InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 251. |
Find the value of sin 75° sin 15° + cos 75° cos 15°1. \(\frac {\sqrt3 + 1}{2}\)2. \(\frac {1}{2}\)3. 14. 0 |
|
Answer» Correct Answer - Option 2 : \(\frac {1}{2}\) Concept: cos x cos y - sin x sin y = cos (x + y) cos x cos y + sin x sin y = cos (x - y) Here, we have to find the value of sin 75° sin 15° + cos 75° cos 15° As we know that, cos x cos y + sin x sin y = cos (x - y) ∴ sin 75° sin 15° + cos 75° cos 15° = cos 75° cos 15° + sin 75° sin 15° = cos (75° - 15°) = cos 60° = \(\frac {1}{2}\) |
|
| 252. |
Find value of sin 75° cos 15° + cos 75° sin 15° 1. √3 - 12. √3 + 13. 14. 0 |
|
Answer» Correct Answer - Option 3 : 1 Concept: sin x cos y + cos x sin y = sin (x + y) sin x cos y - cos x sin y = sin (x - y) Here, we have to find the value of sin 75° cos 15° + cos 75° sin 15° As we know that, sin x cos y + cos x sin y = sin (x + y) ∴ sin 75° cos 15° + cos 75° sin 15° = sin (75° + 15°) = sin 90° = 1 |
|
| 253. |
Find value of sin 75° cos 15° - cos 75° sin 15°1. \(\frac {\sqrt 3 + 1}{2}\)2. \(\frac {\sqrt 3}{2}\)3. 14. 0 |
|
Answer» Correct Answer - Option 2 : \(\frac {\sqrt 3}{2}\) Concept: sin x cos y + cos x sin y = sin (x + y) sin x cos y - cos x sin y = sin (x - y) Here, we have to find the value of sin 75° cos 15° - cos 75° sin 15° As we know that, sin x cos y - cos x sin y = sin (x - y) ∴ sin 75° cos 15° - cos 75° sin 15° = sin (75° - 15°) = sin 60° = \(\frac {\sqrt 3}{2}\) |
|
| 254. |
If \(\rm \cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = 1\), then1. a = \(\rm y\over x\)2. a = \(\rm x\over y\)3. a = \(\rm x-y\over x\)4. a = \(\rm x+y\over x-y\) |
|
Answer» Correct Answer - Option 2 : a = \(\rm x\over y\) Concept: Inverse trigonometric identity
Calculation: S = \(\rm \cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = 1\) ⇒ \(\rm \cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = \cot45\) (∵ cot 45 =1) Taking cot-1 on both sides ⇒ \(\rm \cot^{-1}\cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = \cot^{-1}(\cot45)\) ⇒ \(\rm \tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)} = 45\) ⇒ \(\rm \tan^{-1}\left[{a - {\left({x-y\over x+y}\right)}\over1+a\times{\left({x-y\over x+y}\right)}}\right] = 45\) Taking tan on both sides ⇒ \(\rm \tan \tan^{-1}\left[{a - {\left({x-y\over x+y}\right)}\over1+a{\left({x-y\over x+y}\right)}}\right] = \tan45\) ⇒ \(\rm {a - {\left({x-y\over x+y}\right)}\over1+a{\left({x-y\over x+y}\right)}} = 1\) ⇒ \(\rm {a - {\left({x-y\over x+y}\right)}=1+a{\left({x-y\over x+y}\right)}}\) ⇒ \(\rm {a {\left(1-{x-y\over x+y}\right)}=1+{\left({x-y\over x+y}\right)}}\) ⇒ a(x + y - (x - y)) = x + y + x - y ⇒ 2ya = 2x ⇒ a = \(\boldsymbol{\rm x\over y}\) |
|
| 255. |
Find X if; \(\rm \cos\left(\cot^{-1}{1\over5}\right) = \sin\left(\tan^{-1}X\right)\)1. \(\rm {5\over 4}\)2. 53. \(\rm {4\over 5}\)4. \(\rm 1\over 5\) |
|
Answer» Correct Answer - Option 4 : \(\rm 1\over 5\) Concept: Inverse trigonometric identities
Trigonometric Identities
Calculation: \(\rm \sin\left(\tan^{-1}X\right) = \cos\left(\cot^{-1}{1\over5}\right)\) ⇒ \(\rm \sin\left(\tan^{-1}X\right) = \sin\left[90-\left(\cot^{-1}{1\over5}\right)\right]\) ⇒ \(\rm \tan^{-1}X = 90-\cot^{-1}{1\over5}\) ⇒ \(\rm \tan^{-1}X = 90-\left(90-\tan^{-1}{1\over5}\right)\) ⇒ \(\rm \tan^{-1}X = \tan^{-1}{1\over5}\) Taking tan both sides ⇒ \(\rm \tan (\tan^{-1}X) = \tan(\tan^{-1}{1\over5})\) ⇒ X = \(\boldsymbol{\rm 1\over5}\) |
|
| 256. |
If Cot x/Cot y = A and Cosec x/Cosec y = B, then the value of Cosec y in terms of A and B.1.√((1 – A2)/(B2 – A2))2. (1 – A2)/(A2 – B2)3. A/(B2 – A2)4. (1 – B2)/(B2 – A2) |
|
Answer» Correct Answer - Option 1 : √((1 – A2)/(B2 – A2)) Given Cot x/Cot y = A and Cosec x/Cosec y = B Concept Cosec2 A – Cot2A = 1 Calculation Cot x = A Cot y Squaring on both sides Cot2x = A2Cot2y ⇒ Cosec 2x – 1 = A 2 (Cosec 2 y – 1) ---- (1) Cosec x = B Cosec y Squaring on both sides ⇒ Cosec 2x = B 2Cosec 2 y ---- (2) From (1) and (2) B2Cosec2y – 1 = A2Cosec2y – A2 ⇒ B2Cosec2y – A2Cosec2y = - A2 + 1 ⇒ Cosec2y(B2– A2) = - A2+ 1 ⇒ Cosec y = √((1 – A2)/(B2 – A2)) |
