InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 301. |
If secx + tanx = 3, find cosecx + cotx.1. 32. 13. 04. 2 |
|
Answer» Correct Answer - Option 4 : 2 Given: secx + tanx = 3 Concept Used: If secx + tanx = y. then secx - tanx = 1/y cosec2x - cot2x = 1 tanx = 1/cotx Calculation: secx + tanx = 3 ----(i) secx - tanx = 1/3 ----(ii) Subtracting (ii) from (i), we get 2tanx, 2tanx = 8/3 ⇒ tanx = 4/3 ⇒ cotx = 3/4 cosecx = √(1 + cot2x) ⇒ √(1 + 9/16) ⇒ √(25/16) ⇒ 5/4 cosecx + cotx = 5/4 +3/4 ⇒ 2 ∴ The value of cosecx + cotx is 2. |
|
| 302. |
If sinx + cosx = √2cosx, what will be the value of sinx - cosx ?1. + √2secx2. + √2sinx3. + √2tanx4. + √2cotx |
|
Answer» Correct Answer - Option 2 : + √2sinx Given: sinx + cosx = √2cosx Concept Used: sin2x + cos2x = 1 Calculation: sinx + cosx = √2cosx Squaring the equation on both side, we get ⇒ sin2x + cos2x +2sinxcosx = 2cos2x ⇒ 1 + 2sinxcosx = 2cos2x ----(i) Let sinx - cosx = k ----(ii) Squaring the equation on both side, we get ⇒ 1 - 2sinxcosx = k2 Adding (i) and (ii), we get 2cos2x + k2 = 2 ⇒ k2 = 2(1 - cos2x) ⇒ k2 = 2sin2x ⇒ k = +√2sinx ∴ The value of sinx - cosx = +√2sinx |
|
| 303. |
If \(\cos θ = \frac 5 {13},\) then the value of tan2 θ + sec2 θ is equal to:1. \(\frac {313}{25}\)2. \(\frac {323}{25}\)3. \(\frac {233}{25}\)4. \(\frac {303}{25}\) |
|
Answer» Correct Answer - Option 1 : \(\frac {313}{25}\) Given: \(\cos θ = \frac 5 {13}\) Concept used: 1 + tan2 θ = sec2 θ cosθ = 1/secθ Calculations: ⇒ tan2 θ + sec2 θ ⇒ sec2 θ - 1 + sec2 θ ⇒ 2sec2 θ - 1 ⇒ secθ = 13/5 ⇒ (2 × 169)/25 - 1 ⇒ (338/25) - 1 ⇒ (338 - 25)/25 ⇒ 313/25 ∴ The value of tan2 θ + sec2 θ is 313/25. |
|
| 304. |
If sec θ + tan θ = 3, then the value of sec θ is:1. 3 / 52. 5 / 33. 3 / 44. 4 / 3 |
|
Answer» Correct Answer - Option 2 : 5 / 3 Given: sec θ + tan θ = 3 Concept used: sec θ + tan θ = x sec θ - tan θ = 1/x Calculations: ⇒ sec θ + tan θ = 3 ------(1) ⇒ sec θ + tan θ = 1/3 ------(2) By adding equation (1) and (2) ⇒ 2secθ = 3 + 1/3 ⇒ 2secθ = 10/3 ⇒ secθ = 5/3 ∴ The value of secθ is 5/3. |
|
| 305. |
If sin (x + y) = cos (x - y), then the value of cos2 x is:1. 32. 53. 1 / 44. 1 / 2 |
|
Answer» Correct Answer - Option 4 : 1 / 2 GIVEN: sin (x + y) = cos (x - y) CONCEPT USED: sinθ1 = cosθ2 , when θ1 + θ2 = 90° CALCULATION: sin (x + y) = cos (x - y) ⇒ (x + y) + (x - y) = 90° ⇒ 2x = 90° ⇒ x = 45° ⇒ cos2x = cos245° ⇒ (1/√2)2 ⇒ 1/2 ∴ cos2x = 1/2 |
|
| 306. |
If cosec 39° = x, then the value of \(\frac 1 {\rm cosec^2\;51^\circ} + \sin^2 39^\circ + \tan^2 51^\circ - \frac 1 {\sin^2 51^\circ\sec^2 39^\circ}\) is:1. \(\sqrt {x^2 - 1}\)2. x2 - 13. 1 - x24. \(\sqrt {1 - x^2}\) |
|
Answer» Correct Answer - Option 2 : x2 - 1 Given: \(\frac 1 {\rm cosec^2\;51^\circ} + \sin^2 39^\circ + \tan^2 51^\circ - \frac 1 {\sin^2 51^\circ\sec^2 39^\circ}\) Concept used: sin2θ + cos2θ = 1 1 + cot2θ = cosec2θ sinθ = 1/x sin(90° - θ) = cosθ sin39° = co51° = 1/x Calculatuions: ⇒ sin251° + sin239° + tan251° - (cos239°/sin251°) ⇒ sin251° + {sin(90° - 51°)}2 + tan251° - [cos239°/{sin(90° - 39°)}2] ⇒ sin251° + cos251° + tan251° - [cos239°/cos239°] ⇒ 1 + tan251° - 1 ⇒ tan251° ⇒ {tan(90° - 39°)}2 ⇒ cot239° ⇒ cosec239° - 1 ⇒ x2 - 1 ∴ The value is x2 - 1
