InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 351. |
The value of (co s eca -sin a) (sec a- cos a) (tan a+ cot a) is:A. 4B. 6C. 2D. 1 |
|
Answer» Correct Answer - d `(co s ec a-sina)(seca-cosa)(tana+cota)` Put `a=45^(@)` `(co s ec45^(@)-sin45^(@))(sec45^(@)-cos45^(@))(tan45^(@)+cot45^(@))` `(sqrt(2)-(1)/sqrt(2))(1+1)` `(1)/(2)xx2=1` |
|
| 352. |
यदि `(costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4` तो, `theta(0ltthetalt90^(@))` का मान बताइए ?A. `60^(@)`B. `45^(@)`C. `30^(@)`D. `35^(@)` |
|
Answer» Correct Answer - a `(cos theta)/(1-sin theta)+(cos theta)/(1+sin theta)=4` `cos theta((1+sin theta+1-sin theta)/(sin^(2)theta))=4` `cos theta[(2)/(cos^(2)theta)]=4` `cos theta=(1)/(2)` `theta=60^(@)` |
|
| 353. |
`(sintheta)/(1+costheta)+(sintheta)/(1-costheta)` का मान क्या है ?A. `2sintheta`B. `2costheta`C. `2sectheta`D. `2"co s ec"theta` |
|
Answer» Correct Answer - d `(sin theta)/(1+costheta)+(Sin theta)/(1-cos theta)` `rArr(sin theta(1-costheta)+sin theta(1+costheta))/((1+cos theta)xx(1-cos theta))` `rArr(sin theta-sin thetacostheta+sintheta+sin thetacostheta)/((1-cos^(2)theta))` `rArr(2sin theta)/(sin^(2)theta)rArr(2)/(sin theta)rArr2co s ec theta` |
|
| 354. |
If `sectheta-tantheta=(1)/(sqrt(3))`, the value of `sectheta.tantheta` का मान हैA. `(4)/(sqrt(3))`B. `(2)/(sqrt(3))`C. `(2)/(3)`D. `(1)/(sqrt(3))` |
|
Answer» Correct Answer - c Shortcut method Put `theta=30^(@)` `sectheta-tantheta=(1)/sqrt(3)` `sec30^(@)-tan30^(@)=(1)/sqrt(3)` `(2)/sqrt(3)-(1)/sqrt(3)=(1)/sqrt(3)` `(1)/sqrt(3)=(1)/sqrt(3)` (satisfied) `sectheta=30^(@)` `rArrsectheta.tantheta` `rArr sec30^(@).tan30^(@)` ` rArr(2)/sqrt(3)xx(1)/sqrt(3)=(2)/(3)` |
|
| 355. |
if `theta=60^(@)`, then `(1)/(2)sqrt(1+sintheta)+(1)/(2)sqrt(1-sintheta)` is equal toA. `cot((theta)/(2))`B. `sec((theta)/(2))`C. `sin((theta)/(2))`D. `cos((theta)/(2))` |
|
Answer» Correct Answer - d ` theta=60^(@)` `rArr(1)/(2)sqrt(1+sintheta)+(1)/(2)sqrt(1+60^(@))+(1)/(2)sqrt(1-sin60^(@))` `rArr(1)/(2)sqrt(1+(sqrt(3)/(2)))+(1)/(2)sqrt(1-(sqrt(3)/(2)))` `rArr(1)/(2sqrt(2))(sqrt(2+sqrt(3))+sqrt(2-sqrt(3)))` `rArr(1)/(4)(sqrt((sqrt(3)+1)^(2) ) +sqrt((sqrt(3)-1)^(2)))` `rArr(1)/(4)(sqrt(3)+1+sqrt(3)+1)` `rArr2sqrt(3)/(4)=sqrt(3)/(2)=cos30^(@)=(theta)/(2)` |
|
| 356. |
किसी भी वास्तविक मान के लिए `sqrt((sectheta-1)/(sectheta+1))=?`A. `cottheta-co s ectheta`B. `sectheta-tantheta`C. `co s ectheta-cottheta`D. `tantheta-sectheta` |
|
Answer» Correct Answer - c `sqrt((sectheta-1)/(sectheta+1))=sqrt(((1)/(costheta)-1)/((1)/(cos theta)+1))` `rArrsqrt((1-cos theta)/(1+cos theta))=sqrt((1-cos theta)/( 1+costheta)xx(1-cos theta)/(1-costheta))` `rArrsqrt(((1-costheta)^(2))/(sin^(2)theta))` `rArr(1-costheta)/(sintheta)xx(1)/(sintheta)-(costheta)/(sintheta)` `rArrco s ectheta-cottheta` |
|
| 357. |