|
| 257. |
If Sec A + Tan A = 4, then the value of (Cot A + 1)/(Cot A – 1) is1. 65/82. – 23/73. 17/194. 11/16 |
|
Answer» Correct Answer - Option 2 : – 23/7 Given Sec A + Tan A = 4 Concept Sec2 A – Tan2A = 1 (a - b)2 = a2 - 2ab + b2 Calculation Sec = 4 – Tan A Squaring on both sides Sec2A = 16 + Tan2A – 8 Tan A ⇒ 1 + Tan2A = 16 + Tan2A – 8 Tan A ⇒ 1 – 16 = - 8 Tan A ⇒ 15/8 = Tan A So, Cot A = 8/15 Now, [(8/15) + 1]/[(8/15) – 1] ⇒ [(8 + 15)/15]/[(8 – 15)/15] ⇒ -23/7 |
|
| 258. |
If A = 90°, then 3/2(√1 + Cos A) + 1/2(√1 – Cos A) is equal to?1. Cos 60°2. Tan 45°3. Cot 45°4. Sec 60° |
|
Answer» Correct Answer - Option 4 : Sec 60° Given A = 90 ° Concept Cos 90 ° = 0 Calculation 3/2(√1 + Cos 90°) + ½(√1 – Cos 90°) ⇒ 3/2(√1 + 0) + ½(√1 – 0) ⇒ 3/2 + ½ ⇒ 2 = Sec 60° |
|
| 259. |
If tan(x + y) × tan(x – y) = 1, then find the value of tanx. |
|
Answer» Correct Answer - Option 3 : 1 Given: tan(x + y) × tan(x – y) = 1 Concept used: If tanA × tanB = 1, then A + B = 90° Calculation: tan(x + y) × tan(x – y) = 1 ⇒ x + y + x – y = 90° ⇒ 2x = 90° ⇒ x = 45° ⇒ tan45° = 1 ∴ tan45° is 1. |
|
| 260. |
If sin x + a cos x = b, then |a sin x - cos x| is:1. \(\rm \sqrt{a^2 + b^2 +1}\)2. \(\rm \sqrt{a^2 - b^2 +1}\)3. \(\rm \sqrt{a^2 + b^2 -1}\)4. None of the above. |
|
Answer» Correct Answer - Option 2 : \(\rm \sqrt{a^2 - b^2 +1}\) Concept:
Calculation: sin x + a cos x = b ⇒ (sin x + a cos x)2 = b2 ⇒ sin2 x + a2 cos2 x + 2 a sin x cos x = b2 ⇒ (1 - cos2 x) + a2 cos2 x + 2a sin x cos x = b2 ... [Using sin2 x = 1 - cos2 x] ⇒ (a2 - 1) cos2 x + 2a sin x cos x = b2 - 1 ⇒ 2a sin x cos x = b2 - 1 + (1 - a2) cos2 x ... (1) Let k = |a sin x - cos x| ⇒ k2 = (a sin x - cos x)2 ⇒ k2 = a2 sin2 x + cos2 x - 2a sin x cos x ⇒ k2 = a2 (1 - cos2 x) + cos2 x - 2a sin x cos x ... [Using sin2 x = 1 - cos2 x] ⇒ k2 = a2 + (1 - a2) cos2 x - 2a sin x cos x ⇒ k2 = a2 + (1 - a2) cos2 x - [b2 - 1 + (1 - a2) cos2 x] ... [Using equation (1)] ⇒ k2 = a2 - b2 + 1 ⇒ \(\rm k = \sqrt{a^2 - b^2 + 1}\). ∴ \(\rm |a \sin x-\cos x| = \sqrt{a^2 - b^2 + 1}\). |
|
| 261. |
Find the value of \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} \)1. 2cosθ2. 2cos2θ3. cos4θ4. 2cos(θ/2) |
|
Answer» Correct Answer - Option 2 : 2cos2θ Given: \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} \) Concept used: \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} = \;2{\rm{cos}}\frac{{16\theta }}{{{2^{\rm{n}}}}}\) Where n → number of terms Calculation: Here 2 came 3 times ⇒ n = 3 \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} = \;2{\rm{cos}}\frac{{16\theta }}{{{2^3}}}\) ⇒ 2cos2θ \(\therefore {\bf{The}}\;{\bf{value}}\;{\bf{of}}\;\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\bf{cos}}16{\bf{\theta }}} \;} \;} {\bf{is}}\;2{\bf{cos}}2{\bf{\theta }}.\) |
|
| 262. |
If sinθ = 3/5, then find the value of tanθ.1. 4/52. 3/53. 3/44. 4/3 |
|
Answer» Correct Answer - Option 3 : 3/4 Given: sinθ = 3/5 Concept used: In a right-angled triangle sinθ = Perpendicular/hypotenuse tanθ = perpendicular/base Pythagoras theorem H2 = P2 + B2 Calculation: H2 = P2 + B2 ⇒ B2 = 52 - 32 ⇒ B2 = 25 – 9 ⇒ B2 = 16 ⇒ B = 4 ⇒ tanθ = 3/4 ∴ The value of tanθ is 3/4. |
|
| 263. |
If sin x – cos x = 0, 0° < x < 90° then the value of (sec x + cosec x)2 is:1. 82. 43. 104. 6 |
|
Answer» Correct Answer - Option 1 : 8 Given sin x – cos x = 0 Calculation sin x – cos x = 0 ⇒ sinx = cosx ⇒ sinx = sin(90° - x) ⇒ x = 90° - x ⇒ 2x = 90° ⇒ x = 45° Now, (sec x + cosec x)2 = (sec 45° + cosec 45°)2 = (√2 + √2)2 = (2√2)2 = 8 |
|
| 264. |
If Sin x = 0, 0° ≤ x ≤ 90°, then what is the value of sec x + Cos x?1. 32. 73. 24. 9 |
|
Answer» Correct Answer - Option 3 : 2 Given Sin x = 0 Concept Sin 0°= 0 Sec 0° = 1 Cos 0 ° = 1 Calculation Sin x = Sin 0° x = 0 So, Sec(0) + Cos(0) ⇒ 1 + 1 ⇒ 2 |
|
| 265. |
Find the value of A, if √3 - 3√3tan2A = 3tan A - tan3A.1. 45° 2. 15° 3. 20° 4. 30° |
|
