Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

यदि `sintheta+co s ectheta=2` है तो `sin^(9)theta+co s ec^(9)theta` का मान है?A. 3B. 2C. 4D. 1

Answer» Correct Answer - b
Shotcut method
`sin theta+co s ectheta=2`
Put, `theta=90^(@)`
`1+1=2` (matched)
So, `theta=90^(@)`
`rArr sin^(2)theta=co s ec^(2)theta`
`rArr sin^(2)theta+co s ec^(2)theta`
`rArrsinA^(@)90^(@)+co s ec^(2)90^(@)`
`rArr1^(@)+ 1 ^(@)`
`rAr2`
152.

if `1+cos^(2)theta=3sinthetacostheta` then the integral value of `cottheta` is `(0 lt theta lt (pi)/(2))`A. 2B. 1C. 3D. 0

Answer» Correct Answer - b
Given, `1+cos^(2)theta=3sintheta.cos theta`
`[Oltthetaltpi//2]`
` 1+cos^(2)theta=3sin theta.cos theta`
Dividing by `sin^(2)theta.cos theta`
`rArrco s ec^(2)theta+cot^(2)theta=3cottheta`
`rArr1+cot^(2)theta+cot^(2)theta=3cottheta`
`because [1+cot^(2)theta=co s ec^(2)theta]`
`rArr1+2cot^(2)theta=3cottheta`
`rArr2cot^(2)theta=3cottheta-1`
Let `theta=45^(@)`
`because Cot 45^(@)=1`
`2cot^(2)45^(@)-3cot45^(@)+1=0`
2-3+1=0
0=0
Therefore `cot theta=cot45^(@)=1`
153.

यदि `alpha+beta=90^(@)` और `alpha:beta=2:1,` तो `cosalpha` व `cosbeta` का अनुपात क्या है ?A. `1:sqrt(3)`B. `1:3`C. `1:sqrt(2)`D. `1:2`

Answer» Correct Answer - a
`alpha+beta=90`
and `alpha:beta=2:1`
`2x+x=90^(@)`
`x=30^(@)`
`alpha=60^(@)`
`beta=30^(@)`
`(cosalpha)/(cosbeta)=(cos60^(@))/(cos30^(@))=(1//2)/(sqrt(3)//2)`
`=(1)/(2)xx(2)/sqrt(3)=(1)/sqrt(3)=1:sqrt(3)`
154.

यदि `(coalpha)/(cosbeta)=n` और `(cosalpha)/(cosbeta)=m`, है तो `cos^(2)beta` का मान क्या होगा?A. `(m^(2)-1)/(n^(2)-1)`B. `(m^(2)-3)/(n^(2)-4)`C. `(m^(2)+3)/(n^(2)+3)`D. `(n^(2))/(m^(2)+n^(2))`

Answer» Correct Answer - d
Given:
`n=(cos alpha)/(sinbeta) m=(cosalpa)/(cosbeta)`
`rArr cos alpha=n sin beta`, and `cos alpha=m cos beta`
`cos^(2)alpha=n^(2)sin^(2)beta` ..........(i)
`cos^(2)alpha=m^(2)cos^(2)beta` .........(ii)
equation (i) and (ii)
`rArr n^(2)sin^(2)beta=m^(2)cos^(2)beta`
`rArrn^(2)(1-cos^(2)beta)=m^(2)cos^(2)beta`
`rArrn^(2).n^(2)cos^(2)beta=m^(2)cos^(2)beta`
`rArrn^(2)=m^(2)cos^(2)beta+n^(2)cos^(2)beta`
`rArrn^(2)=cos^(2)beta(m^(2)=n^(2))`
`cos^(2)beta=( n^(2))/(m^(2)+n^(2))`
155.

The numerical value of `(9)/(co s ec^(2)theta)+4cos^(2)theta+(5)/(1+tan^(2)theta)`A. 7B. 9C. 4D. 5

Answer» Correct Answer - b
`(9)/(co s ec^(2)theta)+4cos^(2)theta+(5)/(1+tan^(2)theta)`
`=9sin^(2)theta+4cos^(2)theta+(15)/(1+tan^(2)theta)`
`because (1+tantheta=sec^(2)theta)`
`=9sin^(2)theta+4cos^(2)theta+5cos^(2)theta`
`=9(sin^(2)theta+cos^(2)theta)`
`=9(sin^(2)theta+cos^(2)theta=1)`
=9
156.

`(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)` is equal toA. `1-tantheta-cottheta`B. `1+tantheta-cottheta`C. `1-tantheta-cottheta`D. `1+tantheta+cottheta`

Answer» Correct Answer - d
`(tantheta)/(1-cottheta) +(cottheta)/(1-tantheta)`
`rArr(tan theta)/(1-(1)/(tantheta))+((1)/(tan))/(1-tantheta)`
`rArr(tan^(2)theta)/(tantheta-1)+(1)/(tantheta(1-tantheta))`
`rArr (tan^(2)theta-1)/(tantheta(tantheta-1))`
`rArr((tantheta-1)(tan^(2)theta+tantheta+1))/(tantheta(tantheta-1))`
`rArr(tan^(2)theta+tantheta+1)/(tan theta)`
`rArrtan theta+cot theta+1`
157.

