Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

The value of (co s eca -sin a) (sec a- cos a) (tan a+ cot a) is:A. 4B. 6C. 2D. 1

Answer» Correct Answer - d
`(co s ec a-sina)(seca-cosa)(tana+cota)`
Put `a=45^(@)`
`(co s ec45^(@)-sin45^(@))(sec45^(@)-cos45^(@))(tan45^(@)+cot45^(@))`
`(sqrt(2)-(1)/sqrt(2))(1+1)`
`(1)/(2)xx2=1`
352.

यदि `(costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4` तो, `theta(0ltthetalt90^(@))` का मान बताइए ?A. `60^(@)`B. `45^(@)`C. `30^(@)`D. `35^(@)`

Answer» Correct Answer - a
`(cos theta)/(1-sin theta)+(cos theta)/(1+sin theta)=4`
`cos theta((1+sin theta+1-sin theta)/(sin^(2)theta))=4`
`cos theta[(2)/(cos^(2)theta)]=4`
`cos theta=(1)/(2)`
`theta=60^(@)`
353.

`(sintheta)/(1+costheta)+(sintheta)/(1-costheta)` का मान क्या है ?A. `2sintheta`B. `2costheta`C. `2sectheta`D. `2"co s ec"theta`

Answer» Correct Answer - d
`(sin theta)/(1+costheta)+(Sin theta)/(1-cos theta)`
`rArr(sin theta(1-costheta)+sin theta(1+costheta))/((1+cos theta)xx(1-cos theta))`
`rArr(sin theta-sin thetacostheta+sintheta+sin thetacostheta)/((1-cos^(2)theta))`
`rArr(2sin theta)/(sin^(2)theta)rArr(2)/(sin theta)rArr2co s ec theta`
354.

If `sectheta-tantheta=(1)/(sqrt(3))`, the value of `sectheta.tantheta` का मान हैA. `(4)/(sqrt(3))`B. `(2)/(sqrt(3))`C. `(2)/(3)`D. `(1)/(sqrt(3))`

Answer» Correct Answer - c
Shortcut method
Put `theta=30^(@)`
`sectheta-tantheta=(1)/sqrt(3)`
`sec30^(@)-tan30^(@)=(1)/sqrt(3)`
`(2)/sqrt(3)-(1)/sqrt(3)=(1)/sqrt(3)`
`(1)/sqrt(3)=(1)/sqrt(3)` (satisfied)
`sectheta=30^(@)`
`rArrsectheta.tantheta`
`rArr sec30^(@).tan30^(@)`
` rArr(2)/sqrt(3)xx(1)/sqrt(3)=(2)/(3)`
355.

if `theta=60^(@)`, then `(1)/(2)sqrt(1+sintheta)+(1)/(2)sqrt(1-sintheta)` is equal toA. `cot((theta)/(2))`B. `sec((theta)/(2))`C. `sin((theta)/(2))`D. `cos((theta)/(2))`

Answer» Correct Answer - d
` theta=60^(@)`
`rArr(1)/(2)sqrt(1+sintheta)+(1)/(2)sqrt(1+60^(@))+(1)/(2)sqrt(1-sin60^(@))`
`rArr(1)/(2)sqrt(1+(sqrt(3)/(2)))+(1)/(2)sqrt(1-(sqrt(3)/(2)))`
`rArr(1)/(2sqrt(2))(sqrt(2+sqrt(3))+sqrt(2-sqrt(3)))`
`rArr(1)/(4)(sqrt((sqrt(3)+1)^(2) ) +sqrt((sqrt(3)-1)^(2)))`
`rArr(1)/(4)(sqrt(3)+1+sqrt(3)+1)`
`rArr2sqrt(3)/(4)=sqrt(3)/(2)=cos30^(@)=(theta)/(2)`
356.

किसी भी वास्तविक मान के लिए `sqrt((sectheta-1)/(sectheta+1))=?`A. `cottheta-co s ectheta`B. `sectheta-tantheta`C. `co s ectheta-cottheta`D. `tantheta-sectheta`

Answer» Correct Answer - c
`sqrt((sectheta-1)/(sectheta+1))=sqrt(((1)/(costheta)-1)/((1)/(cos theta)+1))`
`rArrsqrt((1-cos theta)/(1+cos theta))=sqrt((1-cos theta)/( 1+costheta)xx(1-cos theta)/(1-costheta))`
`rArrsqrt(((1-costheta)^(2))/(sin^(2)theta))`
`rArr(1-costheta)/(sintheta)xx(1)/(sintheta)-(costheta)/(sintheta)`
`rArrco s ectheta-cottheta`
357.