Answer» Correct Answer - Option 3 : 20° Given: √3 - 3√3tan2A = 3tan A - tan3A Formula used: tan 3A = (3tan A - tan3A)/(1 - 3tan2A) Calculation: √3 - 3√3tan2A = 3tan A - tan3A ⇒ √3(1 - 3tan2A) = 3tan A - tan3A ⇒ √3 = (3tan A - tan3A)/(1 - 3tan2A) ⇒ √3 = tan 3A ⇒ tan 60° = tan 3A ⇒ 3A = 60° ⇒ A = 60°/3 = 20° ∴ The value of A is 20°. |
|
| 266. |
Which of the following values of A and B satisfies, sin(A + B) = sin A + sin B, where 1. A = 0° , B = 90° 2. A = 45°, B = 45°3. A = 30°, B = 30°4. A = 60°, B = 30° |
|
Answer» Correct Answer - Option 1 : A = 0° , B = 90° Given: Sin(A + B) = Sin A + Sin B Formula Used: Sin(A + B) = SinA.CosB + CosA.SinB Calculation: From option 1, A = 0° and B = 90° We have, ⇒ Sin(0° + 90° ) = Sin 0° + Sin 90° ⇒ Sin (90°) = 0 + 1 ⇒ 1 = 1 ∴ The value of A and B are 0° and 90° respectively. |
|
| 267. |
The value of A that satisfies the equation a sin A + b cos A = c is equal to?1. \(\tan^{-1} \left(\dfrac{a}{b}\right) \pm \cos^{-1} \left(\dfrac{c}{\sqrt{a^2+b^2}}\right)\)2. \(\tan^{-1}\left(\dfrac{c}{b}\right)\pm \sin^{-1} \left(\dfrac{a}{\sqrt{a^2+b^2}}\right)\)3. \(\tan^{-1}\left(\dfrac{a}{b}\right)\pm \sin^{-1} \left(\dfrac{a}{\sqrt{a^2 +b^2}}\right)\)4. None |
|
Answer» Correct Answer - Option 1 : \(\tan^{-1} \left(\dfrac{a}{b}\right) \pm \cos^{-1} \left(\dfrac{c}{\sqrt{a^2+b^2}}\right)\) Calculation: Given: a sin A + b cos A = c Divide both sides by \(\rm \frac {1}{\sqrt {a^2 +b^2}}\), we get ⇒ \(\rm \frac {a}{\sqrt {a^2 +b^2}}\) sin A + \(\rm \frac {b}{\sqrt {a^2 +b^2}}\) cos A = \(\rm \frac {c}{\sqrt {a^2 +b^2}}\) Let sin α = \(\rm \frac {a}{\sqrt {a^2 +b^2}}\) and cos α = \(\rm \frac {b}{\sqrt {a^2 +b^2}}\) ⇒ sin A sin α + cos A cos α = \(\rm \frac {c}{\sqrt {a^2 +b^2}}\) ⇒ cos (A - α) = \(\rm \frac {c}{\sqrt {a^2 +b^2}}\) ⇒ A - α = cos-1 \(\rm \frac {c}{\sqrt {a^2 +b^2}}\) ⇒ A = scos-1 \(\rm \frac {c}{\sqrt {a^2 +b^2}}\) + α Now, \(\rm \tan α = \frac {\sin α}{\cos α} = \frac ab\) ∴ α = tan-1 \(\rm \frac ab\) So, A = cos-1 \(\rm \frac {c}{\sqrt {a^2 +b^2}}\) + tan-1 \(\rm \frac ab\) = \(\rm \tan^{-1} \left(\frac{a}{b}\right) + \cos^{-1} \left(\frac{c}{\sqrt{a^2+b^2}}\right)\) |
|
| 268. |
If \(\rm f(x)=\tan^{-1} \left[\dfrac{\sin x}{1 + \cos x}\right]\), then what is the first derivative of f(x)?1. 1/22. -1/23. 24. -2 |
|
Answer» Correct Answer - Option 1 : 1/2 Concept: Trigonometric Identities: sin2 θ + cos2 θ = 1. sin 2θ = 2 sin θ cos θ. cos 2θ = cos2 θ - sin2 θ.
Calculation: Let us express \(\rm\dfrac{\sin x}{1 + \cos x}\) in terms of tan x. \(\rm \dfrac{\sin x}{1 + \cos x}=\dfrac{2\sin \tfrac{x}{2}\cos \tfrac{x}{2}}{\left (\cos^2 \tfrac{x}{2}+\sin^2 \tfrac{x}{2} \right ) + \left (\cos^2 \tfrac{x}{2}-\sin^2 \tfrac{x}{2} \right )}\) = \(\rm \dfrac{2\sin \tfrac{x}{2}\cos \tfrac{x}{2}}{2\cos^2 \tfrac{x}{2}}= \dfrac{\sin \tfrac{x}{2}}{\cos \tfrac{x}{2}}=\tan \dfrac{x}{2}\). ∴ \(\rm f(x)=\tan^{-1} \left[\dfrac{\sin x}{1 + \cos x}\right]= \tan^{-1}\left (\tan \dfrac{x}{2} \right )=\dfrac{x}{2}\). And, the first derivative of f(x) = f'(x) = \(\rm \dfrac{d}{dx}\left (\dfrac{x}{2} \right )=\dfrac{1}{2}\). |
|
| 269. |
If \(\rm \sin^{-1} \dfrac{2a}{1+a^2} + \sin^{-1} \dfrac{2b}{1+b^2}=2 \tan^{-1} n\) then?1. \(n=\dfrac{a-b}{1+ab}\)2. \(n=\dfrac{(ab)}{(a-a)}\)3. \(n=\dfrac{(a+b)}{(1-ab)}\)4. \(n=\dfrac{(1-ab)}{(1+ab)}\) |
|
Answer» Correct Answer - Option 3 : \(n=\dfrac{(a+b)}{(1-ab)}\) Concept: Double angle formula: \(\rm \sin2x=\dfrac{2\tan x}{1+\tan^2}\) Addition formula: \(\rm \tan(x+y) = \dfrac{\tan x + \tan y}{1-\tan x\tan y}\)
Calculation: The given identity is \(\rm \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}n\). Let \(\rm a = \tan y_1\mbox{ and } b= \tan y_2\). Therefore, the given equation becomes: \(\rm \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right)= 2\tan^{-1}n\) \(\rm \sin^{-1}\left(\frac{2(\tan y_1)}{1+(\tan y_1)^2}\right) + \sin^{-1}\left(\frac{2(\tan y_2)}{1+(\tan y_2)^2}\right) = 2\tan^{-1}n\) \(\rm \sin^{-1}\left(\sin 2y_1\right)+\sin^{-1}\left(\sin 2y_2\right) = 2\tan^{-1}n\) \(\rm 2y_1 +2y_2 = 2\tan^{-1}n\) \( \rm y_1 +y_2 = \tan^{-1}n \) \(\rm \tan(y_1 + y_2) = n\) \(\rm \frac{\tan y_1 + \tan y_2}{1-\tan y_1\tan y_2}=n\) \(\rm \frac{a+b}{1-ab}=n \) Therefore, \(\rm n = \frac{a+b}{1-ab}\). |