If tan(2x + y) tan(2x – y) = 1, then the value of tan(2x)1. 1/√32. 13. 1/24. 0

Answer» Correct Answer - Option 2 : 1

Given:

Our given expression is tan(2x + y) tan(2x – y) = 1

Formula used:

When A + B = 90° then, tanA tanB = 1 and vice versa

Calculation:

Our given expression is tan(2x + y) tan(2x – y) = 1

⇒ 2x + y + 2x – y = 90°

⇒ 4x = 90°

⇒ 2x = 45°

Now, tan2x = tan45° = 1

∴ The value of tan45° is 1

158.

If 7 – 2sin2θ – 11cosθ = 0, where 0° < θ < 90° then find the value of θ 1. 90° 2. 60° 3. 30° 4. 45°

Answer» Correct Answer - Option 2 : 60° 

Given:

Our given expression is 7 – 2sin2θ – 11cosθ = 0

Formula used:

cos2θ + sin2θ = 1

Calculation:

Our given expression is 7 – 2sin2θ – 11cosθ = 0

⇒ 7 – 2(1 – cos2θ) – 11cosθ = 0

⇒ 7 – 2 + 2cos2θ – 11cosθ = 0

Put cosθ = t, then our equation becomes

⇒ 2t2 – 11t + 5 = 0

⇒ (t – 5)(t – 1/2) = 0

⇒ t = 5 or t = ½

Here t = 5 is not possible, so t = ½

⇒ cosθ = ½

∴ The value of θ is 60° 

159.

In a triangle ABC, If angles A, B, C are in AP and ∠A = 30° then what is 2sinA + 3tanB - 4cosC equal to? 1. 1 - √3 2. 13. 1+√34. 1 + 3√3

Answer» Correct Answer - Option 4 : 1 + 3√3

Concept:

In triangle ABC, A + B + C =180° 

If a, b,c are in AP then 2b = a + c

tan 60 = √3

Calculation:

Here, A, B, C are in AP, so 2B = A + C = 30 + C         .....(1)

ABC is a triangle, so A + B + C =180° ⇒ B = 150 - C .....(2)

Add (1) and (2), we get 

3B = 180 ⇒ B = 60° 

So, C = 90° 

2sinA + 3tanB - 4cosC = 2(sin 30) + 3 tan (60) - 4 cos 90

= 2(1/2) + 3 √3

= 1 + 3√3

Hence, option (4) is correct. 

160.

The value of `3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)xcos^(6)x)` isA. 14B. 11C. 12D. 13

Answer» Correct Answer - d
`3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)`
Put `x=90^(@)`
`3(sin90^(@)-cos90^(@))^(2)+6(sin90^(@))`
`=3(1-0)^(4)+ 6(1+0) ^(2)+4(1^(6)+0)`
`=3+ 6+4= 13`
161.

The value of \(2 \tan^{-1} \frac 2 3 + \cos^{-1} \frac {12} {13}\) is:1. π / 22. π3. π / 44. π / 3

Answer» Correct Answer - Option 1 : π / 2

\(2{\tan ^{ - 1}}\left( {\frac{2}{3}} \right) + {\cos ^{ - 1}}\left( {\frac{{12}}{{13}}} \right)\)

\( = {\tan ^{ - 1}}\left( {\frac{2}{3}} \right) + {\tan ^{ - 1}}\left( {\frac{2}{3}} \right) + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\;\)

\(= {\tan ^{ - 1}}\left[ {\frac{{\frac{2}{3} + \frac{2}{3}}}{{1 - \frac{2}{3} \times \frac{2}{3}}}} \right] + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\)

\( = {\tan ^{ - 1}}\left[ {\frac{{\frac{4}{3}}}{{1 - \frac{4}{9}}}} \right] + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\;\)

\( = {\tan ^{ - 1}}\left[ {\frac{{\frac{4}{3}}}{{\frac{5}{9}}}} \right] + {\tan ^{ - 1}}\left( {\frac{5}{{12}}} \right)\)

\( = {\tan ^{ - 1}}\left[ {\frac{{36}}{{15}}} \right] + {\tan ^{ - 1}}\left[ {\frac{5}{{12}}} \right]\)

\( = {\tan ^{ - 1}}\left[ {\frac{{12}}{5}} \right] + {\tan ^{ - 1}}\left[ {\frac{5}{{12}}} \right]\)

\( = {\tan ^{ - 1}}\left[ {\frac{{12}}{5}} \right] + {\cot ^{ - 1}}\left[ {\frac{{12}}{5}} \right]\)

\( = \frac{\pi }{2}\left[ {{{\tan }^{ - 1}}x + {{\cot }^{ - 1}}x = \frac{\pi }{2}} \right]\)

162.