The value of `sec^(2)-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)` isA. 1B. 2C. `-1`D. 0 |
|
Answer» Correct Answer - a `sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)` `=sec^(2)theta-(sin^(2)theta( 1-2sin^(2)theta))/(cos^(2)theta(2cos^(2)theta-1))` `[cos^(2)theta-sin^(2)theta=2cos^(2)theta-1=1-2sin^(2)theta]` ` =sec^(@)theta-tan^(2)theta=1` |
|
| 358. |
`sqrt((1+sintheta)/(1-sintheta))+sqrt((1-sintheta)/(1+sintheta))` is equal toA. `2costheta`B. `2sintheta`C. `2cottheta`D. `2sectheta` |
|
Answer» Correct Answer - d `sqrt((1+sintheta)/(1-sintheta))+sqrt((1-sintheta)/(1+sintheta))` `=((sqrt(1+sintheta))^(2)+(sqrt(1-sintheta))^(2))/(sqrt( 1-sin^(2)theta))` `=(1+sintheta=1-sintheta)/(cos theta)` `=(2)/(cos theta)=2sectheta` Aternate shortcut method Put `theta=30^(@)` `sqrt((1+sin30^(@))/(1-sin30^(@)))+sqrt((1-sin30^(@))/(1+sin30^(@)))` `rArrsqrt((1+(1)/(2))/(1-(1)/(2)))+sqrt((1-(1)/(2))/(1+(1)/(2)))` `rArrsqrt((3)/(1))+sqrt((1)/(3))` ltbr gt `rArr(4)/sqrt(3)` Now check with options by puting `theta=30^(@)` `2 sec30^(@)=(2xx2)/sqrt(3)=(4)/sqrt(3)` |
|
| 359. |
if `(2tan^(2)30^(@))/(1-tan^(2)30^(@))+sec^(2)45^(@)-sec^(2)theta^(@)=xsec60^(@)` then the value of x isA. 2B. 1C. 0D. `-1` |
|
Answer» Correct Answer - b `(2tan^(2)30^(@))/(1-tan^(2)30^(@))+sec^(2)45^(@)-45^(@)` `- sec^(2)0^(@)=xsec60^(@)` `rArr(2x((1)/sqrt(3))^(2))/(1-((1)/sqrt(3))^(2))+(sqrt(2))^(2)-1=x xx2` `rArr(2xx(1)/(3))/(1-(1)/(2))+2-1=2x` `rArr((2)/(3)xx(3)/(2))+2-1=2xrArr2=x xx2` |
|
| 360. |
The value of `sec^(4)A(1-sin^(4)A)-2tan^(2)A` is `sec^(4)A(1-sin^(4)`) (का मान है )A. `(1)/(2)`B. 0C. 2D. 1 |
|
Answer» Correct Answer - d According to the qeustion, `rArr Sec^(4)A(1-sin^(4)A)-2tan^(2)A` Put `A=45^(@)` `rArrSec^(4)45^(@)(1-sin^(4)45^(@))-2tan^(2)45^(@)` `rArr4(1-(1)/(4))-2` `rArr4xx(3)/(4)-2` `rArr3-2` `rArr3-2` `rArr1` |
|
| 361. |
If `theta(0 letheta le90^(@))` and `4 cos^(2)theta -4 sqrt3 cos theta +3=0,` then the value of `theta` isA. `30^(@)`B. `90^(@)`C. `45^(@)`D. `60^(@)` |
|
Answer» Correct Answer - a `4cos^(2)theta-4sqrt(3)cos theta+3=0` Hit `&` trial method Put `theta=30^(@)` option(a) `4cos^(2)30^(@)-4sqrt(3)cos30^(@)+3=0` `4((3)/(4))-4sqrt(3)((sqrt(3))/(2))+3=0` `0=0` |
|
| 362. |
If sin(A + B) = cos(A - B) = \(\frac{\sqrt 3}{2}\) and A and B are acute angle. The measures of angles A and B (in degrees) will be:1. A = 60 and B = 302. A = 45 and B = 153. A = 45 and B = 454. A = 15 and B = 45 |
|
Answer» Correct Answer - Option 2 : A = 45 and B = 15 Given: sin(A + B ) = cos(A - B) = √3/2 Calculation: sin(A + B) = √3/2 ⇒ sin(A + B )= sin60° ⇒ A + B = 60° ….(i) And, cos(A - B) = √3/2 ⇒ cos(A - B) = cos30° ⇒ A – B = 30° ….(ii) Adding (i) and (ii) We get, 2A = 90° ⇒ A = 45° Putting in (i) We get, ⇒ 45° + B = 60° ⇒ B = 15° ∴ A and B are 45°and 15° Short trick sin(A + B )= sin60 cos(A - B) = cos30° So, A + B = 60° and A – B = 30° Takes oprtion he different is 30° and sum is 60° So option B and D are satisfy but in option D difference is negative Then option B is right A= 45° and B = 15° |