|
| 270. |
What is Sin 6 A + Cos6 A/(Sin2A + Cos2A) (1 - Sin A Cos A)?1. 32. 13. 64. 7 |
|
Answer» Correct Answer - Option 2 : 1 Concept Sin 2A + Cos 2A = 1 (a + b)2 = a2+ b2+ 2ab (a3 + b3)= (a + b) (a2 – ab + b2) Calculation (Sin2A)3 + (Cos2 A)3/(Sin2A + Cos2A) (1 - Sin A Cos A) ⇒ (sin2A) + (Cos2A) [(Sin4A) – Sin2 A Cos2 A + (Cos 4A)]/(Sin 2A + Cos 2A) (1 - Sin A Cos A) ⇒ (sin2 A + Cos2A) [(Sin4 A + Cos4 A – Sin2 A Cos2 A)]/(Sin 2A + Cos 2 A) (1 - Sin A Cos A) ⇒ (Sin 2A + Cos 2 A) [(1 - Sin A Cos A)]/(Sin 2A + Cos 2A) (1 - Sin A Cos A) ⇒ 1 |
|
| 271. |
If cosecθ = 3x and cotθ = 3/x, then what is the value of x2 - 1/x2?1. 32. 1/33. 94. 1/9 |
|
Answer» Correct Answer - Option 4 : 1/9 Given: cosecθ = 3x cotθ = 3/x Formula used: cosec2θ - cot2θ = 1 Calculation: cosecθ = 3x ⇒ cosec2θ = 9x2 [Squaring both sides] .......(1) cotθ = 3/x ⇒ cot2θ = 9/x2 [Squaring both sides] ..........(2) Subtract (2) in (1) cosec2θ - cot2θ = 9x2 - 9/x2 ⇒ 1 = 9(x2 - 1/x2) ⇒ (x2 - 1/x2) = 1/9 ∴ The value of x2 - 1/x2 is 1/9. |
|
| 272. |
If cotθ = 4/3 and θ is an acute angle, then find the value of cosecθ.1. 4/52. 5/33. 24. 1/2 |
|
Answer» Correct Answer - Option 2 : 5/3 Given: cotθ = 4/3 Formula used: cosec2θ – cot2θ = 1 Calculation: cotθ = 4/3 ⇒ cosec2θ – cot2θ = 1 ⇒ cosec2θ = 1 + cot2θ ⇒ cosec2θ = 1 + (4/3)2 ⇒ cosec2θ = 1 + (16/9) ⇒ cosec2θ = (25/9) ⇒ cosecθ = √(25/9) ⇒ cosecθ = 5/3 ∴ The value of cosecθ is 5/3. |
|
| 273. |
If sin(A – B) = 0, where 0° ≤ A, B ≥ 90° then find the value of 2sinA × sinB + 2cosA × cosB 1. Even prime number less than 52. 23. 14. Both options 1 and 2 are correct |
|
Answer» Correct Answer - Option 4 : Both options 1 and 2 are correct Given: Value of sin(A – B) = 0 Identity used: sin2A + cos2A = 1 Calculation: As, sin(A – B ) = 0 ⇒ sin(A – B ) = sin0° ⇒ A – B = 0 ⇒ A = B We have to find the value of 2sinA × sinB + 2cosA × cosB ⇒ 2sinA × sinB + 2cosA × cosB = 2 × (sinA × sinA + cosA × cosA) ⇒ 2 × (sin2A + cos2A) ⇒ 2 Now 2 is also the even prime number less than 5. ∴ Both options 1 and 2 are correct. |
|
| 274. |
If cos 2θ = 0.28 then, find the value of expression :- (cosecθ – tanθ + sinθ)/(cosecθ + tanθ + sinθ) 1. 12. 0.753. 0.5034. 0.50 |
|
Answer» Correct Answer - Option 3 : 0.503 Given: cos 2θ = 0.28 Concepts used: cos 2θ = 2 cos2θ - 1 Pythagoras theorem: H2 = P2 + B2 cosθ = B/H, cosecθ = H/P, tanθ = P/B, sinθ = P/H Calculation: ⇒ cos 2θ = 2 cos2θ - 1 ⇒ 0.28 = 2 cos2θ - 1 ⇒ 2 cos2θ = 0.28 + 1 ⇒ 2 cos2θ = 1.28 ⇒ cos2θ = 0.64 ⇒ cosθ = √0.64 ⇒ cosθ = 0.8/1 As cosθ = Base/hypotenuse ⇒ 0.8 = Base/hypotenuse On comparing, Base (B) = 0.8, hypotenuse (H) = 1 Using Pythagoras theorem, H2 = P2 + B2 ⇒ 12 = P2 + (0.8)2 ⇒ 1 = P2 + 0.64 ⇒ 1 - 0.64 = P2 ⇒ P2 = 0.36 ⇒ P2 = √0.36 ⇒ P = 0.6 Value of sinθ = P/H ⇒ 0.6/1 ⇒ 0.6 Value of cosecθ = H/P ⇒ 1/0.6 ⇒ 1.67 Value of tanθ = P/B ⇒ 0.6/0.8 ⇒ 0.75 Value of expression, (cosecθ - tanθ + sinθ)/(cosecθ + tanθ + sinθ) = (1.67 - 0.75 + 0.6)/(1.67 + 0.75 + 0.6) ⇒ 1.52/3.02 ⇒ 0.503 ∴ The value of the expression is 0.503. |
|
| 275. |
The value of tan θ + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ is:1. cot θ 2. tan θ 3. sin θ 4. cos θ |
|
Answer» Correct Answer - Option 1 : cot θ Concept: Trigonometric Identities:
Calculation: Let us observe that: \(\rm \cot 2\theta=\dfrac{\cos 2\theta}{\sin2\theta}=\dfrac{\cos^2\theta-\sin^2\theta}{2\sin\theta\cos\theta}=\dfrac{1}{2}(\cot\theta-\tan\theta)\) ⇒ cot θ - tan θ = 2 cot 2θ ... (1) ⇒ tan θ = cot θ - 2 cot 2θ ... (2) Now, tan θ + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ = (cot θ - 2 cot 2θ) + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ ... Using equation (2) = cot θ - 2(cot 2θ - tan 2θ) + 4 tan 4θ + 8 cot 8θ = cot θ - 2(2 cot 4θ) + 4 tan 4θ + 8 cot 8θ ... Using equation (1) = cot θ - 4(cot 4θ - tan 4θ) + 8 cot 8θ = cot θ - 4(2 cot 8θ) + 8 cot 8θ ... Using equation (1) = cot θ - 8 cot 8θ + 8 cot 8θ = cot θ.