If \(\frac {\sec θ + \tan θ }{\sec θ - \tan θ } = 2 \frac {51}{79},\) then the value of sin θ is equal to:1. \(\frac {35}{72}\)2. \(\frac {91}{144}\)3. \(\frac {65}{144}\)4. \(\frac {39}{72}\)

Answer» Correct Answer - Option 3 : \(\frac {65}{144}\)

Given :

(sec θ + tan θ)/(sec θ - tan θ) = 209/79

Calculations :

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaci4CaiaacwgacaGGJbGaeqiUdeNaey4kaSIa % ciiDaiaacggacaGGUbGaeqiUdehapaqaa8qacaWGZbGaamyzaiaado % gacqaH4oqCcqGHsislcaWG0bGaamyyaiaad6gacqaH4oqCaaaaaa!4A3F! \frac{{\sec θ + \tan θ }}{{secθ - tanθ }}\)sec θ + tan θ)/(sec θ - tan θ) = 209/79

Cross multiply both the sides

79 sec θ + 79 tan θ = 209 sec θ - 209 tan θ 

⇒ 288 tan θ = 130 sec θ 

⇒ sin θ/cos θ = (130/288) (1/cos θ)

⇒ sin θ = 65/144

The value of sinθ will be 65/144

163.

If (sec θ + tan θ) = 4, then find the value of sin θ.1. 17/82. 8/173. 17/154. 15/17

Answer» Correct Answer - Option 4 : 15/17

Given:

sec θ + tan θ = 4      ----(i)

Formula used:

secθ – tan2 θ = 1

(a2 – b2) = (a + b)(a – b)

sec θ = Hypotenuse/Base

sin θ = Perpendicular/Hypotenuse

Calculations:

Using the given identities,

⇒ (sec θ + tan θ)(sec θ – tan θ) = 1

⇒ 4 × (sec θ – tan θ) = 1

⇒ (sec θ – tan θ) = 1/4      (ii)

Adding (i) and (ii),

⇒ 2sec θ = 17/4

⇒ sec θ = 17/8

sin θ = √(172 – 82)/17

⇒ sin θ = 15/17

∴ The value of sin θ is 15/17

164.

Let θ = sin-1 (sin (-600°)), then the value of θ is:1. π/3 2. π/23. 2π/34. -2π/3

Answer» Correct Answer - Option 1 : π/3 

Explanation:

θ = sin-1 (sin (-600°))

θ = sin-1 (sin (-600°))

θ = sin-1 (sin (-600°)) ----------(1)

Since, sin (θ + (n × 360°)) = sin θ

where n is a natural number

Continuing from equation (1)

θ = sin-1 (sin (-600°))

θ = sin-1 (sin (-600° + (2 × 360°)))

θ = sin-1 (sin (-600° + 720°))

θ = sin-1 (sin 120°)

θ = \(sin^{-1}(\frac{\sqrt{3}}{2})\)

θ = π/3 

Note: Range of inverse sine function is [-π/2 to π/2].

165.

If sec A + tan A = m, sec A.tan A = n and sec4 A – tan4 A = m2/2, then which of the following is TRUE?1. m2 – 3n = 02. m2 – n = 03. m2 = n4. m2 = 4n

Answer» Correct Answer - Option 4 : m2 = 4n

GIVEN:

sec A + tan A = m

sec A. tan A = n

sec4 A – tan4 A = m2/2

CONCEPT:

Trigonometry

CALCULATION:

sec A + tan A = m

⇒ (sec A + tan A)2 = m2

⇒ sec2 A + tan2 A + 2 sec A. tan A = m2

⇒ sec2 A + tan2 A + 2n = m2

⇒ sec2 A + tan2 A = m2 – 2n

Now,

sec4 A – tan4 A = m2/2

⇒ (sec2 A – tan2 A) (sec2 A + tan2 A) = m2/2   [sec2 A – tan2 A = 1]

⇒ 1 (sec2 A + tan2 A) = m2/2

⇒ m2 – 2n = m2/2

⇒ 2m2 – 4n = m2

⇒ m2 = 4n

166.

If \(\rm \frac{{\sin \left( {x\; + \;y} \right)}}{{\sin \left( {x\; - \;y} \right)}} = \frac 53\) then what is \(\rm \frac{{\tan x}}{{\tan y}}\) equal to?1. 22. 43. \(\frac 1 4\)4. \(\frac 12\)

Answer» Correct Answer - Option 2 : 4

Concepts:

If \(\rm \frac A B = \frac C D\), property of componendo and dividendo is given by, \(\rm \frac{A+B}{A-B}=\frac{C+D}{C-D}\)

Formula:

  • sin (x + y) = sin x cos y + cos x sin y
  • sin (x – y) = sin x cos y - cos x sin y

 

Calculation:

Given:

\(\rm \frac{{\sin \left( {x\; + \;y} \right)}}{{\sin \left( {x\; - \;y} \right)}} = \frac 53\)

\(\Rightarrow\rm \;\frac{{\sin x\cos y\; + \;\cos x\sin y}}{{\sin x\cos y\; - \;\cos x\sin y}} = \frac 53\)

Using componendo and dividendo formula, we get

\(\rm \Rightarrow \frac{{(\sin x\cos y + \cos x\sin y) + (\sin x\cos y - \cos x\sin y)}}{{(\sin x\cos y + \cos x\sin y) - (\sin x\cos y - \cos x\sin y)}} = \frac{5+3}{5-3}\)

\(\rm \Rightarrow \;\frac{{2{\rm{\;sin}}x\cos y}}{{2\cos x\sin y}} = \frac{8}{2}\)

\(\rm \therefore \frac{{\tan x}}{{\tan y}} = 4\)
167.