|
| 363. |
If `tantheta-cottheta=0`, find the value of `sintheta+costheta`, |
|
Answer» Correct Answer - c `tan theta-cot theta=0` shortest method Put, `theta= 45^(@)` `tan45^(@)-cot45^(@)=0` `1-1=0` 0=0 matched So, `theta=45^(@)` `rARrsin theta+cos theta` `rArr sin45^(@)+cos45^(@)` `rArr(1)/sqrt(2)+(1)/sqrt(2)rArrsqrt(2)` |
|
| 364. |
The numerical value of `(5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin^(2)theta` isA. 5B. 2C. 3D. 4 |
|
Answer» Correct Answer - a `(5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin^(2)theta` `=5cos^(2)theta+(2)/(co s ec^(2)theta)+3sin^(2)theta` `=5cos^(2)theta+2sin^(2)theta+3sin^(2)theta` `=5(cos^(2)theta+sin^(2)theta)`. `(therefore sin^(2)theta+cos^(2)theta=1)` =5 |
|
| 365. |
If `0 lt A lt 90^(@)` then the value of `(1)/(2) cotA[1+(secA+tanA)^(2)/(co s ecA(secA-tanA))]` |
|
Answer» Correct Answer - c According to the question Put `A=45^(@)` `rArr(1)/(2)xxcot45^(@)` `[(1+(sec45^(@)-tan45^(@))^(2))/(cos sec45^(@)(sec45^ (@)-tan45^(@)))]` `rArr(1)/(2)[(1+(sqrt(2)-1)^(2))/(sqrt(2)xx(sqrt(2)-1))]` `rArr(1)/(1)[(1+2+1-2sqrt(2))/(2-sqrt(2))]` `rArr(1)/(2)[(4-2sqrt(2))/( 2-sqrt(2))]` ` rArr(1)/(2)xx2[(2-sqrt(2))/(2-sqrt(2))]` `rArr1` |
|
| 366. |
The value of following is: `(sintheta"co s ec"thetatanthetacottheta)/(sin^(2)theta+cos^(2)theta)`A. 2B. 0C. `tantheta`D. 1 |
|
Answer» Correct Answer - d `(sin thetaco s ectheta tan thetacot theta)/(sin^(2)theta+cos^(2)theta)` `=(sin theta xx(1)/(sintheta)xxtan thetaxx(1)/(tantheta))/(1)` =1 |
|
| 367. |
यदि `Axxtan(theta+150^(@))=Bxxtan(theta-60^(@)),(A-B)/(A+B)` का मान क्या होगा ?A. `-(sintheta)/(2)`B. `(sin2theta)/(2)`C. `(cos2theta)/(2)`D. 0 |
|
Answer» Correct Answer - a `Axx tan (theta+150^(@))=Bxxtan(theta-60^(@))` `(A)/(B)=(tan(theta-60^(@)))/(tan(theta+150^(@)))` put `theta=90^(@)` `(A)/(B)=(tan(90^(@)-60^(@)))/(tan(90^(@) +150^(@)))` ` =(tan30^(@))/(tan(180^(@)+60^ (@)))=(tan30^(@))/(tan60^(@))` `(A)/(B)=(1)/(3)` then `(A+B)/(A-B)=-(4)/(2)` `(A+B)/(A-B)=-2` ltb rgt `=(A-B)=-(1)/(2)` Put in option (a)`-(sin90^(@))/(2)=-(1)/(2)` So, option(s) is corr ect. |
|
| 368. |
If `alpha+theta=(7pi)/(12)andtantheta=sqrt(3)`, then the value of `tan alpha` is:A. `(1)/(sqrt(3))`B. 0C. `sqrt(3)`D. 1 |
|
Answer» Correct Answer - d `alpha+theta=(7pi)/(12)` ..........(i) `tan theta=sqrt(3)` `tan theta=tan60^(@)` `tan theta=tan 60^(@)` `theta=60^(@)` Put value in equation (i) `a+60^(@)=(7)/(12)xx180^(@)` `alpha=105^ (@)-60^(@)` `alpha=45^(@)` `tan alpha=tan45^(@)=1` |
|
| 369. |