|
|
| 276. |
What is the value of 2sin10°.sin50°.sin70°?1. 1/82. 1/103. 1/64. 1/4 |
|
Answer» Correct Answer - Option 4 : 1/4 GIVEN: 2sin10°.sin50°.sin70° FORMULA: (sin3θ)/4 = sin θ. sin(60° - θ).sin(60° + θ) CALCULATION: 2sin10°.sin50°.sin70° ⇒ 2sin10°.sin(60° - 10°).sin(60° + 10°) ⇒ 2(sin3(10°))/4 ⇒ (sin30°)/2 ⇒ (1/2)/2 ⇒ 1/4 ∴ The value is 1/4. |
|
| 277. |
What is the value of (1 + tan42°)(1 + tan3°)?1. 22. 13. 34. –2 |
|
Answer» Correct Answer - Option 1 : 2 GIVEN: X = (1 + tan42°)(1 + tan3°) FORMULA: If A = B + C tan A = tan(B + C) = (tan B + tan C)/(1 – tan B tan C) ⇒ tan A = (tan B + tan C)/(1 – tan B tan C) ⇒ tan A – tan A tan B tan C = tan B + tan C ⇒ tan A = tan B + tan C + tan A tan B tan C CALCULATION: X = (1 + tan42°)(1 + tan3°) ⇒ X = 1 + tan42° + tan3° + tan42°tan3° ⇒ X = 1 + (tan42° + tan3° + tan42°tan3°) ⇒ X = 1 + (tan42° + tan3° + tan45°tan42°tan3°) ⇒ X = 1 + tan45° ⇒ X = 1 + 1 ⇒ X = 2 |
|
| 278. |
Find the value of \(\frac{{tan35^\circ \; + \;tan25^\circ \; + \;\sqrt 3 tan25^\circ tan35^\circ }}{{\left( {tan19^\circ \; + \;tan26^\circ \; + \;tan19^\circ tan26^\circ } \right)}}\)?1. - √32. √33. 24. 1 |
|
Answer» Correct Answer - Option 2 : √3 GIVEN: \(\frac{{tan35^\circ \; + \;tan25^\circ \; + \;√ 3 tan25^\circ tan35^\circ }}{{\left( {tan19^\circ \; + \;tan26^\circ \; + \;tan19^\circ tan26^\circ } \right)}}\) FORMULA: If A = B + C, then tan A = tan(B + C) = (tan B + tan C)/(1 – tan B tan C) ⇒ tan A = (tan B + tan C)/(1 – tan B tan C) ⇒ tan A – tan A tan B tan C = tan B + tan C ⇒ tan A = tan B + tan C + tan A tan B tan C CALCULATION: For Numerator: tan35° + tan25° + √3tan25°tan35° = tan35° + tan25° + tan60°tan25°tan35° ⇒ tan60° ⇒ √3 For Denominator: tan19° + tan26° + tan19°tan26° = tan19° + tan26° + tan45°tan19°tan26° ⇒ tan45° ⇒ 1 \(\frac{{tan35^\circ \; + \;tan25^\circ \; + \;√ 3 tan25^\circ tan35^\circ }}{{\left( {tan19^\circ \; + \;tan26^\circ \; + \;tan19^\circ tan26^\circ } \right)}}\) = √3/1 ⇒ √3 ∴ The value is √3. |
|
| 279. |
If \(\sin \left( {\theta + 30^\circ } \right)\) = \(\frac{3}{{\sqrt {12} }}\), then the value of θ is equal to:1. 15°2. 60°3. 30°4. 45° |
|
Answer» Correct Answer - Option 3 : 30° Calculation: sin(θ + 30°) = 3/√12 ⇒ sin(θ + 30°) = 3/2√3 ----(√12 = 2√3) ⇒ sin(θ + 30°) = (3/2√3) × (√3/√3) ⇒ sin(θ + 30°) = (3/2√3) × (√3/√3) ⇒ sin(θ + 30°) = √3/2 ⇒ sin(θ + 30°) = sin 60° ⇒ (θ + 30°) = 60° ⇒ θ = 30° The value of θ is equal to 30° |
|
| 280. |
If \(\frac{{sec\theta + tan\theta }}{{sec\theta - tan\theta }} = 5\) and θ is an acute angle, then the value of \(\frac{{3{{\cos }^2}\theta + 1}}{{3{{\cos }^2}\theta - 1}}\) is: 1. 42. 33. 14. 2 |
|
Answer» Correct Answer - Option 1 : 4 Given: \(\frac{{secθ + tanθ }}{{secθ - tanθ }} = 5\) Concept used: secθ = Hypotenuse/Base, tanθ = perpendicular/base, cosθ = base/hypotenuse Pythgorus theorem Hypotenuse2 = Perpendicular2 + Base2 Calculation: Let Perpendicular = P, Base = B, Hypotenuse = H \(\frac{{secθ + tanθ }}{{secθ - tanθ }} = 5\) ⇒ {(H/B) + (P/B)}/{(H/B) - (P/B)} = 5/1 ⇒ (H + P)/(H - P) = 5/1 ⇒ H + P = 5 ----(1) ⇒ H - P = 1 ----(2) Solve (1) and (2) ⇒ H = 3, P = 2 Hypotenuse2 = Perpendicular2 + Base2 ⇒ Base = √5 \(\frac{{3{{\cos }^2}\theta + 1}}{{3{{\cos }^2}\theta - 1}}\) ⇒ {3 × (√5/3)2 + 1}/{3 × (√5/3)2 - 1} ⇒ (8/3)/(2/3) ⇒ 4 ∴ The value is 4. |
|
| 281. |
If \(\sin \left( {A - B} \right) = \frac{1}{2}\) and \(\cos \left( {A + B} \right) = \frac{1}{2}\), where A > B > 0° and A + B is an acute angle, then the value of A is:1. 30°2. 60°3. 45°4. 15° |
|
Answer» Correct Answer - Option 3 : 45° Given: sin(A – B) = 1/2 Calculation: We know that sin 30° = 1/2 sin(A – B) = sin 30° ⇒ A – B = 30° ----(i) Also, cos(A + B) = 1/2 cos 60° = 1/2 cos(A + B) = cos 60° ⇒ A + B = 60° ----(ii) Adding (i) and (ii) 2A = 90° ⇒ A = 45° ∴ The value of A is 45° |
|