If angles A, B, C of a ΔABC form an increasing AP, then sin B =(a) 1/2(b) √3/2(c) 1(d) 1/√2

Answer»

(b) In ΔABC, angles A,B,C are in A.P., 

B – A = C – B 

2B = A + C      ...(i) 

also, A + B + C = 180° (Angle sum Property) 

2 B + B = 180° 

B = 60° 

Hence, sin B = sin60° =  √3/2

168.

If x = a (sin 0 + cos 0), y = b (sin 0 - cos 0), then \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) =1. 12. 03. 24. 4

Answer» Correct Answer - Option 3 : 2

Given:

x = a (sin 0 + cos 0)

y = b (sin 0 - cos 0)

Formula used:

sin 0 = 0

cos 0 = 1

Calculation:

x = a(0 + 1) = a

y = b(0 - 1) = - b

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = \(\dfrac{a^2}{a^2}+\dfrac{(- b)^2}{b^2}\)

⇒ \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = 1 + 1

∴ \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = 2

169.

The maximum value of 2 sin 0 + 3 cos 0 is1. √112. √133. √54. √7

Answer» Correct Answer - Option 2 : √13

Formula used:

The maximum value of a sin x + b cos x = √(a2 + b2)

Calculation:

The maximum value of 2 sin 0 + 3 cos 0 = √(22 + 32) = √13

∴ Maximum value of 2 sin 0 + 3 cos 0 = √13

170.

If 4 – 2sin2 θ – 5cos θ = 0, 0°

Answer» Correct Answer - Option 3 : \(\dfrac{1+2\sqrt{3}}{2}\)

Given:

4 – 2sin2 θ – 5cos θ = 0

Identity used:

sin2θ = 1 – cos2θ 

Calculation:

4 – 2sin2 θ – 5cos θ = 0

⇒ 4 – 2 × (1 – cos2θ) – 5cosθ = 0

⇒ 4 – 2 + 2cos2θ – 5cosθ = 0

⇒ 2cos2θ – 5cosθ + 2 = 0

⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0

⇒ 2cosθ × (cosθ – 2) – 1 × (cosθ – 2) = 0

⇒ (2cosθ – 1) × (cosθ – 2) = 0

⇒ cosθ = 1/2 and cosθ = 2

Rejecting cosθ = 2 as 0° < θ < 90°

So, cosθ will be 1/2 

⇒ θ = 60° 

The value of cos θ + tan θ = cos60° + tan60° 

⇒ (1/2) + √3

∴ The value of cos θ + tan θ is \(\dfrac{1+2\sqrt{3}}{2}\)

171.

(sin θ + cos θ)2 = 2, 0°

Answer» Correct Answer - Option 3 : \(\frac{\pi}{4}\)

Given:

(sin θ + cos θ)2 = 2

Formula used:

(A + B)= A2 + B2 + 2AB

sin2θ + cos2θ = 1

sin2θ = 2sinθcosθ

sin90º = 1

Calculation:

(sin θ + cos θ)2 = 2

⇒sin2θ + cos+  2sinθcosθ = 2

⇒1 + 2sinθcosθ = 2

⇒2sinθcosθ = 2 - 1

⇒2sinθcosθ = 1

⇒sin2θ = 1

⇒sin2θ = sin90º

⇒2θ = 90º

⇒θ = 45º

⇒θ = π/4

172.

If `cos^(4)theta-sin^(4)theta=(2)/(3)=(2)/(3)`, then the value of `2cos^(2)theta -1` is(यदि `cos^(4)theta-sin^(4)theta=(2)/(3)=(2)/(3)` है तो `2 cos^(2) theta-1` का मान ज्ञात क्या होगा )

Answer» Correct Answer - c
`cos^(4)theta-sin^(4)theta+(2)/(3)`
`[a^(4)-b^(4)=(a^(2)-b^(2))(a^(2)+b^(2)))`
`rArr1xx(cos^(2)theta-sin^(2)theta)=(2)/(3)`
`rArr1xx (cos^(2)theta-sin^(2)theta)=(2)/(5)`
`[sin^(2)theta=1-cos^(2)theta]`
`rArr 2cos^(2)theta-1=(2)/(3)`
173.

The value of x in the equation(निम्न्लिखित समीकरण का मान ज्ञात करे ) `"tan"^(2)(pi)/(4)-"cos"^(2)(pi)/(3)=x` `"sin" (pi)/(4) "cos"(pi)/(4)tan`(pi)/(3)is `A. `(3sqrt3)/(4)`B. `(2)/(sqrt3)`C. `(1)/(sqrt3)`D. `(sqrt3)/(2)`

Answer» Correct Answer - d
`tan^(2)(n)/(4)-cos^(2)(n)/(3)=x sin(pi)/(4)cos(n)/(4)tan(n)/(3)`
`rArrtan^(2)45^(@)-cos^(2)60^(@)=xsin45^(@)`
`rArr 1-(1)/(4)=xxx(1)/sqrt(2)xx(1)/sqrt(2)xxsqrt(3)`
`rArr(3)/(4)=(x xxsqrt(3))/(2)`
`rArrx=sqrt(3)/(2)`
174.