`(2sintheta)/(costheta(1+tan^(2)theta))` को सरलीकृत करे ।A. `costheta`B. `cos2theta`C. `sin2theta`D. `sintheta` |
|
Answer» Correct Answer - c `(2sintheta)/(costheta(1+tan^(2)theta))=(2tan theta)/(1+tan^(2)theta)` `sin2theta` |
|
| 370. |
यदि `tan theta_(1)=1,sintheta_(2)=1//sqrt(2)`, तो `sin(theta_(1)+theta_(2))` का मान होगा -A. -1B. 0C. 1D. `1//2` |
|
Answer» Correct Answer - c `tantheta_(1)=1sintheta_(2)=(1)/sqrt(2)` `theta_(1)=45^(@)theta_(2)=45^(@)` `sin(theta_(1)+theta_(2))=sin90^(@)=1` |
|
| 371. |
`sin^(4)theta-cos^(4)theta` हैA. `cos2theta`B. `-sin2theta`C. `sin2theta`D. `-cos2theta` |
|
Answer» Correct Answer - d `sin^(4)theta-cos^(4)theta` `(sin^(2)theta-cos^(2)theta)(sin^(2)theta-cos^(2)theta)` `sin^(2)theta-cos^(2)theta(because sin^(2)theta+cos^(2)theta=1)` `rArr-(cos^(2)theta=sin^(2)theta)=-cos2 theta` `(because cos^(2)theta-sin^(2)theta=cos2theta)` |
|
| 372. |
यदि `tantheta = (3)/(4)`, तो `cos2theta` का मान ज्ञात करेA. `24//25`B. `16//25`C. `7//25`D. `9//30` |
|
Answer» Correct Answer - c `tan theta=(3)/(4)` `cos2theta=(1-tan^(2)theta)/(1+tan^(2)theta)` `=(1-(9)/(16))/( 1+(9)/(1 6))` ` =((7)/(16))/((25)/(16))=(7)/(25)` |
|
| 373. |
`sin^(2)25^(@)+sin^(2)65^(@)+"co s ec"^(2)57^(@)-tan^(2)33^(@)`का मान ज्ञात करे ।A. 1B. 2C. 3D. 0 |
|
Answer» Correct Answer - b `sin^(2)25^(@)+sin^(2)65 ^(@)+co s ec^(2)57^(@)=tan^(3)33^(@)` `rArr(sin^(2)25^(@)+cos^(2)25^ (@))(sec^(2)33^(@)-tan^(2) 33^ (@))` =1+1=2 Note:- `sin^(2)65^(@)=sin^(2)(90^(@)-25^(@))=cos^(2)25^(@)` `co s ec^(2)57^(@)=co s ec^(2)(90^(@)-33^(@))=sec^(2)33^(@)` |
|
| 374. |
यदि `costhetaco s ec23^(@)=1`, है तो `theta` का मान ज्ञात करे?A. `23^(@)`B. `37^(@)`C. `63^(@)`D. `67^(@)` |
|
Answer» Correct Answer - d `cos theta co s ec23^(@)` =1 If `cosA.co s ecB=1` then `A+B=90^(@)` S, `+23^(@)=90^(@)` `B= 67^(@)` |
|
| 375. |
`3cos80^(@)" "co s ec10^(@)+2" "cos59^(@)" "co s ec31^(@)` का मान ज्ञात करे?A. 1B. 3C. 2D. 5 |
|
Answer» Correct Answer - d `3cos80^(@)co s ec10^(@)+2cos59^(@)` `co s ec31^(@)` then `CosA.co s ecB=1` `3xx1+2xx1=5`] `rArr3cos80^(@)(1)/(sin10^(@))+2cos59^(@)(1)/(sin31^(@))` `rArr3cos80^(@)(1)/(sin(90^(@)-80^(@))+2cos59^(@)` `(1)/(sin(90^(@)-59^(@))` `rArr3+2=5` |
|
| 376. |
यदि `theta` एक न्यूनकोण है और `tan(4theta-50^(@))=cot(50^(@)-theta)` है तो `theta` का मान ज्ञात डिग्री में क्या होगा?A. 30B. 40C. 50D. 20 |
|
Answer» Correct Answer - a We know that `tan (90^(@)-theta)=cot theta` and `cot(90^(@)-theta)=tan theta` `rArrcot(90^(@)-(4theta-50^(@))=cot(50^(@)-theta)` `rArr90^(@)-(4theta-50^(@))=50^(@)-theta` `rArr90^(@)-4theta+50^(@)=50^(@)-theta` `rArr90^(@)=3theta` then `theta=30^(@)` |
|
| 377. |
यदि `sin(60^(@)-theta)=cos(Phi-30^(@))` है तो `tan(Phi-theta)` का मान क्या होगा (मान के की `theta` तथा `Phi` दोनों धनात्मक न्यूनकोण है जिसमे `theta lt 60^(@)` और `30^(@)` )हैA. `(1)/(sqrt(3))`B. 0C. `sqrt(3)`D. 1 |