The value of `sec^(2)-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)` isA. 1B. 2C. `-1`D. 0

Answer» Correct Answer - a
`sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)`
`=sec^(2)theta-(sin^(2)theta( 1-2sin^(2)theta))/(cos^(2)theta(2cos^(2)theta-1))`
`[cos^(2)theta-sin^(2)theta=2cos^(2)theta-1=1-2sin^(2)theta]`
` =sec^(@)theta-tan^(2)theta=1`
358.

`sqrt((1+sintheta)/(1-sintheta))+sqrt((1-sintheta)/(1+sintheta))` is equal toA. `2costheta`B. `2sintheta`C. `2cottheta`D. `2sectheta`

Answer» Correct Answer - d
`sqrt((1+sintheta)/(1-sintheta))+sqrt((1-sintheta)/(1+sintheta))`
`=((sqrt(1+sintheta))^(2)+(sqrt(1-sintheta))^(2))/(sqrt( 1-sin^(2)theta))`
`=(1+sintheta=1-sintheta)/(cos theta)`
`=(2)/(cos theta)=2sectheta`
Aternate shortcut method
Put `theta=30^(@)`
`sqrt((1+sin30^(@))/(1-sin30^(@)))+sqrt((1-sin30^(@))/(1+sin30^(@)))`
`rArrsqrt((1+(1)/(2))/(1-(1)/(2)))+sqrt((1-(1)/(2))/(1+(1)/(2)))`
`rArrsqrt((3)/(1))+sqrt((1)/(3))` ltbr gt `rArr(4)/sqrt(3)`
Now check with options by puting `theta=30^(@)`
`2 sec30^(@)=(2xx2)/sqrt(3)=(4)/sqrt(3)`
359.

if `(2tan^(2)30^(@))/(1-tan^(2)30^(@))+sec^(2)45^(@)-sec^(2)theta^(@)=xsec60^(@)` then the value of x isA. 2B. 1C. 0D. `-1`

Answer» Correct Answer - b
`(2tan^(2)30^(@))/(1-tan^(2)30^(@))+sec^(2)45^(@)-45^(@)`
`- sec^(2)0^(@)=xsec60^(@)`
`rArr(2x((1)/sqrt(3))^(2))/(1-((1)/sqrt(3))^(2))+(sqrt(2))^(2)-1=x xx2`
`rArr(2xx(1)/(3))/(1-(1)/(2))+2-1=2x`
`rArr((2)/(3)xx(3)/(2))+2-1=2xrArr2=x xx2`
360.

The value of `sec^(4)A(1-sin^(4)A)-2tan^(2)A` is `sec^(4)A(1-sin^(4)`) (का मान है )A. `(1)/(2)`B. 0C. 2D. 1

Answer» Correct Answer - d
According to the qeustion,
`rArr Sec^(4)A(1-sin^(4)A)-2tan^(2)A`
Put `A=45^(@)`
`rArrSec^(4)45^(@)(1-sin^(4)45^(@))-2tan^(2)45^(@)`
`rArr4(1-(1)/(4))-2`
`rArr4xx(3)/(4)-2`
`rArr3-2`
`rArr3-2`
`rArr1`
361.

If `theta(0 letheta le90^(@))` and `4 cos^(2)theta -4 sqrt3 cos theta +3=0,` then the value of `theta` isA. `30^(@)`B. `90^(@)`C. `45^(@)`D. `60^(@)`

Answer» Correct Answer - a
`4cos^(2)theta-4sqrt(3)cos theta+3=0`
Hit `&` trial method
Put `theta=30^(@)` option(a)
`4cos^(2)30^(@)-4sqrt(3)cos30^(@)+3=0`
`4((3)/(4))-4sqrt(3)((sqrt(3))/(2))+3=0`
`0=0`
362.

If sin(A + B) = cos(A - B) = \(\frac{\sqrt 3}{2}\) and A and B are acute angle. The measures of angles A and B (in degrees) will be:1. A = 60 and B = 302. A = 45 and B = 153. A = 45 and B = 454. A = 15 and B = 45

Answer» Correct Answer - Option 2 : A = 45 and B = 15

Given:

sin(A + B ) = cos(A - B) = √3/2

Calculation:

sin(A + B) = √3/2

⇒ sin(A + B )= sin60°

⇒  A + B = 60°      ….(i)

And, cos(A - B) = √3/2

⇒ cos(A - B) = cos30°

⇒  A – B = 30°      ….(ii)

Adding (i) and (ii)

We get, 2A = 90°

⇒  A = 45°

Putting in (i)

We get, 

⇒ 45° + B = 60°

⇒  B = 15°

∴ A and B are 45°and 15°

Short trick

sin(A + B )= sin60 

cos(A - B) = cos30°

So, A + B = 60° and A – B = 30°

Takes oprtion he different is 30° and sum is 60° 

So option B and D are satisfy but in option D difference is negative

Then option B is right

A= 45° and B = 15° 

363.