Value of the expression:(निम्न्लिखित वयंक का मान क्या है ) `(1+2 sin60^(@)cos60^(@))/(sin60^(@)+cos60^(@))+(1-2 sin60^(@)cos60^(@))/(sin60^(@)-cos60^(@))`A. `sqrt3`B. `2sqrt3`C. 0D. 2

Answer» Correct Answer - a
The value of
`rArr=(1+2sin60^(@) cos60^(@))/(sin60^(@)+cos60^(@))+(1-2sin60^(@)cos60^(@))/(sin60^(@)-cos60^(@))`
`rArr(1+ 2 xxsqrt(3)/(2)(1)/(2))/(sqrt(3)/(2)+(1)/(2))+(1-2xxsqrt(3)/(2)xx(1)/(2))/(sqrt(3)/(2)-(1)/(2))`
`rArr(2+sqrt(3))/(sqrt(3)+1)+(2-sqrt(3))/(sqrt(3)-1)`
`rArr(2sqrt(3)+3-2-sqrt(3)+2- sqrt(3))/(sqrt(3)^(2)-1^(2))`
`rArr(4sqrt(3))/(2)rArrsqrt(3)`
175.

If √3sinθ = 3 cosθ then fin the value of sec2θ – 2?1. 52. 23. 74. 9

Answer» Correct Answer - Option 2 : 2

Given:

The given condition is √3sinθ = 3 cosθ

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

tanθ = sinθ/cosθ

tan60° = √3 and Sec60° = 2

Calculation:

By rearranging the expression

∴ √3sinθ = 3 cosθ

⇒ Sinθ/cosθ = 3/√3

⇒ tanθ = 3/√3

Now, by rationalizing the denominator

∴ tanθ = √3

Also, tan60° = √3

∴ tanθ = tan60°

⇒ θ = 60°

Now, the value of sec2θ – 2

∴ sec2(60°) – 2

⇒ 4 – 2 = 2

Hence, option (2) is correct

176.

If sin3θ.sec6θ = 1 then find the value of 3tan23θ?1. 12. 23. 54. 7

Answer» Correct Answer - Option 1 : 1

Given:

It is given that sin3θ.sec6θ = 1

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

Secθ = 1/cosθ

Cos(90 - θ) = sin θ

tan30° = 1/√3

Calculation:

As we know that reciprocal of secθ is equal to cosθ

∴ Sin3θ/cos6θ = 1

⇒ sin3θ = cos6θ

∵ Cos(90 - θ) = sin θ

∴ sin3θ = sin(90 - 6θ)

⇒ 3θ = 90 - 6θ

⇒ θ = 10°

Now, 3tan2

∴ 3tan23θ = 3tan230° = 3 × (1/√3)2 = 1

Hence, option (1) is correct

177.

If \(\frac{{\sin x + \cos x}}{{\sin x - \cos x}} = \frac{6}{5}\), then the value of \(\frac{{{{\tan }^2}x + 1}}{{{{\tan }^2}x - 1}}\) is:1. \(\frac{{35}}{{61}}\)2. \(\frac{{61}}{{60}}\)3. \(\frac{{60}}{{61}}\)4. \(\frac{{61}}{{35}}\)

Answer» Correct Answer - Option 2 : \(\frac{{61}}{{60}}\)

Given:

\(\frac{{\sin x + \cos x}}{{\sin x - \cos x}} = \frac{6}{5}\)

Concept Used:

Componendo & dividendo

a/b = c/d

then (a + b)/(a - b) =(c + d)/(c - d)

Calculation:

\(\frac{{\sin x + \cos x}}{{\sin x - \cos x}} = \frac{6}{5}\)

By using componendo & dividendo

(sinx + cosx + sinx - cos x)/(sinx + cosx - sinx + cosx)  = (6 + 5)/(6 - 5)

(2sinx/2cosx) = (sinx/cosx) = 11/1

tan2x = (sin2x/cos2x) = 112/12 = 121

tan2x + 1 = 121 +1 =122

tan2x - 1 = 121 - 1 = 120 

\(\frac{{{{\tan }^2}x + 1}}{{{{\tan }^2}x - 1}}\) = 122/120 = 61/60

∴ The value of \(\frac{{{{\tan }^2}x + 1}}{{{{\tan }^2}x - 1}}\) is 61/60

178.

If sec (A + B) = √2 and sin (A - B) = 1 then find the value of 2A + B?1. 112.5°2. 87.5°3. 92.5°4. 109.5°

Answer» Correct Answer - Option 1 : 112.5°

Given:

It is given that sec (A + B) = √2 and sin (A - B) = 1

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

Sec 45° = √2 and sin 90° = 1

Calculation:

The equation sec (A + B) = √2 can be written as

∵ Sec 45° = √2

∴ Sec (A + B) = Sec 45°

⇒ A + B = 45°    ---(1)

And sin (A - B) = 1 so it can be written as

∵ Sin 90° = 1

∴ sin (A - B) = Sin 90°

⇒ A - B = 90°     ---(2)

By equation (1) and (2) we get

∴ A = 67.5° and B = -22.5 °

Now, we have to find the value of 2A + B

∴ 2 × 67.5 + (-22.5) = 112.5°

Hence, option (1) is correct

179.

What is \(\rm \cot{\frac{A}{2}}+ \tan {\frac{A}{2}}\) equal to?1. 2 sec A2. 2 cosec A3. sin A4. sec A

Answer» Correct Answer - Option 2 : 2 cosec A

Concept:

  • sin2 θ + cos2 θ = 1.
  • sin 2θ = 2 sin θ cos θ.