|
Answer» Correct Answer - c `sin(60^(@)-theta)=cos(psi-30^(@))` `(60^(@)-theta)+(psi-30^(@))=90^(@)` (if `sin A=cosB` then `A+B=90^(@)`) ` (psi-theta)=90^(@)-30^(@)` `(psi-theta)=60^(@)` `tan(psi-theta)=tan 60^(@)` `tan60^(@)=sqrt(3)` |
|
| 378. |
यदि A, B तथा C एक त्रिभुज के कोण है तो निम्न में से गलत सम्भन्ध छाँटिएA. `sin((A+B)/(2))=cos((C)/(2))`B. `cos((A+B)/(2))=sin((C)/(2))`C. `tan((A+B)/(2))=sec((C)/(2))`D. `cot((A+B)/(2))=tan((C)/(2))` |
|
Answer» Correct Answer - c `A+B+C=pi=180^(@)` `rArr(A+B)/(2)=(180)/(2)-(C)/(2)` `rArr sin((A+B)/(2))` `=sin((pi)/(2)-(c)/(2))=cos( c)/(2)` similarly `cos((A+B)/(2))=sin(c )/(2)` `cot((A+B)/(2))=tan(c)/(2)` `tan((A+B)/(2))=cot(c)/(2)` So, option (c) is incorrect |
|
| 379. |
यदि `tan7thetatan2theta=1,` है तो `tan3theta` का मान हयात करे?A. `sqrt(3)`B. `-(1)/(sqrt(3))`C. `(1)/(sqrt(3))`D. `-sqrt(3)` |
|
Answer» Correct Answer - c `tan7 theta tan2theta=1` [if, `tan A tan B=1` then, `A+B=90^(@)`] `7theta+2theta=90^(@)` `9theta=90^(@)` `theta=10^(@)` `rArrtan3theta` `rArr tan30^(@)rArr(1)/sqrt(3)` |
|
| 380. |
if `tan2theta.tan3theta=1,` where `0^(@) lt theta lt 90^(@)` then the value of `theta` isA. `22(1)/(2)^(@)`B. `18^(@)`C. `24^(@)`D. `30^(@)` |
|
Answer» Correct Answer - b `tan2 theta.tan3theta` `2theta+3e=90^(@)` `5theta+3theta=90^(@)` (If `tanAtanB=1` then `A+B=90^(@)`) `theta=18` |
|
| 381. |
यदि `theta` एक धनात्मक न्यूनकोण है और `tan2theta.tan3theta=1` है तो `(2cos^(2)((5theta)/(2))-1)` का मान क्या होगा?A. `-(1)/(2)`B. `1`C. `0`D. `(1)/(2)` |
|
Answer» Correct Answer - c `tan2 theta tan 3theta=1` `(2theta+2theta)=90^(@)` `5theta=90^(@)` (if `tanA.tanB=1`, then `A+B=90^(@)`) `rArr[2cos^(2)(5theta)/(2)-1] ` `rArr2cos^(2)(90^(@))/(2)-1` `rArr2cos^(2)45^(@)-1` `rArr(2)/(2)-1` `rArr1-1=0` |
|
| 382. |
If cot A = k, then sin A is equal to:(presume that A is an acute angle)1. \(\frac{k^2}{\sqrt {1+k^2}}\)2. \(\frac{1}{k}\)3. \(-\frac{1}{k}\)4. \(\frac{1}{\sqrt {1+k^2}}\) |
|
Answer» Correct Answer - Option 4 : \(\frac{1}{\sqrt {1+k^2}}\) Given: cot A = k Formula: cot A = Base/Perpendicular sin A = Perpendicular/Hypotenuse (Hypotenuse)2 = (Base)2 + (Perpendicular)2 Calculation: cot A = k/1 ⇒ Base/Perpendicular = k/1 ⇒ Base = k and Perpendicular = 1 (Hypotenuse)2 = (Base)2 + (Perpendicular)2 ⇒ (Hypotenuse)2 = k2 + 12 ⇒ Hypotenuse = √(1 + K2) Now, sin A = 1/√(1 + k2) |
|
| 383. |
If cos (x - y) \(=\frac{\sqrt 3}{2}\) and sin (x + y) \(=\frac{1}{2}\), then the value of x (0 ≤ x ≤ 90) is:1. 45° 2. 30°3. 15°4. 60° |
|
Answer» Correct Answer - Option 2 : 30° Given: cos (x - y) = √3/2 sin (x + y) = 1/2 Formula: cos30° = √3/2 sin30° = 1/2 Calculation: cos(x - y) = √3/2 ⇒ cos(x - y) = cos30° (x - y) = 30° ---- (1) sin(x + y) = 1/2 ⇒ sin(x + y) = sin30° (x + y) = 30 ---- (2) Add equation (1) and equation (2), we get 2x = 60° ∴ x = 30° |