|
|
| 307. |
If \(\rm cosec\;\theta = \frac {13}{12}\), then the value of \( \frac{{2\sin\theta - 3\cos\theta }}{{4\sin\theta - 9\cos\theta }}\) is:1. 32. 43. 14. 2 |
|
Answer» Correct Answer - Option 1 : 3 Given: cosec θ = 13/12 Forumula used: H = hypotenuse, P = perpendicular, B = base H2 = P2 + B2 cosecθ = H/P, sinθ = P/H, cosθ = B/P Calculation: ⇒ cosec θ = 13/12 = H/P ⇒ H = 13, P = 12, B2 = H2 – P2 ⇒ B2 = 132 – 122 = 52 ⇒ B = 5 ⇒ sinθ = 12/13, cosθ = 5/13, and cosec θ = 13/12 putting the value of sinθ and cosθ in \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\) ⇒ \(\frac{{2 \times \frac{{12}}{{13}} - 3 \times \frac{5}{{13}}}}{{4 \times \frac{{12}}{{13}} - 9 \times \frac{5}{{13}}}}\) ⇒ 3 ∴ The value of \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\) is 3. |
|
| 308. |
If tanθ + cotθ = 2 and θ is acute, then the value of tan100θ + cot100θ is equal to: |
|
Answer» Correct Answer - Option 3 : 2 Given: tanθ + cotθ = 2 Calculation: Put the value of θ = 45o, tan45o = 1, and cot45o = 1 Then, tanθ + cotθ = 2 ⇒ tan45o + cot45o = 2 ⇒ 1 + 1 = 2 putting the value θ = 45 in tan100θ + cot100θ ⇒ tan10045 + cot10045 ⇒ 1100 + 1100 ⇒ 2 ∴ The value of tan100θ + cot100θ is 2. |
|
| 309. |
If 2cos2θ – 5cosθ + 2 = 0 where, 0° < θ < 90°. Find the value of \(\sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}{\rm{\theta }}}}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}{\rm{\theta }}}}} \)?1. √3/22. √63. √2/34. 1 |
|
Answer» Correct Answer - Option 2 : √6 Given: 2cos2θ – 5cosθ + 2 = 0 Concept used: Using the concept of trigonometric ratios with respect to standard angles. Calculation: 2cos2θ – 5cosθ + 2 = 0 ⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0 ⇒ 2cosθ(cosθ – 2) – 1(cosθ – 2) = 0 ⇒ (cosθ – 2)(2cosθ – 1) = 0 ⇒ (cosθ – 2) = 0 or (2cosθ – 1) = 0 ⇒ cosθ = 2 or cosθ = 1/2 cosθ ≠ 2, because maximum value of cosθ is 1. So, cosθ = 1/2 ⇒ cosθ = cos60° [0° < θ < 90°] ⇒ θ = 60° \(\sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}{\rm{θ }}}}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}{\rm{θ }}}}} \) \( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}60^\circ }}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}60^\circ }}} \) \( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;}}{{\left( {\sqrt 3 } \right)}^2}}}{{1{\rm{\;}} - {\rm{\;}}{{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}}}} \) \( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;}}3}}{{1{\rm{\;}} - {\rm{\;}}\frac{1}{3}}}} \) \( \Rightarrow \sqrt {\frac{4}{{{\rm{\;}}\frac{2}{3}}}} \) ⇒ √6 ∴ The value is √6. |
|
| 310. |
If 3 sec2 x - 4 = 0, then the value of x (0 < x < 90°) 1. 45° 2. 15° 3. 30° 4. 60° |
|
Answer» Correct Answer - Option 3 : 30° Given: 3 sec2 x - 4 = 0 Formula: sec 30° = 2/√3 Calculation: 3 sec2 x - 4 = 0 ⇒ sec2 x = 4/3 ⇒ sec x = 2/√3 ⇒ sec x = sec 30° ∴ x = 30° |
|
| 311. |
If tan4A = cot(A – 20°), 0° |
|