 

Calculation:

Consider the expression \(\rm \cot{\frac{A}{2}}+ \tan {\frac{A}{2}}\).

\(\rm \frac{\cos\frac{A}{2}}{\sin\frac A2}+ \frac{\sin \frac{A}{2}}{\cos\frac{A}{2}}\)

\(\rm \frac{\cos^2\frac{A}{2}+\sin^2\frac{A}{2}}{\sin\frac A2\cos\frac{A}{2}}\)

\(\rm \frac{1}{\sin\frac A2\cos\frac{A}{2}}\)

\(\rm \frac{2}{2\sin\frac A2\cos\frac{A}{2}}\)

\(\rm \frac {2}{\sin A}\)

= 2 cosec A

180.

If will be the value of sec279° - (1/tan211°)?

Answer» Correct Answer - Option 2 : 1

Given:

The given expression is sec279° – (1/tan211°)

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

Sec2 θ – tan2 θ = 1

1/tan θ = cot θ

Cot (90 – θ) = tan θ

Calculation:

The given expression sec279° – (1/tan211°) can be written as sec279° –  cot211°

∵ 1/tan θ = cot θ

Now, sec279° – cot211° = sec279° – cot2(90 – 79°) = sec279° – tan2 79°

∵ sec2θ – tan2θ = 1

∴ sec279° – tan279° = 1

Hence, option (2) is correct

181.

If sec α × sin 59 ° = 1 then what is the value of α?1. 31°2. 21°3. 59°4. 39°

Answer» Correct Answer - Option 1 : 31°

Given:

It is given that sec α × sin 59 ° = 1

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

1/cosec θ = sin θ

Cosec (90 - θ) = sec θ

Calculation:

We know that the reciprocal of sin θ is cosec θ

∴ Sec α × sin 59 ° = 1 can be written as sec α × 1/cosec 59 ° = 1

⇒ Sec α = cosec 59 °

⇒ Sec α = cosec (90 - 31) °

∵ Cosec (90 - θ) = sec θ

∴ Sec α = sec 31°

⇒ α = 31°

Hence, option (1) is correct

182.

What is tan A + sec A equal to?1. \(\rm \tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)2. \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)3. \(\rm 2\tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)4. \(\rm 2\cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)

Answer» Correct Answer - Option 2 : \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)

Concept:

  • sin 2x = 2 sin x cos x
  • cos 2x = cos2 x - sin2 x

 

Calculation:

Consider, tan A + sec A.

\(\rm \frac {\sin A}{\cos A} + \frac {1}{\cos A}\)

\(\rm \frac {\sin A+1}{\cos A}\)

\(\rm \frac {2\sin \frac{A}{2}\cos \frac{A}{2}+\sin^2\frac{A}{2}+\cos^2\frac{A}{2}}{\cos^2 \frac{A}{2}-\sin^2\frac{A}{2}}\)

\(\rm \frac {\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)^2}{\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right)}\)

\(\rm \frac {\sin \frac{A}{2}+\cos \frac{A}{2}}{\cos \frac{A}{2}-\sin \frac{A}{2}}\)

Dividing by \(\rm \sin\frac{A}{2}\), we get:

\(\rm \frac {\cot\frac{A}{2}+1}{\cot\frac{A}{2}-1}\)

Using \(\rm \cot\frac{\pi}{4}=1\), it can be written as;

\(\rm \frac {\cot\frac{\pi}{4}\cot\frac{A}{2}+1}{\cot\frac{A}{2}-\cot\frac{\pi}{4}}\)

\(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)

183.

If tan2x° = cot(x+6)°, then find the value of x?1. 44° 2. 25° 3. 38° 4. 28°

Answer» Correct Answer - Option 4 : 28° 

Given:

 tan2x° = cot(x+6)°

Concept used:

tan(90° - θ) = cotθ 

Calculation:

 tan2x° = cot(x+6)°

⇒  tan2x° = tan[90° - (x+6)°]                           [tan(90° - θ) = cotθ]

⇒ 2x° = 90° - (x+6)°

⇒ 2x° = 90° - x° - 6° 

⇒ 3x° = 84° 

⇒ x = 28° 

∴ The value of x is 28°.

184.

If sin x + cos x = √3 cos x, then the value of cot x is:1. \(\frac{{\sqrt 3 + 1}}{2}\)2. √33. 14. \(\frac{{\sqrt 3 -1}}{2}\)

Answer» Correct Answer - Option 1 : \(\frac{{\sqrt 3 + 1}}{2}\)

Given:

sin x + cos x = √3 cos x

Concept used:

Rationalization method used.

Formula used:

Tanθ = Sinθ/Cosθ

 a– b2 = (a + b) × (a  – b)

Calculation:

sin x + cos x = √3 cos x

⇒ (sin x + cos x)/cos x = √3

⇒ (sin x/cos x + cos x/cos x ) = √3

⇒ tan x + 1 = √3

⇒ tan x = √3 – 1

⇒ 1/cot x = √3 – 1

⇒ cot x = 1/(√3 – 1)

⇒ cot x = (√3 + 1)/[(√3 – 1) × (√3 + 1)]

⇒ cot x =  (√3 + 1)/[(√3)2 – 1]

⇒ cot x =  (√3 + 1)/(3  – 1)

⇒ cot x =  (√3 + 1)/2

∴ The value of cot x is (√3 + 1)/2.