If `tantheta-cottheta=0`, find the value of `sintheta+costheta`,

Answer» Correct Answer - c
`tan theta-cot theta=0`
shortest method
Put, `theta= 45^(@)`
`tan45^(@)-cot45^(@)=0`
`1-1=0`
0=0 matched
So, `theta=45^(@)`
`rARrsin theta+cos theta`
`rArr sin45^(@)+cos45^(@)`
`rArr(1)/sqrt(2)+(1)/sqrt(2)rArrsqrt(2)`
364.

The numerical value of `(5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin^(2)theta` isA. 5B. 2C. 3D. 4

Answer» Correct Answer - a
`(5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin^(2)theta`
`=5cos^(2)theta+(2)/(co s ec^(2)theta)+3sin^(2)theta`
`=5cos^(2)theta+2sin^(2)theta+3sin^(2)theta`
`=5(cos^(2)theta+sin^(2)theta)`.
`(therefore sin^(2)theta+cos^(2)theta=1)`
=5
365.

If `0 lt A lt 90^(@)` then the value of `(1)/(2) cotA[1+(secA+tanA)^(2)/(co s ecA(secA-tanA))]`

Answer» Correct Answer - c
According to the question
Put `A=45^(@)`
`rArr(1)/(2)xxcot45^(@)`
`[(1+(sec45^(@)-tan45^(@))^(2))/(cos sec45^(@)(sec45^ (@)-tan45^(@)))]`
`rArr(1)/(2)[(1+(sqrt(2)-1)^(2))/(sqrt(2)xx(sqrt(2)-1))]`
`rArr(1)/(1)[(1+2+1-2sqrt(2))/(2-sqrt(2))]`
`rArr(1)/(2)[(4-2sqrt(2))/( 2-sqrt(2))]`
` rArr(1)/(2)xx2[(2-sqrt(2))/(2-sqrt(2))]`
`rArr1`
366.

The value of following is: `(sintheta"co s ec"thetatanthetacottheta)/(sin^(2)theta+cos^(2)theta)`A. 2B. 0C. `tantheta`D. 1

Answer» Correct Answer - d
`(sin thetaco s ectheta tan thetacot theta)/(sin^(2)theta+cos^(2)theta)`
`=(sin theta xx(1)/(sintheta)xxtan thetaxx(1)/(tantheta))/(1)`
=1
367.

यदि `Axxtan(theta+150^(@))=Bxxtan(theta-60^(@)),(A-B)/(A+B)` का मान क्या होगा ?A. `-(sintheta)/(2)`B. `(sin2theta)/(2)`C. `(cos2theta)/(2)`D. 0

Answer» Correct Answer - a
`Axx tan (theta+150^(@))=Bxxtan(theta-60^(@))`
`(A)/(B)=(tan(theta-60^(@)))/(tan(theta+150^(@)))`
put `theta=90^(@)`
`(A)/(B)=(tan(90^(@)-60^(@)))/(tan(90^(@) +150^(@)))`
` =(tan30^(@))/(tan(180^(@)+60^ (@)))=(tan30^(@))/(tan60^(@))`
`(A)/(B)=(1)/(3)`
then `(A+B)/(A-B)=-(4)/(2)`
`(A+B)/(A-B)=-2` ltb rgt `=(A-B)=-(1)/(2)`
Put in option (a)`-(sin90^(@))/(2)=-(1)/(2)`
So, option(s) is corr ect.
368.

If `alpha+theta=(7pi)/(12)andtantheta=sqrt(3)`, then the value of `tan alpha` is:A. `(1)/(sqrt(3))`B. 0C. `sqrt(3)`D. 1

Answer» Correct Answer - d
`alpha+theta=(7pi)/(12)` ..........(i)
`tan theta=sqrt(3)`
`tan theta=tan60^(@)`
`tan theta=tan 60^(@)`
`theta=60^(@)`
Put value in equation (i)
`a+60^(@)=(7)/(12)xx180^(@)`
`alpha=105^ (@)-60^(@)`
`alpha=45^(@)`
`tan alpha=tan45^(@)=1`
369.

`(2sintheta)/(costheta(1+tan^(2)theta))` को सरलीकृत करे ।A. `costheta`B. `cos2theta`C. `sin2theta`D. `sintheta`

Answer» Correct Answer - c
`(2sintheta)/(costheta(1+tan^(2)theta))=(2tan theta)/(1+tan^(2)theta)`
`sin2theta`
370.