Answer» Correct Answer - Option 3 : 22° Given : tan4A = cot(A – 20°) Formula used : tanθ = cot (90° – θ) Calculations : cot (90° – 4A) = cot (A – 20°) ⇒ 90°– 4A = A – 20° ⇒ 5A = 110° ⇒ A = 22° ∴ The value of A will be 22° |
|
| 312. |
If sin θ + cosec θ = 2, then the value of sin2 θ + cosec2 θ is:1. 42. 83. 24. 1 |
|
Answer» Correct Answer - Option 3 : 2 Given: sinθ + cosecθ = 2 Formula Used: cosecθ = 1/sinθ Calculation: Let sinθ = x ⇒ sinθ + cosecθ = x + 1/x = 2 ⇒ (x + 1/x)2 = 22 ⇒ x2 + 2 + 1/x2 = 4 ⇒ x2 + 1/x2 = 2 ∴ sin2θ + cosec2θ = 2 |
|
| 313. |
`152(sin30^(@)+2cos^(@)45^(@)+3sin30^(@)+4cos2^(2)45+ . . . .+17sin30^(@)+18cos^(2)45^(@)` का मान क्या होगा?A. An interger but not perfect squareB. a rational number but not an intergerC. a perfect square of an integerD. irrational |
|
Answer» Correct Answer - c `152(sin30^(@)+2cos^(2)45^(@)+3sin30^(@).........+17sin30^(@)+18cos^(2)45^(@))` `=152[(1)/(2)+2((1)/sqrt(2))^(2)+3xx(1)/(2)........17xx(1)/(2)+18((1)/sqrt(2))^(2)]` `rArr 152[(1)/(2)+1+1(1)/(2)+...........+ 8(1)/(2)+9]` `rArr` This is in A.P. where `a=(1)/(2),d=(1)/(2),n= 18` `rArr 15 2[(18)/(2)(2xx(1) /(2)+(18-1)(1)/(2))]` `rArr 152 [(18)/(2)(1+(17)/(2))]` `rArr 152xx9xx(19)/(2)rArr12996` `rarrsqrt(12996)` =114 |
|
| 314. |
Find the value of the expression: cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8)1. 52. 73. 94. 11 |
|
Answer» Correct Answer - Option 2 : 7
Given: cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8) Concept Used: cos2θ + sin2θ = 1 π = 180° Calculation: cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8) ⇒ {cos2(π/8) + sin2(π/8)} + 4cos245° – sec245° + 2tan260° ⇒ 1 + 4(1/√2)2 – (√2)2 + 2(√3)2 ⇒ 1 + 2 – 2 + 6 ⇒ 7 ∴ The value of the expression cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8) is 7. |
|
| 315. |
If cosec θ = α ⇒ cosec-1α = θ and secΦ = β ⇒ sec-1β = Φ then what will be the value of cosec-1γ + sec-1γ?1. 45°2. 90°3. 60°4. 30° |
|
Answer» Correct Answer - Option 2 : 90° Given: cosec θ = α ⇒ cosec-1α = θ secΦ = β ⇒ sec-1β = Φ Formula used: Sec x = cosec(90° – x) Calculation: Let sec-1 γ be x ⇒ sec x = γ ⇒ cosec(90° – x) = γ ⇒ 90° – x = cosec-1γ ⇒ cosec-1γ + x = 90° ⇒ cosec-1γ + sec-1 γ = 90° ∴ The value of cosec-1γ + sec-1 γ is 90° |
|
| 316. |
If cos x = – 3/5 , x lies in the third quadrant, find the values of other five trigonometric functions. |
|
Answer» Since cos x = - 3/5 , we have sec x = - 5/3 Further, we have |
|
| 317. |
समीकरण `cos^(2)theta=((x+y)^(2))/(4xy)` तभी संभव है?A. `x=-y`B. `x gt y`C. `x=y`D. `x lt y` |
|
Answer» Correct Answer - c `cos^(2)theta=((x+y)^(2))/(4xy)` max. value of `cos^(2)theta=1` `rArrf1=((x+y)^(2))/(4xy)` `rArr4xy=(x+y)^(2)` `rArr4xy=x^(2)+y ^(2)2xy` `rArr0=x^(2)+y^(2)-2xy` `rArr0=(x-y)^(2)` `rArr0=x-yrArrx=y` |
|
| 318. |
`2sin^(2)theta+3cos^(2)theta` का न्यूनतम मान ज्ञात करे? |
|
Answer» Correct Answer - c `2sin^(2)theta+3cos^(2)theta` Minimum vlaue is 2 [If `x sin^(2)theta+ycos^(2)theta`, if `xgty`, then x will be always maximum value and y is minimum if `ygtx`, vice versa will happen] |
|
| 319. |