185.

What is the value of sin35° × cos55°?1. cos235° 2. sin235° 3. sin255° 4. tan255°

Answer» Correct Answer - Option 2 : sin235° 

Given:

sin35° × cos55°

Concept used:

sin(90° - θ) = cosθ 

cos(90° - θ) = sinθ 

Calculation:

sin35° × cos55°

⇒ sin35° × cos(90° - 35°)

⇒ sin35° × sin35°

⇒ sin235° 

∴ The value is sin235°.

186.

If 0

Answer» Correct Answer - Option 3 : 9

Given:

3b cosecθ = a secθ 

3a secθ - b cosecθ = 8

Formula used:

sin2θ + cos2θ = 1

Calculation:

∵ 3b cosecθ = a secθ

⇒ 9b cosecθ = 3a secθ      ------(1)

∵ 3a secθ - b cosecθ = 8

⇒ 9b cosecθ - b cosecθ = 8      ------(From 1)

⇒ 8b cosecθ = 8

⇒ b cosecθ = 1

⇒ b = 1/cosecθ      ------(2) 

⇒ b = sinθ      ------(3)

∵ 3a secθ - b cosecθ = 8

⇒ 3a secθ - (cosecθ/cosecθ) = 8

⇒ 3a secθ - 1 = 8

⇒ 3a secθ = 9

⇒ a secθ = 3

⇒ a = 3/secθ

⇒ a = 3cosθ      ------(4)

Putting the values of 'a' and 'b' from (3) and (4) in 9b2 + a

= 9 (sinθ)2 + (3cosθ)2

= 9 sin2θ + 9 cos2θ 

= 9(sin2θ + cos2θ)

= 9 × 1

= 9

187.

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is (a) 1 (b) 0 (c) 7 (d) 13

Answer»

(a) sinA + sin2A = 1 

sinA = cos2

sin2A = cos4

cos4A = 1– cos2

cos2A + cos4A = 1 

188.

The value of `sin^(2)2^(@)+sin^(2)4+sin^(2)6^(@)+...+sin^(2)90^(@)` isA. 23B. 0C. 44D. 22

Answer» Correct Answer - a
According to the qeustion
`rArrsin^(2)2^(@)+sin^(2)4^(@)+sin^(2)6^(@)+........+sin^(2)60^(@)`.
Number of terms `=(l-a)/(d)+1`
`=(90-2)/(2)+1=45`
But `sin^(2)90^(@)=1`
So, `22` pairs +`sin^(2)90^(@)`
23+1=23
189.

If `costheta+sectheta =sqrt(3)`, then the value of `(cos^(3)theta+sec^(3)theta)` isA. `(1)/(sqrt(2))`B. 1C. 0D. `sqrt(2)`

Answer» Correct Answer - c
`cos theta+sec theta=sqrt(3)`
cubing both sides
`cos^(3)theta+sec^(3)theta+3cos thetasec theta`
`(cos theta+sec theta)=3sqrt(3)`
`cos^(3)theta+sec^(3)theta+3sqrt(3)=3sqrt(3)`
`cos^(3)theta+sec^(3)theta=0`
190.

`theta` के वास्तविक मान के लिए `1+sin((x)/(4)+theta)+2cos((x)/(4)-theta)` का अधिकतम मान क्या होगा ?A. 3B. 4C. 5D. 6

Answer» Correct Answer - a
`1+sin((x)/(4)+theta)+2 cos((x)/(4)-theta)`
इस समीकरण के अधिकतम मान के लिए
`sin((x)/(4)+theta)=1,cos((x)/(4)-theta)=1`
`(x)/(4)+theta=90^(@)`
`(x)/(4)-theta=0^(@)`
From Eq. (i) `&` (ii)
We get
`x=180^(@),theta=45^(@)`
then max value `=1+1+2=4`
191.

`0^(@) lt theta lt 90^(@)` के लिए इनमे से कौन सत्य है?A. `costheta le costheta^(2)theta`B. `costheta lt cos^(2)theta`C. `costheta gt cos^(2) theta`D. `costheta ge cos^(2)theta`

Answer» Correct Answer - c
Put, `theta=60^(@)`
`rArrcos thetagtcos^(2)theta`
`rArr cos 60^(@)gtcos^(2)60^(@)`
`rArrcos 60^(@)gtcos^(2)60^(@)`
`rArr(1)/(2)gt(1)/(4)`
`cos thetagtcos^(2)theta`
192.

`sin^(4)theta+cos^(4)theta` का अधिकतम मान क्या होगा?A. 2B. 3C. `(1)/(2)`D. 1

Answer» Correct Answer - d
`sin^(2)theta+cos^(2)theta=1`
Squaring both sides
`sin^(4)theta+cos^(4)theta`
`=1-2 sin^(2)theta.cos^(2)theta`
Put `theta= 90^(@)`
`=1-2sin^(2)90^(@).cos^(2)90^(@)=1-0=1`
193.