यदि `tan theta_(1)=1,sintheta_(2)=1//sqrt(2)`, तो `sin(theta_(1)+theta_(2))` का मान होगा -A. -1B. 0C. 1D. `1//2`

Answer» Correct Answer - c
`tantheta_(1)=1sintheta_(2)=(1)/sqrt(2)`
`theta_(1)=45^(@)theta_(2)=45^(@)`
`sin(theta_(1)+theta_(2))=sin90^(@)=1`
371.

`sin^(4)theta-cos^(4)theta` हैA. `cos2theta`B. `-sin2theta`C. `sin2theta`D. `-cos2theta`

Answer» Correct Answer - d
`sin^(4)theta-cos^(4)theta`
`(sin^(2)theta-cos^(2)theta)(sin^(2)theta-cos^(2)theta)`
`sin^(2)theta-cos^(2)theta(because sin^(2)theta+cos^(2)theta=1)`
`rArr-(cos^(2)theta=sin^(2)theta)=-cos2 theta`
`(because cos^(2)theta-sin^(2)theta=cos2theta)`
372.

यदि `tantheta = (3)/(4)`, तो `cos2theta` का मान ज्ञात करेA. `24//25`B. `16//25`C. `7//25`D. `9//30`

Answer» Correct Answer - c
`tan theta=(3)/(4)`
`cos2theta=(1-tan^(2)theta)/(1+tan^(2)theta)`
`=(1-(9)/(16))/( 1+(9)/(1 6))`
` =((7)/(16))/((25)/(16))=(7)/(25)`
373.

`sin^(2)25^(@)+sin^(2)65^(@)+"co s ec"^(2)57^(@)-tan^(2)33^(@)`का मान ज्ञात करे ।A. 1B. 2C. 3D. 0

Answer» Correct Answer - b
`sin^(2)25^(@)+sin^(2)65 ^(@)+co s ec^(2)57^(@)=tan^(3)33^(@)`
`rArr(sin^(2)25^(@)+cos^(2)25^ (@))(sec^(2)33^(@)-tan^(2) 33^ (@))`
=1+1=2
Note:-
`sin^(2)65^(@)=sin^(2)(90^(@)-25^(@))=cos^(2)25^(@)`
`co s ec^(2)57^(@)=co s ec^(2)(90^(@)-33^(@))=sec^(2)33^(@)`
374.

यदि `costhetaco s ec23^(@)=1`, है तो `theta` का मान ज्ञात करे?A. `23^(@)`B. `37^(@)`C. `63^(@)`D. `67^(@)`

Answer» Correct Answer - d
`cos theta co s ec23^(@)`
=1
If `cosA.co s ecB=1`
then `A+B=90^(@)`
S, `+23^(@)=90^(@)`
`B= 67^(@)`
375.

`3cos80^(@)" "co s ec10^(@)+2" "cos59^(@)" "co s ec31^(@)` का मान ज्ञात करे?A. 1B. 3C. 2D. 5

Answer» Correct Answer - d
`3cos80^(@)co s ec10^(@)+2cos59^(@)`
`co s ec31^(@)`
then
`CosA.co s ecB=1`
`3xx1+2xx1=5`]
`rArr3cos80^(@)(1)/(sin10^(@))+2cos59^(@)(1)/(sin31^(@))`
`rArr3cos80^(@)(1)/(sin(90^(@)-80^(@))+2cos59^(@)`
`(1)/(sin(90^(@)-59^(@))`
`rArr3+2=5`
376.

यदि `theta` एक न्यूनकोण है और `tan(4theta-50^(@))=cot(50^(@)-theta)` है तो `theta` का मान ज्ञात डिग्री में क्या होगा?A. 30B. 40C. 50D. 20

Answer» Correct Answer - a
We know that
`tan (90^(@)-theta)=cot theta`
and `cot(90^(@)-theta)=tan theta`
`rArrcot(90^(@)-(4theta-50^(@))=cot(50^(@)-theta)`
`rArr90^(@)-(4theta-50^(@))=50^(@)-theta`
`rArr90^(@)-4theta+50^(@)=50^(@)-theta`
`rArr90^(@)=3theta`
then `theta=30^(@)`
377.

यदि `sin(60^(@)-theta)=cos(Phi-30^(@))` है तो `tan(Phi-theta)` का मान क्या होगा (मान के की `theta` तथा `Phi` दोनों धनात्मक न्यूनकोण है जिसमे `theta lt 60^(@)` और `30^(@)` )हैA. `(1)/(sqrt(3))`B. 0C. `sqrt(3)`D. 1

Answer» Correct Answer - c
`sin(60^(@)-theta)=cos(psi-30^(@))`
`(60^(@)-theta)+(psi-30^(@))=90^(@)`
(if `sin A=cosB` then `A+B=90^(@)`)
` (psi-theta)=90^(@)-30^(@)`
`(psi-theta)=60^(@)`
`tan(psi-theta)=tan 60^(@)`
`tan60^(@)=sqrt(3)`
378.