|
| 384. |
`(1+sec22^(@)+cot68^(@))(1-"co s ec"22^(@)+tan68^(@))` व्यंजक का मान बताइए ? |
|
Answer» Correct Answer - d `(1+sec22+cot68)` `(1-co s ec22+tan68)` `=(1+sec 22+tan22)` `=1+sec22+tan22-co s ec22-sec22co s ec22-co s ec22tan22+cot22+cot22sec22+tan22cot22)` `=1+sec22+tan22-co s ec22-(1)/(cos22)(1)/(sin22)-(1)/(sin22)(sin22)/(cos22)` `+cot22+(cos22)/(sin22)xx(1)/(cos22)+1` lt brgt `=1+(1)/(cos22)+(sin22)/(cos22)-(1)/(sin22)` `(1)/(cos22)(1)/(sin22)-(1)/(cos22)+cot22(1)/(sin222)+1` `1+(sin22)/(cos22)+(cos22)/(sin22)-(1)/(sin22)` `(1)/(cos22)+1` `2+(cos^(2)22+cos^(2)22)/(cos22sin22)-(1)/(sin22)` `(1)/(cos22)` `rArr2+(1)/(cos22sin22)-(1)/(sin22cos22)` =2 |
|
| 385. |
यदि `xsin^(3)theta+ycos^(3)theta=sinthetacostheta` हो और `xsintheta-ycostheta=0` हो तो `x^(2)+y^(2)` का मान बताइए ?A. 1B. 2C. `1//2`D. `3//2` |
|
Answer» Correct Answer - a `x sintheta-ycos theta=0` `x sin theta=ycos theta` `(sintheta)/(cos theta)=(y)/(x)` By comparing `sin theta=y,costheta=x` Now, `xsin^(2)theta+ycos^(2)theta=sin theta.costheta` Put values of x,y `xy^(2)+yx^(2)=y.x` `xy(x^(2)+y^(@))=xy` `x^(2)+y^(2)=1` |
|
| 386. |
`xcostheta-ysin^(theta)=2` और `xsin^(theta)+ycos^(theta)=4` में से `theta` हटाने पर कौन का कथन सत्य होगा?A. `x^(2)+y^(2)=20`B. `3x^(2)+y^(2)=20`C. `x^(2)-y^(2)=20`D. `3x^(2)-y^(2)=10` |
|
Answer» Correct Answer - a `(xsintheta+ycos theta=4` `(x cos theta-ysin theta-2)/((x^(2+y^(2)))(cos^(2)theta+sin^(2)theta))=4^(2)+2^(2)` `(x^(2)+y^(2)=a^(2)+ b^(2))` `(x^(2)+y^(2))(1)=16+4` `x^(2)+y^(2)=20` |
|
| 387. |
If secθ = 20/16 than find the value of sinθ + tanθ 1. 19/202. 20/173. 27/204. 23/20 |
|
Answer» Correct Answer - Option 3 : 27/20 Given: secθ = 20/16 Concept used: sinθ = opposite/hypotenuse Tanθ = opposite/adjacent Calculation: ⇒ secθ = 20/16 ⇒ tanθ = 12/16, sinθ = 12/20 ⇒ tanθ = 3/4, sinθ = 3/5 ⇒ sinθ + tanθ ⇒ (3/5) + (3/4) ⇒ 27/20 ∴ The value of sinθ + tanθ is 27/20. |
|
| 388. |
The elimination of θ from xcos θ - ysinθ = 2 and xsinθ + ycosθ = 4 will give:1. x2 - y2 = 202. 3x2 + y2 = 203. x2 + y2 = 204. 3x2 - y2 = 20 |
|
Answer» Correct Answer - Option 3 : x2 + y2 = 20 Given : xcosθ - ysinθ = 2 xsinθ + ycosθ = 4 Formula used: sin2θ + cos2θ = 1 (a + b)2 = a2 + b2 + 2ab Calculation: xcosθ - ysinθ = 2 On squaring we get, ⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) = 4 ….(i) xsinθ + ycosθ = 4 On squaring we get, ⇒ x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 16 ….(ii) On adding eqns (i) and (ii) ⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) + x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 4 + 16 ⇒ x2(cos2θ + sin2θ) + y2(sin2θ + cos2θ) = 20 ⇒ x2 + y2 = 20 ∴ The correct answer is x2 + y2 = 20
|
|
| 389. |