`(2sintheta+3costheta)` का अधिकतम मान क्या होगा?A. 2B. `sqrt(13)`C. `sqrt(15)`D. 1 |
|
Answer» Correct Answer - b `(2sin theta+3cos theta)` `rArr` Max. value of `a sin theta+bcos theta= +sqrt(a^(2)+b^(2))` `rArrsqrt(2^(2)+3^(2))rArrsqrt(4+9)rArrsqrt(13)` |
|
| 320. |
यदि `0^(@) lt theta lt 90^(@)` है तो `sintheta+costheta` तो मान ज्ञात करे ?A. equal to 1B. greater than 1C. lesss than 1D. equal to 2 |
|
Answer» Correct Answer - b for greater value, take `theta=45^(@)` `rArrsintheta+cos theta` `=sin 45^(@)+costheta` `=sin45^(@)+cos45^(@)` `=(1)/sqrt(2)+(1)/sqrt(2)=(1+1)/sqrt(2)=(2)/sqrt(2)xxsqrt(2)/sqrt(2)=sqrt(2)` `sqrt(2)=1.414gtrArr` greater than 1 |
|
| 321. |
if `(cosalpha)/(cosbeta)=a and (sinalpha)/(sinbeta)=b`, then the value of `sin^(2)beta` in terms of a and b isA. `(a^(2+1))/(a^(2)-b^(2))`B. `(a^(2)-b^(2))/(a^(2)+b^(2))`C. `(a^(2)-1)/(a^(2)-b^(2))`D. `(a^(2)-1)/(a^(2)+b^(2))` |
|
Answer» Correct Answer - c `(cos alpha)/(cos beta)=arArr cos alpha=a cos beta` On squaring both sides `cos^(2)alpha=a^(2)cos^(2)beta` `rArr1-sin^(2)alpha=a^(2)(1-sin^(2)beta)` .........i Again `sin alpha=6sin beta` Squaring both sides `rARrsin^(2)alpha=b^(2)sin^(2)beta` put the value of `sin^(2)alpha` in equation (i) `1-b^(2)sin^(2)beta=a^(2)-a^(2)sin^(2)beta` `a^(2)-1=a^(2)sin^(2)beta-b^(2)sin^(2)beta` `a^(2)-1=sin^(2)beta(a^(2)-b^(2))` `rArr sin^(2)beta=(a^(2)-1)/(a^(2)-b^( 2))` |
|
| 322. |
`sec^(2)17^(@)-(1)/(tan^(2)73^(@))-sin17^(@)sec73^(@)` का मान क्या है ?A. 1B. 0C. -1D. 2 |
|
Answer» Correct Answer - b `sec^(1)17^(@)-(1)/(tan^(2)73^(@))-sin17^(@)` Sec 73 `=sec^(2)17^(@)-cot^(2)73^(@)-sin17^(@)` `sec(90^(@)-17^(@))` `=sec^(2)17^(@)-cot^(2)(90^(@)-17^(@))-sin17^(@)co s ec17^(@)=sec^(2)17-tan^(2)17-1` `=1-1[because sec^(2)theta-tan^(2)theta=1]` =0 |
|
| 323. |
`sintheta=0.7`, then `costheta,0 le theta lt 90^(@)` is `sintheta=0.7` है तो `costheta=? (0 le theta lt 90^(@)` है )A. `0.3`B. `sqrt(0.49)`C. `sqrt(0.51)`D. `sqrt(0.9)` |
|
Answer» Correct Answer - c `sin theta=0.7` `sin^(2)theta+cos^(2)theta=1` `(0.7)^(2)+cos^(2)theta=1` `0.49+cos^(2)theta=1` `cos^(2)theta=1-0.49` `cos theta=sqrt(0.51)` |
|
| 324. |
यदि `x=acosthetacosphi,y=acosthetasinphi` और `z=asintheta` हो तो `x^(2)+y^(2)+z^(2)` का मान क्या है ?A. `2a^(2)`B. `4a^(2)`C. `9a^(2)`D. `a^(2)` |
|
Answer» Correct Answer - d `x^(2)+y^(2)+z^(2)=a^(2)cos^(2)thetacos^(2)phi` `+a^(2)cos^(2)thetasin^(2)phi+a^(2)sintheta` `=a^ (2)cos^(2)theta(cos^(2)phi+sin^(2)phi)+a^(2) sin^(2)theta` `=a^(2)(cos^(2)theta+a^(2)sin^(2)theta)` `=a^(2)(cos^(2)theta+sin^(2)theta)` `x ^(2)+y^(2)+z^(2)=a^(2)` |
|
| 325. |
If `sec theta+tan theta= sqrt3(0^(@)le theta le 90^(@))` then the value of `tan^(3)theta=?`(यदि `sec theta+tan theta= sqrt3(0^(@)le theta le 90^(@))` है तो)A. undefinedB. `(1)/(sqrt3)`C. `(1)/(sqrt2)`D. `sqrt3` |
|
Answer» Correct Answer - a `sec theta+tan theta=sqrt(3)`.........(i) `rArrsec^(2)theta-tan^(2)theta=1` `[1+tan^(2)theta=sec^(2)theta]` `rArr(sec theta-tantheta)(sec theta+tan theta)=1` `rArr(sec theta-tan theta)(sec theta+tan theta)=1` `rArr sectheta-tan theta=(1)/sqrt(3)` ..........(ii) subtract equation (ii) from (i) `rArr 2tan theta=sqrt(3)-(1)/sqrt(3)` `rArr 2tan theta=(3-1)/sqrt(3)=(2) /sqrt(3)` `rArrtan theta=(1)/sqrt(3)=tan 30^(@)` `rArr theta=30^(@)[tan30^(@)=(1)/sqrt(3)]` `rArr tanA^(3)theta =tan90^(@)` (underfined) |