यदि A, B तथा C एक त्रिभुज के कोण है तो निम्न में से गलत सम्भन्ध छाँटिएA. `sin((A+B)/(2))=cos((C)/(2))`B. `cos((A+B)/(2))=sin((C)/(2))`C. `tan((A+B)/(2))=sec((C)/(2))`D. `cot((A+B)/(2))=tan((C)/(2))`

Answer» Correct Answer - c
`A+B+C=pi=180^(@)`
`rArr(A+B)/(2)=(180)/(2)-(C)/(2)`
`rArr sin((A+B)/(2))`
`=sin((pi)/(2)-(c)/(2))=cos( c)/(2)`
similarly
`cos((A+B)/(2))=sin(c )/(2)`
`cot((A+B)/(2))=tan(c)/(2)`
`tan((A+B)/(2))=cot(c)/(2)`
So, option (c) is incorrect
379.

यदि `tan7thetatan2theta=1,` है तो `tan3theta` का मान हयात करे?A. `sqrt(3)`B. `-(1)/(sqrt(3))`C. `(1)/(sqrt(3))`D. `-sqrt(3)`

Answer» Correct Answer - c
`tan7 theta tan2theta=1`
[if, `tan A tan B=1` then, `A+B=90^(@)`]
`7theta+2theta=90^(@)`
`9theta=90^(@)`
`theta=10^(@)`
`rArrtan3theta`
`rArr tan30^(@)rArr(1)/sqrt(3)`
380.

if `tan2theta.tan3theta=1,` where `0^(@) lt theta lt 90^(@)` then the value of `theta` isA. `22(1)/(2)^(@)`B. `18^(@)`C. `24^(@)`D. `30^(@)`

Answer» Correct Answer - b
`tan2 theta.tan3theta`
`2theta+3e=90^(@)`
`5theta+3theta=90^(@)`
(If `tanAtanB=1` then `A+B=90^(@)`)
`theta=18`
381.

यदि `theta` एक धनात्मक न्यूनकोण है और `tan2theta.tan3theta=1` है तो `(2cos^(2)((5theta)/(2))-1)` का मान क्या होगा?A. `-(1)/(2)`B. `1`C. `0`D. `(1)/(2)`

Answer» Correct Answer - c
`tan2 theta tan 3theta=1`
`(2theta+2theta)=90^(@)`
`5theta=90^(@)`
(if `tanA.tanB=1`, then `A+B=90^(@)`)
`rArr[2cos^(2)(5theta)/(2)-1] `
`rArr2cos^(2)(90^(@))/(2)-1`
`rArr2cos^(2)45^(@)-1`
`rArr(2)/(2)-1`
`rArr1-1=0`
382.

If cot A = k, then sin A is equal to:(presume that A is an acute angle)1. \(\frac{k^2}{\sqrt {1+k^2}}\)2. \(\frac{1}{k}\)3. \(-\frac{1}{k}\)4. \(\frac{1}{\sqrt {1+k^2}}\)

Answer» Correct Answer - Option 4 : \(\frac{1}{\sqrt {1+k^2}}\)

Given:

cot A = k

Formula:

cot A = Base/Perpendicular

sin A = Perpendicular/Hypotenuse 

(Hypotenuse)2 = (Base)2 + (Perpendicular)2

Calculation:

cot A = k/1

⇒ Base/Perpendicular = k/1

⇒ Base = k and Perpendicular = 1

(Hypotenuse)2 = (Base)2 + (Perpendicular)2

⇒ (Hypotenuse)2 = k2 + 12

⇒ Hypotenuse = √(1 + K2)

Now, sin A = 1/√(1 + k2)

383.

If cos (x - y) \(=\frac{\sqrt 3}{2}\) and sin (x + y) \(=\frac{1}{2}\), then the value of x (0 ≤ x ≤ 90) is:1. 45° 2. 30°3. 15°4. 60°

Answer» Correct Answer - Option 2 : 30°

Given:

cos (x - y) = √3/2

sin (x + y) = 1/2

Formula:

cos30° = √3/2

sin30° = 1/2

Calculation:

cos(x - y) = √3/2

⇒ cos(x - y) = cos30°

(x - y) = 30°     ---- (1)

sin(x + y) = 1/2

⇒ sin(x + y) = sin30°

(x + y) = 30    ---- (2)

Add equation (1) and equation (2), we get

2x = 60°

∴ x = 30°

384.