If `0ltthetalt 90^(@)+sintheta=m and tan_(theta)-sin_(theta)=n`where m=b then the value of `m^(2)-n^(2)` isA. `2(tan^(2)theta+sin^(2)theta)`B. 4mmC. `4sqrtmm`D. `2(m^(2)+n^(2))`

Answer» Correct Answer - c
`tan theta+sintheta= m`
squaring both sides
`tan^(2)theta+sin^(2)theta+2 tan thetasintheta=m^(2)`
`tan theta-sin theta=n`
squaring both sides
`tan^(2)theta+sin^(2)theta-2tan theta sin theta=n^(2)`
Subtract from (i) `&` (ii)
`m^(2)-n^(2)=tan^(2)theta+sin^(2)+2tan theta`
`sin theta-tan^(2)theta-sin^(2)theta+2tan theta`
`sin theta`
`m^(2)-n^(2)=4tan theta sin theta`
` 4sqrt(tan^(2)thetasin^(2)theta)`
`=4sqrt(tan^(2)theta(1-cos^(1)theta))`
`=4sqrt(tan^(2)theta-sin^(2)theta)`
`=4sqrt(mm)`
194.

If `(sin theta+cos theta)/(sin theta-cos theta)` then the value of `sin^(4)theta` isA. `(16)/(25)`B. `(2)/(5)`C. `(1)/(5)`D. `(3)/(5)`

Answer» Correct Answer - a
`(sin theta+cos theta)/(sin theta-cos theta)=(3)/(1)`
find `sin^(4)theta=`?
`(sin theta+cos theta)/(sin theta-cos theta)=(3+1)/(3-1)`
`rArr tan theta=2`
`tan theta=("perpendicular")/("Base")=(2)/(T)`
`rArr sin^(4)theta=((2)/sqrt(5))^(2)=16//25`
195.

The value of `(2cos^(2)theta-1)((1+tantheta)/(1-tantheta)+(1-tantheta)/(1+tantheta))` is-A. 4B. 1C. 3D. 2

Answer» Correct Answer - d
`(2cos^(2)theta-1)[(1+tantheta)/(1-tantheta)+(1-tantheta)/(1+tantheta)]`
Shortcut Method:
Put `theta=0^(@)`
`(2xx1-1)[(1+0)/(1-0),(1-0)/(1+0)]`
`1xx2=2`
196.

The numerical value of `((1)/(costheta)+(1)/(cot theta))((1)/(costheta)-(1)/(costheta))` is

Answer» Correct Answer - c
`[(1)/(costheta)+(1)/(cottheta)][(1)/(costheta)-(1)/(cottheta)]`
`=(sectheta+tantheta)(sectheta-tantheta)`
`=sec^(2)theta-tan^(2)theta[1+tan^(2)theta=sec^(2)]`
=1
197.

यदि `tantheta-tan^(2)theta=1` है, तो `sec^(2)theta- sec^(4)theta` का मान क्या होगा ?A. 1B. -1C. 2D. 0

Answer» Correct Answer - a
`tan theta-tan^(2)theta=1`
`tan theta=1+tan^(2)theta=sec^(2)theta`
`tan theta=sec^(2)theta`
Now, `sec^(2)theta-sec^(4)theta`
`=tantheta-tan^(2)theta=1`
198.

यदि `xsin60^(@).tan30^(@)=sec60^(@).cot45^(@)` है तो x का मान ज्ञात करेA. 2B. `2sqrt(3)`C. `4`D. `4sqrt(3)`

Answer» Correct Answer - c
`x sin60^(@)tan30^(@)=sec60^(@)`.
`cot45^( @)`
`xsqrt(3)/(2).(1)/sqrt(3)=2.1`
`rArr(x)/(x)xx 2rArr x=4`
199.

If `4 sin^(2)_(theta)-1=0` and angle `theta` is less than `90^(@)`. The value of `cos^(2)_(theta)+tan^(2)_(theta)` is(यदि `4 sin^(2)_(theta)-1=0` और कोण `theta lt 90^(@)` से काम है तो `cos^(2)_(theta)+tan^(2)_(theta)` का मान क्या होगा)A. `(13)/(12)`B. `(12)/(11)`C. `(11)/(9)`D. `(17)/(15)`

Answer» Correct Answer - a
`(x-xtan^(2)30^(@))/(1+tan^(2)30^(@))`
`=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)`
`(x(1-tan^(2)30^(@)))/(1+tan^(2)30^(@))=((1)/(2))^(2)+4xx1-(2)^(2)`
`rArr(3)/(4)+(1)/(3)rArr(13)/(12)`
200.

if `(1+sinalpha)(1-sinbeta)(1-singamma)=(1-sinalpha)(gamma-sinbeta)(1-singamma)=?`A. `+-cosalphacosbetacosgamma`B. `+-sinalphasinbetasingamma`C. `+-sinalphaalphabetasecgamma`D. `+-sinalphasinbetacosgamma`

Answer» Correct Answer - a
`(1+sinalpha)(1-sinbeta)(1-siny)=x`
`therefore x x=(1+sinalpha)(1-sinalpha)(1+sinbeta)`
`(1-sinbeta)(1+sinv)(1-siny)`
`x^(2)rArr(1-sin^(2)alpha)(1-sin^(2)beta)(1-sin^(2)y)`
`x^(2)rArrcos^(2)alpha.cos^(2)beta.cos^(2)y`
`xrArr+-cos alpha.cos beta.cosy`