|
| 326. |
`"co s ec"^(2)60^(@)+sec^(2)60-cot^(2)60^(@)+tan^(2)30^(@)` का मान क्या होगा ?A. 5B. `5(1)/(2)`C. `5(2)/(3)`D. `5(1)/(3)` |
|
Answer» Correct Answer - d `co s ec^(2)60^(@) +sec^(2)60^(@)-cot^(2)60^(@)+tan^(2)30^(@)` `=((2)/(sqrt(3)))^(2)+(2) ^(2)-((1)/(sqrt(3)))^(2)+((1)/(sqrt(3)))^(2)` `=(4)/(3)+4-(1)/(3)+(1)/(3)` `=(16)/(3)` `=5(1)/(3)` |
|
| 327. |
If `co s ec theta-cot theta=(7)/(2)` the value of co s ec? (यदि `co s ec theta-cot theta=(7)/(2)` है तो का मान है )A. `(47)/(28)`B. `(51)/(28)`C. `(53)/(28)`D. `(49)/(28)` |
|
Answer» Correct Answer - c `co s ec theta-cottheta=1` `rArr[ coec theta-cot theta][co s ec theta+cot theta)=1` `rArr(co s ec theta+cot theta)=(1)/((co s ectheta-cottheta))` `rArr co s ec theta+cot theta=(2)/(7)` ..........(ii) Adding both equation. `rArr 2co s ectheta=(7)/(2)+(2)/(7)rArr` `(49xx4)/(14)=(53)/(14)` `rArrco s ec theta=(83)/(28)` |
|
| 328. |
`2co s ec^(2)23^(@)" "cos^(2)67^(@)-sin^(2)23-2co s ec^(2)23^(@)cot^(2)67^(@)-sin^(2)23^(@)-sin^(2)67-cot^(2)67^(@)` किसके बराबर है?A. 1B. `sec^(2)23^(@)`C. `tan^(2)23^(@)`D. 0 |
|
Answer» Correct Answer - b According to question, `rArr2co s ec^(2)23^(@)-cot^(2)57^(@)-sin23^(@)-sin^(2)67^(@)-cot^(2)67^(@)` `rArr2co s ec^(2)23^(@),cot^(2)(90^(@)-23^(@))-sin^(2)23^(@)90^(@)-23^(@))-cot^(2)67^(@)` `rArr2co s ec23^(@)tan^(2)23^(@)-(sin^(2)23^(@)+cos^(2)23^(@)).cot^(2)67^(@)`. `rArr(2)/(cos^(2)23^(@))-1- cot^(2)67^(@)` `rArr2sec^(2)23^(@)-1-tan^(2)23^(@)` `rArr2sec^(2)23^(@)-(1+tan^(2)23^(@))` `rArr2sec^(2)23^(@)-sec^(2)23^(@)` `rArrsec^(2)23^(@)` |
|
| 329. |
Find the value of tan π/8 |
|
Answer» Solution: Let Ф = π/8 Therefore, tan π/8 = √2 - 1 |
|
| 330. |
What is the value of \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\)?1. 22. -23. 14. -1 |
|
Answer» Correct Answer - Option 1 : 2 GIVEN: \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\) FORMULA USED: (a + b)(a- b) = a2 – b2 \(co{s^6}\theta \; + \;si{n^6}\theta = 1 - 3{\sin ^2}\theta {\cos ^2}\theta \) sin2θ + cos2θ = 1 CALCULATION: \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\) ⇒\(\left[ {\frac{{\left[ {{{\left( {sin\theta \; + \;cos\theta } \right)}^2} - 1} \right]sec\theta \;cosec\theta }}{{\left( {1 - 3{{\sin }^2}\theta {{\cos }^2}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\) ⇒\(\left[ {\frac{{({{\sin }^2}\theta \; + \;{{\cos }^2}\theta \; + \;2sin\theta \;cos\theta - 1)sec\theta \;cosec\theta }}{{\left( 1 \right)}}} \right]\) ⇒\(\left[ {\frac{{\left( {1\; + \;2sin\theta \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( 1 \right)}}} \right]\) ⇒ 2sin θ cos θ sec θ cosec θ ⇒ 2 |
|
| 331. |
The value of \(\frac{{\left[ {4co{s^4}32^\circ cose{c^2}58^\circ - sin63^\circ cos27^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - cose{c^2}24^\circ \; + \;ta{n^2}66^\circ - se{c^2}31^\circ \; + \;co{t^2}59^\circ } \right]{{\cos }^2}32}}\) is –1. 12. -13. 24. -2 |