`(1+sec22^(@)+cot68^(@))(1-"co s ec"22^(@)+tan68^(@))` व्यंजक का मान बताइए ?

Answer» Correct Answer - d
`(1+sec22+cot68)`
`(1-co s ec22+tan68)`
`=(1+sec 22+tan22)`
`=1+sec22+tan22-co s ec22-sec22co s ec22-co s ec22tan22+cot22+cot22sec22+tan22cot22)`
`=1+sec22+tan22-co s ec22-(1)/(cos22)(1)/(sin22)-(1)/(sin22)(sin22)/(cos22)`
`+cot22+(cos22)/(sin22)xx(1)/(cos22)+1` lt brgt `=1+(1)/(cos22)+(sin22)/(cos22)-(1)/(sin22)`
`(1)/(cos22)(1)/(sin22)-(1)/(cos22)+cot22(1)/(sin222)+1`
`1+(sin22)/(cos22)+(cos22)/(sin22)-(1)/(sin22)`
`(1)/(cos22)+1`
`2+(cos^(2)22+cos^(2)22)/(cos22sin22)-(1)/(sin22)`
`(1)/(cos22)`
`rArr2+(1)/(cos22sin22)-(1)/(sin22cos22)`
=2
385.

यदि `xsin^(3)theta+ycos^(3)theta=sinthetacostheta` हो और `xsintheta-ycostheta=0` हो तो `x^(2)+y^(2)` का मान बताइए ?A. 1B. 2C. `1//2`D. `3//2`

Answer» Correct Answer - a
`x sintheta-ycos theta=0`
`x sin theta=ycos theta`
`(sintheta)/(cos theta)=(y)/(x)`
By comparing
`sin theta=y,costheta=x`
Now,
`xsin^(2)theta+ycos^(2)theta=sin theta.costheta`
Put values of x,y
`xy^(2)+yx^(2)=y.x`
`xy(x^(2)+y^(@))=xy`
`x^(2)+y^(2)=1`
386.

`xcostheta-ysin^(theta)=2` और `xsin^(theta)+ycos^(theta)=4` में से `theta` हटाने पर कौन का कथन सत्य होगा?A. `x^(2)+y^(2)=20`B. `3x^(2)+y^(2)=20`C. `x^(2)-y^(2)=20`D. `3x^(2)-y^(2)=10`

Answer» Correct Answer - a
`(xsintheta+ycos theta=4`
`(x cos theta-ysin theta-2)/((x^(2+y^(2)))(cos^(2)theta+sin^(2)theta))=4^(2)+2^(2)`
`(x^(2)+y^(2)=a^(2)+ b^(2))`
`(x^(2)+y^(2))(1)=16+4`
`x^(2)+y^(2)=20`
387.

If secθ = 20/16 than find the value of sinθ + tanθ 1. 19/202. 20/173. 27/204. 23/20

Answer» Correct Answer - Option 3 : 27/20

Given:

secθ = 20/16

Concept used:

sinθ = opposite/hypotenuse

Tanθ = opposite/adjacent 

Calculation:

⇒ secθ = 20/16

⇒ tanθ = 12/16,  sinθ = 12/20

⇒ tanθ = 3/4,  sinθ = 3/5

⇒ sinθ + tanθ 

⇒ (3/5) + (3/4)

⇒ 27/20

∴ The value of sinθ + tanθ is 27/20.

388.

The elimination of θ from xcos θ - ysinθ = 2 and xsinθ + ycosθ = 4 will give:1. x2 - y2 = 202. 3x2 + y2 = 203. x2 + y2 = 204. 3x2 - y2 = 20

Answer» Correct Answer - Option 3 : x2 + y2 = 20

Given : 

xcosθ - ysinθ = 2 

xsinθ + ycosθ = 4 

Formula used: 

sin2θ + cos2θ = 1

(a + b)2 = a2 + b2 + 2ab

Calculation: 

xcosθ - ysinθ = 2 

On squaring we get,

⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) = 4      ….(i)

xsinθ + ycosθ = 4 

On squaring we get,

⇒ x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 16      ….(ii)

On adding eqns (i) and (ii)

⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) + x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 4 + 16

⇒ x2(cos2θ + sin2θ) + y2(sin2θ + cos2θ) = 20

⇒ x2 + y2 = 20

∴ The correct answer is x2 + y2 = 20

 

 

389.