| 282. |
If sinx = 3/5, then find the value of 3sin2x + 5cos2x + 2.1. 157/252. 25/1573. 125/574. 57/125 |
|
Answer» Correct Answer - Option 1 : 157/25 Given: sinx = 3/5 Formula Used: sin2θ + cos2θ = 1 Calculations: 3sin2x + 5cos2x + 2 ⇒ 3sin2x + 5(1 - sin2x) + 2 = 7 - 2sin2x Now, sinx = 3/5 ⇒ 7 - 2sin2x = 7 - 2 × (3/5)2 ⇒ 7 - 2sin2x = 157/25 ∴ The value of (3sin2x + 5cos2x + 2) is 157/25. |
|
| 283. |
The minimum and maximum value of 12 sin2θ +13 cos2θ is1. 10 and 122. 13 and 153. 12 and 134. 9 and 11 |
|
Answer» Correct Answer - Option 3 : 12 and 13 Trigonometry identity used: Sin2θ + cos2θ = 1 Calculation: 12 sin2θ + 13 cos2θ = 12 sin2θ + 12 cos2θ + cos2θ = 12 (sin2θ + cos2θ) + cos2θ = 12 + cos2θ For minimum value, Minimum value of cosθ = –1 But cos2θ ≥ 0, when θ = 90° So, cos0° = 1, Then, required minimum value = 12 + 0 = 12. For the maximum value, Maximum value of cosθ = 1 And cos2θ =1 Then, required maximum value, = 12 + 1 = 13 ∴The minimum and maximum values of 12 sin2θ +13 cos2θ are 12 and 13. |
|
| 284. |
In ΔABC, right angled at B, if sin A = \(\frac{1}{\sqrt2}\), then the value of \(\frac{sin A(cos C + cos A)}{cos C (sin C + sin A)}\) is:1. \(2 \sqrt{5}\)2. 13. 34. 2 |
|
Answer» Correct Answer - Option 2 : 1 Given :- ΔABC is a right angle at B sin A = (1/√2) Concept :- As sin A = (1/√2) sin A = sin45° A = 45° Calculation :- As B is right angle and, ⇒ ∠A = 45° Sum of triangle = 180° ⇒ ∠A + ∠B + ∠C = 180° ⇒ 45° + 90° + ∠C = 180° ⇒ ∠C = 180° - 135° ⇒ ∠C = 45° As ∠A = ∠C = 45° ⇒ sin A = cos C = cos A = (1/√2) ΔABC is an isosceles triangle Now, Put the value of all identities ⇒ \(\frac{sin A(cos C + cos A)}{cos C (sin C + sin A)}\) = (sin A (sin A + sin A))/(sin A (sin A + sin A)) ⇒ \(\frac{sin A(cos C + cos A)}{cos C (sin C + sin A)}\) = 1 ∴ \(\frac{sin A(cos C + cos A)}{cos C (sin C + sin A)}\) = 1 |
|
| 285. |
\(\frac{sec A(sec A + tan A )(1 - sin A)}{(cosec^2 A - 1) sin^2 A}\) is equal to:1. cos2 A2. sec2 A3. cot A4. cos A |
|
Answer» Correct Answer - Option 2 : sec2 A Given : \(\frac{sec A(sec A + tan A )(1 - sin A)}{(cosec^2 A - 1) sin^2 A}\) Concept used : sec a = 1/(cos a) tan a = (sin a)/(cos a) Solution : \(\frac{sec A(sec A + tan A )(1 - sin A)}{(cosec^2 A - 1) sin^2 A}\) \( = \left[ {\frac{1}{{cosA}}\left( {\frac{1}{{cosA}} + \frac{{sinA}}{{cosA}}} \right)\left( {1 - sinA} \right)} \right]/[(1/{\sin ^2}A) - 1]\;{\rm{sin}}{\;^2}A\;\) \( = [1/cosA(1 + sinA)(1 - sinA)]/[((1 - si{n^2}A)/si{n^2}A){\rm{ \times }}si{n^2}A]\) \( = se{c^2}A(1 - si{n^2}A)/((1 - si{n^2}A))\) = sec2 A |
|
| 286. |
\(\frac{(1 + tan\theta + sec\theta)(1 + cot\theta - cosec\theta)}{(sec\theta + tan\theta)(1 - sin\theta)}\) is equal to:1. 2cosecθ 2. cosecθ3. secθ4. 2secθ |
|
Answer» Correct Answer - Option 4 : 2secθ Given : \(\frac{(1 + tanθ + secθ)(1 + cotθ - cosecθ)}{(secθ + tanθ)(1 - sinθ)}\) Concept used : tanθ = sinθ/cosθ secθ = 1/cosθ cotθ = cosθ\sinθ Solution : \(\frac{(1 + tanθ + secθ)(1 + cotθ - cosecθ)}{(secθ + tanθ)(1 - sinθ)}\) \( = \;\frac{{\left( {1 + \frac{{sinθ }}{{cosθ }} + \frac{1}{{cosθ }}} \right)\left( {1 + \frac{{cosθ }}{{sinθ }} - \frac{1}{{sinθ }}} \right)}}{{\left( {\frac{1}{{cosθ }} + \frac{{sinθ }}{{cosθ }}\;} \right)\left( {1 - sinθ } \right)}}\) \( = \;\frac{{\left( {\frac{1}{{sinθ cosθ }}} \right)\left( {cosθ + sinθ + 1} \right)\left( {sinθ + cosθ - 1} \right)}}{{\frac{1}{{cosθ }}\left( {1 + sinθ } \right)\left( {1 - sinθ } \right)}}\) \( = \frac{1}{{sinθ }}\;\;\frac{{\left[ {{{\left( {cosθ + sinθ } \right)}^2} - {1^2}} \right]}}{{\left( {1 - {{\sin }^2}θ } \right)}}\) \( = \frac{1}{{sinθ }}\;\frac{{\left( {{{\cos }^2}θ + {{\sin }^2}θ + 2sinθ cosθ } \right) - 1}}{{\left( {1 - {{\sin }^2}θ } \right)}}\) \( = \frac{1}{{sinθ }}\;\frac{{2sinθ cosθ }}{{{{\cos }^2}θ }}\) = 2/cosθ = 2secθ ∴ the required value is 2secθ . |