|
Answer» Correct Answer - Option 4 : -2 GIVEN: \(\frac{{\left[ {4co{s^4}32^\circ cose{c^2}58^\circ - sin63^\circ cos27^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - cose{c^2}24^\circ \; + \;ta{n^2}66^\circ - se{c^2}31^\circ \; + \;co{t^2}59^\circ } \right]{{\cos }^2}32^\circ }}\) FORMULA USED: sin(90° - x) = cos x, cosec(90° - x) = sec x (1 – sin2x) = cos2x (1 – cos2x) = sin2x CALCULATION: \(\frac{{\left[ {4co{s^4}32^\circ cose{c^2}58^\circ - sin63^\circ cos27^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - cose{c^2}24^\circ \; + \;ta{n^2}66^\circ - se{c^2}31^\circ \; + \;co{t^2}59^\circ } \right]\;{{\cos }^2}32^\circ }}\) = \(\frac{{\left[ {4co{s^4}32^\circ se{c^2}32^\circ - sin63^\circ sin63^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - se{c^2}66^\circ \; + \;ta{n^2}66^\circ - cose{c^2}59^\circ \; + \;co{t^2}59^\circ } \right]\;{{\cos }^2}32^\circ }}\) = \(\frac{{\left[ {4co{s^2}32^\circ - {{\sin }^2}63^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - se{c^2}66^\circ \; + \;ta{n^2}66^\circ - cose{c^2}59^\circ \; + \;co{t^2}59^\circ } \right]\;{{\cos }^2}32^\circ }}\) = \(\frac{{\left[ {4co{s^2}32^\circ } \right]}}{{\left[ { - 1 - 1} \right]{{\cos }^2}32^\circ }}\) = 4/(- 2) = - 2 |
|
| 332. |
If `x costheta=y sin theta=sqrt(x^(2)+y^(2))` and `(cos^(2)theta)/(a^(2))+(sin^(2)theta)/(b^(2))=(1)/(x^(2)+y^(2))` then the value correct releation is (यदि `x costheta=y sin theta=sqrt(x^(2)+y^(2))` और `(cos^(2)theta)/(a^(2))+(sin^(2)theta)/(b^(2))=(1)/(x^(2)+y^(2))` है तो सही सम्बंद क्या होगा )A. `(x^(2))/(b^(2))-(y^(2))/(a^(2))=1`B. `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`C. `(x^(2))/(b^(2))-(y^(2))/(a^(2))=1`D. `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` |
|
Answer» Correct Answer - b `cos^(2)theta-sin^(2)theta=(1)/(3)` (given) `cos^(2)theta+sin^(2)theta=1` (property) `(cos^(2)theta-sin^(2)theta)(cos^(2)theta+sin^(2)theta)` `=(1)/(3)xx1` `cos ^(4)theta-sin^(4)theta=(1)/(3)` `therefore ((a^(2)-b^(2))(a^(2)+b^(2))=a^(4)-b^(4))` |
|
| 333. |
a,b,c are the lengths of three sides of triangle ABC. If a, b c are releated by the releation `a^(2)+b^(2)+c^(2)`=`ab+bc+ca`, then the value ofA. `(3)/(4)`B. `(3)/(2)`C. `(3sqrt3)/(2)`D. `(9)/(4)` |
|
Answer» Correct Answer - d ` a^(2)+b^(2)+c^(2)=ab+bc+ca` or `a^(2)+b^(2)+c^(2)-ab-bc-ca=0` or `2a^(2)+2b^(2)+2c^(2)-2ab-2bc-2ca=0` or `a^(2)+b^(2)-2ab+b^(2)+c^(2)-2bc+c^(2)+a^(2)-2ca=0` ` (a-b)^(2)+(b-c)^(2)+(c-a)^(2)=0` `therefore `a=b=c` DeltaABC=` equllateral`Delta` `therefore angleA=angleB=angleC=60^(@)` So,`sin^(2)A+sin^(2)B+sin^(2)C` `=sin^(2)60^(@)+sin^(2)60^(@)+sin^(2)60^(@)` `=3((sqrt(3))/(2))^(2)` `(9)/(4)` |
|
| 334. |
Find the value of the trigonometric function sin 765° |
|
Answer» It is known that the values of sin x repeat after an interval of 2π or 360°. sin765∘=sin(8×90∘+45∘) sin765∘=sin(8×90∘+45∘) ⇒sin45∘=1/√2 |
|
| 335. |
यदि `sin3Acos(A-26^(@))` है जहाँ 3A एक न्यूनकोण है तो A का मान ज्ञात करेA. `29^(@)`B. `26^(@)`C. `23^(@)`D. `28^(@)` |