If A + B = 45° then find the value of sinASinB + (1 + tanA)(1 + tanB) – cosAcosB1. (2√2 – 1)/22. (2√2 + 1)/23. (2√2 – 1)/√24. (2√2 + 1)/√2

Answer» Correct Answer - Option 3 : (2√2 – 1)/√2

Given:

A + B = 45° 

Concept used:

1.) cos(A + B) = cosAcosB – sinAsinB

2.) If A + B = 45° then (1 + tanA)(1 + tanB)

Calculations:

sinASinB + (1 + tanA)(1 + tanB) – cosAcosB

⇒ (1 + tanA)(1 + tanB) – cosAcosB + sinAsinB

⇒ (1 + tanA)(1 + tanB) – (cosAcosB – sinAsinB)

⇒ (1 + tanA)(1 + tanB) – cos(A + B)

Here A + B = 45° 

⇒ 2 – cos(45°)

⇒ 2 – 1/√2 

⇒ (2√2 – 1)/√2

∴ The correct answer is (2√2 – 1)/√2

390.

If A is an acute angle and cot A + cosec A = 3, then the value of cos A is equal to:1. 4/52. 3/53. 1/54. 2/5

Answer» Correct Answer - Option 1 : 4/5

Given: 

cot A + cosec A = 3

Formula used :

cosec2 A - cot2 A = 1

cosec A - cot A   = 1/ ( cosec A + cot A)

cot A + cosec A = 3     ......(eq1)

cosec A - cot A  =1/3   .......(eq2) 

By solving eq 1 and eq 2 By elimination

2 cosec A = 3 + 1/3

cosec A = 5/3 = H / P

 \({H^2} = {P^2} + {B^2}\)

\({5^2} = {3^2} + {B^2}\)

B2 = 25 - 9

B= 16

base = 4

cosA = 4/5

391.

If tanθ = 3/4 then find the value of sin2(90° + θ) + tan2θ – cos2(90° + θ).1. 333/4002. 331/4003. 337/4004. 323/400

Answer» Correct Answer - Option 3 : 337/400

Given:

tanθ = 3/4 

Concept used:

1.) tanθ = P/B

2.) sinθ = P/H 

3.) cosθ = B/H

4.) Pythagoras Theorem 

H2 = P2 + B2 

5.) sin(90° + θ) = cosθ 

6.) Cos(90° + θ) = -sinθ 

Where, 

P → Perpendicular 

B → Base

H → Hypotenus 

Calculations:

tanθ = 3/4 = P/B 

H2 = P2 + B2 

⇒ H2 = (3)2 + (4)2

⇒ H = √25 = 5 

sinθ = 3/5 

cosθ = 4/5 

sin2(90° + θ) + tan2θ – cos2(90° + θ)

⇒ cos2θ + tan2θ – (-sinθ)2

⇒ cos2θ + tan2θ – sin2θ 

⇒ (4/5)2 + (3/4)2 – (3/5)2 

⇒ 16/25 + 9/16 – 9/25 

⇒ (256 + 225 – 144)/400

⇒ 337/400

∴ The correct answer is 337/400 

392.

Express (cos 5x - cos 7x) as a product of sines or cosines.1. 2 cos 4x cos x2. 2 sin 4x sin x3. 2 sin 6x sin x4. 2 cos 6x cos x

Answer» Correct Answer - Option 3 : 2 sin 6x sin x

Concept:

cos A - cos B = 2 sin \(\rm (\frac {B + A}{2})\) sin \(\rm (\frac {B - A}{2})\) 

 

Calculations:

To express (cos 5x - cos 7x) as a product of sines or cosines or sines and cosines

we know the trigonometric formula,

cos A - cos B = 2 sin \(\rm (\frac {B + A}{2})\) sin \(\rm (\frac {B - A}{2})\) 

Here, A = 5x and B = 7x 

(cos 5x - cos 7x) = 2 sin \(\rm (\frac {7x + 5x}{2})\) sin \(\rm (\frac {7x - 5x}{2})\) 

(cos 5x - cos 7x) = 2 sin 6x sin x

393.

If Y = tan35°, then the value of (2tan55° + cot55°) is :1. \(\rm \frac{2}{Y^2}\)2. \(\frac{2 - Y^2}{Y}\)3. \(\frac{2 - Y}{Y^2}\)4. \(\frac{2 + Y^2}{Y}\)

Answer» Correct Answer - Option 4 : \(\frac{2 + Y^2}{Y}\)

Given:

Y = tan35°

Formula:

tan (90 - a) = cot a

Calculation:

⇒ cot 55° = cot(90 - 35) = tan 35°

⇒ tan 55° = tan(90 - 35) = cot 35 = 1/tan 35 = 1/Y

Then,

⇒ (2 tan55° + cot55°) = 2/Y + Y = (2 + Y2)/Y

∴ (2tan55° + cot55°) = (2 + Y2)/Y

394.