|
| 287. |
\(\frac{{tan\theta \left( {1 - sin\theta } \right)\left( {sec\theta \; + \;tan\theta } \right)}}{{\left( {1\; + \;cos\theta } \right)\left( {cosec\theta - cot\theta } \right)}} = ?\)1. 22. – 13. 14. 1/2 |
|
Answer» Correct Answer - Option 3 : 1 GIVEN: \(\frac{{tan\theta \left( {1 - sin\theta } \right)\left( {sec\theta \; + \;tan\theta } \right)}}{{\left( {1\; + \;cos\theta } \right)\left( {cosec\theta - cot\theta } \right)}}\) FORMULA USED: 1 – sin2θ = cos2θ; 1 – cos2θ = sin2θ (a + b)(a – b) = a2 – b2 CALCULATION: \(\frac{{tan\theta \left( {1 - sin\theta } \right)\left( {sec\theta \; + \;tan\theta } \right)}}{{\left( {1\; + \;cos\theta } \right)\left( {cosec\theta - cot\theta } \right)}}\) ⇒ \(\frac{{tan\theta \left( {1 - sin\theta } \right)\left( {\frac{1}{{cos\theta }}\; + \;\frac{{sin\theta }}{{cos\theta }}} \right)}}{{\left( {1\; + \;cos\theta } \right)\left( {\frac{1}{{sin\theta }}\; - \;\frac{{cos\theta }}{{sin\theta }}} \right)}}\) ⇒ \(\frac{{tan\theta \left( {1 - sin\theta } \right)\left( {1\; + \;sin\theta } \right)sin\theta }}{{\left( {1\; + \;cos\theta } \right)\left( {1 - cos\theta } \right)cos\theta }}\) ⇒ \(\frac{{tan\theta \left( {1 - {{\sin }^2}\theta } \right)}}{{\left( {1 - {{\cos }^2}\theta } \right)}}\; \times \;tan\theta \) ⇒ \(\frac{{tan\theta \left( {{{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta }}\; \times \;tan\theta \) ⇒ tan2θ × cot2θ ⇒ 1 |
|
| 288. |
cot2θ[(cosec θ – cot θ)(tan θ + sin θ)]sec θ is equal to –1. 12. -13. 24. -2 |
|
Answer» Correct Answer - Option 1 : 1 GIVEN: cot2θ[(cosec θ – cot θ)(tan θ + sin θ)]sec θ FORMULA USED: 1 – cos2x = sin2x 1 – sin2x = cos2x CALCULATION: cot2θ[(cosec θ – cot θ)(tan θ + sin θ)]sec θ ⇒ cot2θ[(1/sin θ – cos θ/sin θ)(sin θ/cos θ + sin θ)]sec θ ⇒ cot2θ[(1 – cos θ)(1 + cos θ)]sec θ/(cos θ) ⇒ cot2θ[1 – cos2θ]sec θ/(cos θ) ⇒ cot2θ(sin2θ)/(cos2θ) ⇒ cot2θ × tan2θ ⇒ 1 |
|
| 289. |
If x lies in the first quadrant and Cot x = (4/3), what is Sin x + Cos x?1. 1/52. 7/53. 14. 8/5 |
|
Answer» Correct Answer - Option 2 : 7/5 Concept Cot x = Base/Perpendicular Sin x = Perpendicular/Hypotenuse Cos x = Base/Hypotenuse Calculation AC = √(42 + 32) ⇒ √(16 + 9) = √25 = 5 units Sin x = 3/5 Cos x = 4/5 So, 3/5 + 4/5 ⇒ 7/5 |
|
| 290. |
What will be the value of expression log cot 9° + log cot 45° + log cot 81°? |
|
Answer» Correct Answer - Option 1 : 0 Given: The given logarithmic expression is log cot 9° + log cot 45° + log cot 81°? Formula Used: Basic concept of trigonometric ratio and identities We know that log m + log n = log (m × n) tan θ = cot (90 - θ) tan θ × cot θ = 1 cot 45° = 1 log 1 = 0 Calculation: By applying the identity of log ∴ log cot 9° + log cot 45° + log cot 81° = log ( cot 9° × cot 45° × cot 81°) ⇒ log ( cot 9° × cot 45° × cot 81°) = log ( cot 9° × cot 45° × cot (90 - 9)°) ⇒ log ( cot 9° × cot 45° × tan 9°) = log 1 = 0 Hence, option (1) is correct |
|
| 291. |
If \(2x = \sin \theta \) and \(\frac{2}{x} =\cos \theta \), then the value of \(4\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\) is:1. 12. 03. 24. 4 |
|
Answer» Correct Answer - Option 1 : 1 Given: 2x = sinθ 2/x = cosθ Formula used: Sin2θ + Cos2θ = 1 Calculation: 2x = sinθ ⇒ 4x2 = sin2θ 2/x = cosθ ⇒ 4/x2 = cos2θ Sin2θ + Cos2θ = 4x2 + 4/x2 ⇒ 1 = 4x2 + 4/x2 ⇒ 1 = 4(x2 + 1/x2) ∴ Required value is 1 |
|
| 292. |
If X = tan40°, then the value of 2tan50º will be:1. 2/X2. 2X3. 1/X4. 1/2X |
|
Answer» Correct Answer - Option 1 : 2/X Given: X = tan40° Formula used: tan (90° – θ) = cot θ cot θ = 1/tan θ Calculation: 2tan50º ⇒ 2tan(90° – 40°) ⇒ 2 × cot 40° ⇒ 2 × 1/tan 40° ⇒ 2 × (1/X) = 2/X ∴ The value of 2tan50º is 2/X. |
|
| 293. |
If sum of two angles is 157.5° and difference of the angles is π/8, then what is the value of greater angle ? 1. 67.5° 2. 90° 3. 112.5° 4. 22.5° |
|