|
Answer» Correct Answer - a `sin3A=cos(A-90^(@))` `4A=116^(@)` `A=29^(@)` |
|
| 336. |
यदि `tanA=ntanB` और `sinA=m,sinB` तो `cos^(2)A` का मान है?A. `(m^(2)+1)/(n^(2)+1)`B. `(m^(2)+1)/(n^(2)-1)`C. `(m^(2)-1)/(n^(2)-1)`D. `(m^(2)-1)/(n^(2)+1)` |
|
Answer» Correct Answer - c `sinA =msinB` `sin^(2)A=m^(2)sin^(2)B`........(i) Now, `tan^(2)A=n^(2)tan^(2)B` `(sin^(2)A)/(cos^(2)A)=n^(2)(sin^(2)B)/(cos^(2)B)` from equation (i) `(1-cos^(2)A)/(n^(2)cos^(2)A)=((1-cos^(2)A))/((m^(2))/(1-(sin^(2)A)/(m^(2))))` `(1-cos^(2)A)/(n^(2)cos^(2)A)=(1-cos^(2)A)/(m^(2)-1+cos^(2)A) ` `rArrm^(2)-1+cos^(2)A=n^(2)cos^(2)A` `m^(2)-1=cos^(2)theta(n^(2)-1)` `cos^(2)A=(m^(2)-1)/(n^(2)-1)` |
|
| 337. |
The value of `(1+cottheta-co s ectheta)(1+tantheta+sectheta)` is equal toA. 1B. 2C. 0D. `-1` |
|
Answer» Correct Answer - b Shotcut method `=(1+cot theta-co s ectheta)(1+tan theta+sectheta)` Put, `theta=45^(@)` `=(1+cot45^(@)-co s ec45^(@))(1+tan45^(@)+sec45^(@))` `=(1+1-sqrt(2))(1+1+sqrt(2))` `=(2-sqrt(2))(2+sqrt(2))` `=[2^(2)-(sqrt(@))^(2))[(a-b)(a+b)=a^(2)` `-b^(2))] =4-2=2` |
|
| 338. |
If `tantheta+cottheta=5` then `tan^(2)theta+cot^(2)theta` isA. 23B. 24C. 25D. 26 |
|
Answer» Correct Answer - a Given `tan theta+cot thea=5` `rArrtantheta+cot theta=5` `rArr[tan theta+cottheta]^(2)=5^(2)` (squaring both sides) `rArrtan^(2)theta+cot^(2)theta+2tan thetacottheta=25` `rArrtan^(2)theta+cot^(2)theta=25-2[because tan theta . cot theta=1]` ` rArr tan^(2)theta+cot^(2)theta=23` |
|
| 339. |
If `tantheta+cottheta=2`, then the vlaue of `tan^(100)theta+cot^(100)theta` isA. 2B. 0C. 1D. `sqrt(3)` |
|
Answer» Correct Answer - a `tan theta+cot theta=2` Put `theta=45^(@)` 1+1=2 (matched) So, `theta=45^(@)` `rArrtan^(100)45^(@) +cot^(100)45^(@)` `rArr1^(100)+1^(100)=2` |
|
| 340. |
\(\frac{{sin\theta }}{{1 + cos\theta }}\; + \;\frac{{1 + cos\theta }}{{sin\theta }} = \frac{4}{{\sqrt 3 }}\) ; 0° |
|
Answer» Correct Answer - Option 1 : (2 - √3) Given - \(\frac{{sinθ }}{{1 + cosθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) Concept used - sin2θ + cos2θ = 1 sinθ × sinθ = (1 - cos2θ) sinθ × sinθ = (1 + cosθ) × (1 - cosθ) {sinθ/(1 + cosθ)} = {(1 - cosθ)/sinθ} Solution - \(\frac{{sinθ }}{{1 + cosθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) \(⇒ \frac{{sinθ \: \times (1 - cosθ) }}{{(1 + cosθ)(1 -\ cosθ) }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) ⇒ Sinθ(1 - cosθ)/1 - cos2θ + (1 + cosθ)/sinθ = 4/√3 ⇒ Sinθ (1 - cosθ)/sin2θ + (1 + cosθ)/sinθ = 4/√3 \(⇒ \frac{{(1 - cosθ) }}{{sinθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) ⇒ (2/sinθ) = (4/√3) ⇒ sinθ = (√3/2) = sin60° ⇒ θ = 60° ⇒ (secθ + cotθ + cosecθ) - 1 ⇒ (sec60° + cot60° + cosec60°) - 1 ⇒ {2 + (1/√3) + (2/√3)} - 1 ⇒ (2 + √3) - 1 ⇒ 1/(2 + √3) ⇒ ( 2 - √3) ∴ Ans = (2 - √3). |
|
| 341. |
If \(\cot \theta = \frac{1}{{\sqrt 3 }}\), 0° |
|