यदि `xtan60^(@)+cos45^(@)=sec45^(@)` है, तो `x^(2)+1` का मान है ?A. `(6)/(7)`B. `(7)/(6)`C. `(5)/(6)`D. `(6)/(5)`

Answer» Correct Answer - b
`xtan60^(@)+cos45^(@)=sec45^(@)`
`xsqrt(3)+(1)/sqrt(2)=sqrt(2)`
`xsqrt(6)+1=2`
`xsqrt(6)=1`
`x=(1)/sqrt( 6)`
`x^(2)+1=((1)/sqrt(6))^(2)+1`
`=(1)/(6)+1=(7)/(6)`
395.

If `theta` is a positive acute angle and `3(sec^(2)theta+tan^(2)theta)=5`, then the value of `cos 2theta ` is(यदि धनात्मक न्यून कोण है और `3(sec^(2)theta+tan^(2)theta)=5` है तो `cos 2theta ` का मान है )A. `(1)/(2)`B. `(sqrt3)/(2)`C. `(1)/(sqrt2)`D. 1

Answer» Correct Answer - a
`3(sec^(2)theta+tan^(2)theta)=5`
`sec^(2)theta+tan^(2)theta=(5)/(3)` ...(i)
`sec^(2)theta-tan^ (2)theta=1` ......(ii)
Add eqn. (i) `&` (ii)
`2sec^(2)theta=(8)/(3)`
` sec theta=(2)/sqrt(3)`
`therefore theta=30^ (@)`
`cos2theta=cos2(30^(@))=cot60^(@)=(1)/(2)`
396.

यदि `x^(2)=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)` हो, तो `x(xgt0)` का मान क्या है ?A. `-1//2`B. 1C. 0D. `1//2`

Answer» Correct Answer - d
`x^(2)=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)`
`x^(2)=((1)/(2))^(2)+4(1)^(2)-(2)^(2)`
`x^(2)=(1)/(4)+4 -4`
`x^(2)=(1)/(4)`
`x=(1)/(2)`
397.

यदि `x="co s ec"theta-sintheta` और `y=sectheta-costheta` हो, तो x और y के बीच सम्बन्ध होगाA. `x^(2)+y^(2)+3=1`B. `x^(2)y^(2)(x^(2)+y^(2)+3)=1`C. `x^(2)(x^(2)+y^(2)-5)=1`D. `y^(2)(x^(2)+y^(2)-5)=1`

Answer» Correct Answer - b
`x=co s ectheta-sin theta`
`y=sec theta-cos theta`
put `theta=45^(@)`
` x=sqrt(2)-(1)/sqrt(2)=(1)/sqrt(2)`
by options (b) `x^(2)y^(2)(x^(2)+y^(2)+ 3)`
`=(1)/(2)xx(1)/(2)((1)/(2)+(1)/(2)+3)=(1)/(4)(1+3)`
=1 satisfy
398.

यदि `tantheta=tan30^(@).tan60^(@)` और `theta` एक न्यून कोण है तो `2theta` का मान क्या है ?A. `30^(@)`B. `45^(@)`C. `90^(@)`D. `0^(@)`

Answer» Correct Answer - c
`tan theta=tan30.tan60`
`=(1)/sqrt(3).sqrt(3)`
`tan theta=1=tan45`
`theta=45`
`therefore 2 theta=90^(@)`
399.

यदि `theta` धन न्यून कोण हो और `4sin^(2)theta=3,` हो तो `tantheta-cottheta//2` का मान बताइए ?A. 1B. 0C. `sqrt(3)`D. `(1)/(sqrt(3))`

Answer» Correct Answer - b
Given `4 sin^(2)theta=3`
`sin^(2)theta=(3)/(4)`
`sin theta =sqrt(3)/(2)=sin60`
`theta=60`
`because tan theta-cot(theta)/(2)`
`=tan60-cot(60)/(2)`
`=tan60-cot30`
`=sqrt(3)-sqrt(3)`
=0
400.

यदि `sin theta + "co s ec" = 2 ` हो, तो `sin^(n) theta+ "co s ec"^(n) theta ` का मान क्या होगा ?A. `2^(n)`B. `2^((1)/(n))`C. 2D. 0

Answer» Correct Answer - c
`sin theta+co s ectheta=2`
`sin theta+(1)/(sin theta)=2`
`x+ (1)/(x)=2` then `x=1` this is the same type of expression So,
` sin theta=1`
`& co s ectheta=1`
`sin^(2)theta+co s ec^(6)theta=(1)^(n)+(1)^(n)=2`