If A + B = 45° then find the value of sinASinB + (1 + tanA)(1 + tanB) – cosAcosB1. (2√2 – 1)/22. (2√2 + 1)/23. (2√2 – 1)/√24. (2√2 + 1)/√2 |
|
Answer» Correct Answer - Option 3 : (2√2 – 1)/√2 Given: A + B = 45° Concept used: 1.) cos(A + B) = cosAcosB – sinAsinB 2.) If A + B = 45° then (1 + tanA)(1 + tanB) Calculations: sinASinB + (1 + tanA)(1 + tanB) – cosAcosB ⇒ (1 + tanA)(1 + tanB) – cosAcosB + sinAsinB ⇒ (1 + tanA)(1 + tanB) – (cosAcosB – sinAsinB) ⇒ (1 + tanA)(1 + tanB) – cos(A + B) Here A + B = 45° ⇒ 2 – cos(45°) ⇒ 2 – 1/√2 ⇒ (2√2 – 1)/√2 ∴ The correct answer is (2√2 – 1)/√2 |
|
| 390. |
If A is an acute angle and cot A + cosec A = 3, then the value of cos A is equal to:1. 4/52. 3/53. 1/54. 2/5 |
|
Answer» Correct Answer - Option 1 : 4/5 Given: cot A + cosec A = 3 Formula used : cosec2 A - cot2 A = 1 cosec A - cot A = 1/ ( cosec A + cot A) cot A + cosec A = 3 ......(eq1) cosec A - cot A =1/3 .......(eq2) By solving eq 1 and eq 2 By elimination 2 cosec A = 3 + 1/3 cosec A = 5/3 = H / P \({H^2} = {P^2} + {B^2}\) \({5^2} = {3^2} + {B^2}\) B2 = 25 - 9 B2 = 16 base = 4 cosA = 4/5 |
|
| 391. |
If tanθ = 3/4 then find the value of sin2(90° + θ) + tan2θ – cos2(90° + θ).1. 333/4002. 331/4003. 337/4004. 323/400 |
|
Answer» Correct Answer - Option 3 : 337/400 Given: tanθ = 3/4 Concept used: 1.) tanθ = P/B 2.) sinθ = P/H 3.) cosθ = B/H 4.) Pythagoras Theorem H2 = P2 + B2 5.) sin(90° + θ) = cosθ 6.) Cos(90° + θ) = -sinθ Where, P → Perpendicular B → Base H → Hypotenus Calculations: tanθ = 3/4 = P/B H2 = P2 + B2 ⇒ H2 = (3)2 + (4)2 ⇒ H = √25 = 5 sinθ = 3/5 cosθ = 4/5 sin2(90° + θ) + tan2θ – cos2(90° + θ) ⇒ cos2θ + tan2θ – (-sinθ)2 ⇒ cos2θ + tan2θ – sin2θ ⇒ (4/5)2 + (3/4)2 – (3/5)2 ⇒ 16/25 + 9/16 – 9/25 ⇒ (256 + 225 – 144)/400 ⇒ 337/400 ∴ The correct answer is 337/400 |
|
| 392. |
Express (cos 5x - cos 7x) as a product of sines or cosines.1. 2 cos 4x cos x2. 2 sin 4x sin x3. 2 sin 6x sin x4. 2 cos 6x cos x |
|
Answer» Correct Answer - Option 3 : 2 sin 6x sin x Concept: cos A - cos B = 2 sin \(\rm (\frac {B + A}{2})\) sin \(\rm (\frac {B - A}{2})\)
Calculations: To express (cos 5x - cos 7x) as a product of sines or cosines or sines and cosines we know the trigonometric formula, cos A - cos B = 2 sin \(\rm (\frac {B + A}{2})\) sin \(\rm (\frac {B - A}{2})\) Here, A = 5x and B = 7x (cos 5x - cos 7x) = 2 sin \(\rm (\frac {7x + 5x}{2})\) sin \(\rm (\frac {7x - 5x}{2})\) (cos 5x - cos 7x) = 2 sin 6x sin x |
|
| 393. |
If Y = tan35°, then the value of (2tan55° + cot55°) is :1. \(\rm \frac{2}{Y^2}\)2. \(\frac{2 - Y^2}{Y}\)3. \(\frac{2 - Y}{Y^2}\)4. \(\frac{2 + Y^2}{Y}\) |
|
Answer» Correct Answer - Option 4 : \(\frac{2 + Y^2}{Y}\) Given: Y = tan35° Formula: tan (90 - a) = cot a Calculation: ⇒ cot 55° = cot(90 - 35) = tan 35° ⇒ tan 55° = tan(90 - 35) = cot 35 = 1/tan 35 = 1/Y Then, ⇒ (2 tan55° + cot55°) = 2/Y + Y = (2 + Y2)/Y ∴ (2tan55° + cot55°) = (2 + Y2)/Y |