Answer» Correct Answer - Option 2 : 90° Given: The Sum of the angles = 157.5° The difference of the angles = π/8 Concept used: Radian measure = (π/180) × degree measure Calculation: Let us take the two angles as 'a' and 'b' Sum of the angles = a + b = 157.5° ----(i) Difference between angles = a - b = π/8 π/8 = (π/180) × degree measure ⇒ Degree measure = π/8 × (180/π) = 22.5° a - b = 22.5° ----(ii) Adding the equation (i) and (ii), we get (a + b) + (a - b) = 157.5° + 22.5° = 180° ⇒ 2a = 180° ⇒ a = 90° Now, b = 157.5° - 90° = 67.5° ∴ The value of greater angle is 90° |
|
| 294. |
If θ is an acute angle then tanθ + cot θ = 2. Find the value of θ in circular measure. 1. π/62. π/83. π/44. π/12 |
|
Answer» Correct Answer - Option 3 : π/4 Given: tanθ + cotθ = 2 θ is an acute angle Concept used: radian measure = (π/180) × degree measure Calculation: tanθ + cot θ = 2 ⇒ tanθ + (1/tanθ ) = 2 Taking LCM, tan2θ + 1 = 2tanθ ⇒ tan2θ + 1 - 2tanθ = 0 ⇒ (tanθ - 1)2 = 0 Taking root on both sides ⇒ tanθ - 1 = 0 ⇒ tanθ = 1 ⇒ θ = 45° Now converting degree to radian Radian measure = 45 × (π/180) ⇒ π/4 ∴ The value of θ in circular measure is π/4. |
|
| 295. |
The value of expression cot(25° - θ) - sec(35° - θ) - tan(65° + θ) + cosec(55° + θ). 1. 22. 13. 04. -1 |
|
Answer» Correct Answer - Option 3 : 0 Calculation: cot(25° - θ) - sec(35° - θ) - tan(65° + θ) + cosec(55° + θ) ⇒ cot(25° - θ) - sec(35° - θ) - tan[90° - (25° - θ)] + cosec[90° - (35° - θ)] ⇒ cot(25° - θ) - sec(35° - θ) - cot(25° - θ) + sec(35° - θ) ⇒ 0 ∴ The required value is 0. |
|
| 296. |
If sinx = 2/3, then find the value of cos3x.1. -0.57972. 0.56783. 0.67354. -0.8765 |
|
Answer» Correct Answer - Option 1 : -0.5797 Given- sinx = 2/3 Formula Used- cosx = √(1 - sin2x) cos3x = 4cos3x - 3cosx Calculation - cosx = √(1 - 4/9) ⇒ √(5/9) ⇒ √5/3 cos3x = 4 × (√5/3)3 - 3 × √5/3 ⇒ cos3x = 20√5/27 - √5 ⇒ cos3x = -7√5/27 ∴ cos3x = -0.5797 |
|
| 297. |
If tan θ + cot θ = 6, then find the value of tan2 θ + cot2 θ.1. 362. 243. 264. 34 |
|
Answer» Correct Answer - Option 4 : 34 Given: tan θ + cot θ = 6 Formula Used: (a + b)2 = a2 + b2 + 2ab tanθ × cotθ = 1 Calculations: tan θ + cot θ = 6 Squaring both sides, we get (tan θ + cot θ)2 = (6)2 ⇒ tan2 θ + cot2 θ + 2 × tanθ × cotθ = 36 ⇒ tan2 θ + cot2 θ + 2 × 1 = 36 ⇒ tan2 θ + cot2 θ = 36 – 2 ⇒ tan2 θ + cot2 θ = 34 ∴ The value of tan2 θ + cot2 θ is 34. |
|
| 298. |
If sin θ + sin2 θ = 1, then the value of cos2 θ + cos4 θ is equal to: |
|
Answer» Correct Answer - Option 4 : 1 Given - sin θ + sin2 θ = 1 Formula used - sin2θ + cos2θ = 1 Solution - sin θ + sin2 θ = 1 ⇒ sinθ = 1 - sin2θ = cos2θ ⇒ sinθ = cos2θ ⇒ cos2θ + cos4θ = sinθ + sin2θ = 1 ∴ cos2θ + cos4θ = 1. |
|
| 299. |
If sec2 θ + tan2 θ = 3 then find the value of cot θ. |
|
Answer» Correct Answer - Option 2 : 1 Concept: 1 + tan2 θ = sec2 θ sec2 θ - 1 = tan2 θ Calculation: Given: sec2 θ + tan2 θ = 3 To Find: Value of sec θ sec2 θ + tan2 θ = 3 Subtracting 1 both sides, we get ⇒ sec2 θ + tan2 θ - 1 = 3 - 1 ⇒ tan2 θ + tan2 θ = 2 (∵ sec2 θ - 1 = tan2 θ) ⇒ 2tan2 θ = 2 ⇒ tan2 θ = 1 ∴ tan θ = 1 Now, cot θ = \(\rm \frac {1}{\tan \theta} = \frac 1 1 = 1\) |
|
| 300. |
If (sin θ + cosec θ)2 + (cos θ + sec θ)2 = k + tan2 θ + cot2 θ, then the value of k is equal to:1. 52. 73. 24. 9 |
|
Answer» Correct Answer - Option 2 : 7 Given: (sin θ + cosec θ)2 + (cos θ + sec θ)2 = k + tan2 θ + cot2 θ Formula used: (a + b)2 = a2 + 2ab + b2 sin2 θ + cos2 θ = 1 sec2 θ - tan2 θ = 1 cosec2 θ - cot2 θ = 1 sin θ × cosec θ = 1 cos θ × sec θ = 1 Calculation: According to the question, sin2 θ + cosec2 θ + 2 × sin θ × cosec θ + cos2 θ + sec2 θ + 2 × cos θ × sec θ = k + tan2 θ + cot2 θ ⇒ 1 + cosec2 θ + 2 × 1 + sec2 θ + 2 × 1 = k + tan2 θ + cot2 θ ⇒ 5 + (cosec2 θ - cot2 θ) + (sec2 θ - cot2 θ) = k ⇒ 5 + 1 + 1 = k ⇒ k = 7 ∴ The value of k is 7. |
|