-sin^(2)beta)(1-sin^(2)y)` `x^(2)rArrcos^(2)alpha.cos^(2)beta.cos^(2)y` `xrArr+-cos alpha.cos beta.cosy` |
|