|
| 394. |
यदि `xtan60^(@)+cos45^(@)=sec45^(@)` है, तो `x^(2)+1` का मान है ?A. `(6)/(7)`B. `(7)/(6)`C. `(5)/(6)`D. `(6)/(5)` |
|
Answer» Correct Answer - b `xtan60^(@)+cos45^(@)=sec45^(@)` `xsqrt(3)+(1)/sqrt(2)=sqrt(2)` `xsqrt(6)+1=2` `xsqrt(6)=1` `x=(1)/sqrt( 6)` `x^(2)+1=((1)/sqrt(6))^(2)+1` `=(1)/(6)+1=(7)/(6)` |
|
| 395. |
If `theta` is a positive acute angle and `3(sec^(2)theta+tan^(2)theta)=5`, then the value of `cos 2theta ` is(यदि धनात्मक न्यून कोण है और `3(sec^(2)theta+tan^(2)theta)=5` है तो `cos 2theta ` का मान है )A. `(1)/(2)`B. `(sqrt3)/(2)`C. `(1)/(sqrt2)`D. 1 |
|
Answer» Correct Answer - a `3(sec^(2)theta+tan^(2)theta)=5` `sec^(2)theta+tan^(2)theta=(5)/(3)` ...(i) `sec^(2)theta-tan^ (2)theta=1` ......(ii) Add eqn. (i) `&` (ii) `2sec^(2)theta=(8)/(3)` ` sec theta=(2)/sqrt(3)` `therefore theta=30^ (@)` `cos2theta=cos2(30^(@))=cot60^(@)=(1)/(2)` |
|
| 396. |
यदि `x^(2)=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)` हो, तो `x(xgt0)` का मान क्या है ?A. `-1//2`B. 1C. 0D. `1//2` |
|
Answer» Correct Answer - d `x^(2)=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)` `x^(2)=((1)/(2))^(2)+4(1)^(2)-(2)^(2)` `x^(2)=(1)/(4)+4 -4` `x^(2)=(1)/(4)` `x=(1)/(2)` |
|
| 397. |
यदि `x="co s ec"theta-sintheta` और `y=sectheta-costheta` हो, तो x और y के बीच सम्बन्ध होगाA. `x^(2)+y^(2)+3=1`B. `x^(2)y^(2)(x^(2)+y^(2)+3)=1`C. `x^(2)(x^(2)+y^(2)-5)=1`D. `y^(2)(x^(2)+y^(2)-5)=1` |
|
Answer» Correct Answer - b `x=co s ectheta-sin theta` `y=sec theta-cos theta` put `theta=45^(@)` ` x=sqrt(2)-(1)/sqrt(2)=(1)/sqrt(2)` by options (b) `x^(2)y^(2)(x^(2)+y^(2)+ 3)` `=(1)/(2)xx(1)/(2)((1)/(2)+(1)/(2)+3)=(1)/(4)(1+3)` =1 satisfy |
|
| 398. |
यदि `tantheta=tan30^(@).tan60^(@)` और `theta` एक न्यून कोण है तो `2theta` का मान क्या है ?A. `30^(@)`B. `45^(@)`C. `90^(@)`D. `0^(@)` |
|
Answer» Correct Answer - c `tan theta=tan30.tan60` `=(1)/sqrt(3).sqrt(3)` `tan theta=1=tan45` `theta=45` `therefore 2 theta=90^(@)` |
|
| 399. |
यदि `theta` धन न्यून कोण हो और `4sin^(2)theta=3,` हो तो `tantheta-cottheta//2` का मान बताइए ?A. 1B. 0C. `sqrt(3)`D. `(1)/(sqrt(3))` |
|
Answer» Correct Answer - b Given `4 sin^(2)theta=3` `sin^(2)theta=(3)/(4)` `sin theta =sqrt(3)/(2)=sin60` `theta=60` `because tan theta-cot(theta)/(2)` `=tan60-cot(60)/(2)` `=tan60-cot30` `=sqrt(3)-sqrt(3)` =0 |
|
| 400. |
यदि `sin theta + "co s ec" = 2 ` हो, तो `sin^(n) theta+ "co s ec"^(n) theta ` का मान क्या होगा ?A. `2^(n)`B. `2^((1)/(n))`C. 2D. 0 |
|
Answer» Correct Answer - c `sin theta+co s ectheta=2` `sin theta+(1)/(sin theta)=2` `x+ (1)/(x)=2` then `x=1` this is the same type of expression So, ` sin theta=1` `& co s ectheta=1` `sin^(2)theta+co s ec^(6)theta=(1)^(n)+(1)^(n)=2` |
|