Answer» Correct Answer - Option 1 : 1 Given: \(\cot \theta = \frac{1}{{\sqrt 3 }}\) θ = 60° Calculation: sin 60° =\(\frac{{\sqrt 3 }}{2}\) cos 60° = \(\frac{1}{2}\) cosec 60° =\(\frac{2}{\sqrt3}\) sec 60° = 2 substituting the value in the given expression = \(\frac{2-\frac{3}{4}\ }{1-\frac{1}{4}}+(\frac{4}{3}\ -2)\) ⇒\(\frac{\frac{5}{4}\ }{\frac{3}{4}}-\frac{2}{3}\) = \(\frac{{5\;}}{3} - \frac{2}{3} = 1\) ∴ the value for the \(\frac{{2 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }} + (cose{c^2}\theta - {\sec} \theta )\) = 1 |
|
| 342. |
Find the value of sin (2190°) |
|
Answer» Correct Answer - Option 2 : \(\frac 12\) Concept: sin (2nπ + θ) = sin θ sin (2nπ - θ) = -sin θ sin (90 + θ) = cos θ
Calculation: To Find: Value of sin (2190°) ⇒ sin (2190°) = sin(360° × 6 + 30°) = sin (12π + 30°) = sin (30°) (∵ sin (2nπ + θ) = sin θ) = \(\frac 12\) |
|
| 343. |
If 4(cosec2 57 - tan2 33) - cos 90 + y × tan2 66 × tan2 24 = y/2, then the value of y is: 1. 82. -43. 44. -8 |
|
Answer» Correct Answer - Option 4 : -8 Given: 4(cosec2 57 - tan2 33) - cos 90 + y × tan2 66 × tan2 24 = y/2 Formula used: (i) cosec(90 - θ) = secθ (ii) tan(90 - θ) = cotθ (iii) sec2θ - tan2θ = 1 (iv) tanθ = 1/cotθ Calculations: 4(cosec2 (90 - 33) - tan2 33) - cos 90 + y × tan2 66 × tan2 (90 - 66) = y/2 ⇒ 4(sec2 57 - tan2 33) - cos 90 + y × tan2 66 × cot2 66 = y/2 ⇒ 4 × 1 - 0 + y × tan2 66 × 1/tan2 66 = y/2 ⇒ 4 + y = y/2 ⇒ y - y/2 = -4 ⇒ y/2 = -4 ⇒ y = -8 ∴ The value of y is -8. |
|
| 344. |
Find the domain of the inverse trigonometric function \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) is,1. \(\left[ { - 1,1} \right]\)2. \(\left[ {0,\frac{1}{2}} \right]\)3. \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)4. \(\left[ { - \frac{1}{2},\frac{1}{2}} \right]\) |
|
Answer» Correct Answer - Option 3 : \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\) Concept: The domain of inverse sine function, sin x is \(x \in \left[ { - 1,1} \right]\) Calculation: Domain of the function is calculated as follows: \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) \(- 1 \le 2x\sqrt {1 - {x^2}} \le 1\) \( - \frac{1}{2} \le x\sqrt {1 - {x^2}} \le \frac{1}{2}\) \({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\) \(t - {t^2} - \frac{1}{4} \le 0\) \({\left( {t - \frac{1}{2}} \right)^2} \le 0\) \(t \le \frac{1}{2}\) \({x^2} \le \frac{1}{{\sqrt 2 }}\) \(x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\) |
|
| 345. |
`(cos53^(@)-sin37^(@))` का मान क्या है ? |
|
Answer» Correct Answer - a `cos53^(@)-sin37^(@)` `= cos(90^(@)-37^(@))-sin37^(@)` `=sin37^(@)-sin37^(@)=0` |
|
| 346. |
If two angles the triangle abc 45° and 60° then the ratio of the smallest and greatest sides is |
|
Answer» Angles are 45°, 60° and 75°. The ratio of smallest and greatest sides = sin45°; sin75°= √3 1:1 |
|
| 347. |
The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes? (Use π = 3.14). |
|
Answer» Solution: In 60 minutes, the minute hand of a watch completes one revolution. Therefore, |
|
| 348. |
यदि `secA+tanA=a,` हो तो `cosA` का मान होगा ?A. `(a^(2)+1)/(2a)`B. `(2a)/(a^(2)+1)`C. `(a^(2)-1)/(2a)`D. `(2a)/(a^(2)-1)` |
|
Answer» Correct Answer - b `SecA+tanA=a` we know that `sec^(2)A-tan^(2)A=1` `(secA-tanA)(secA+tanA)=1` `(secA-tanA)alpha=1` `secA-tanA=(1)/(alpha)` `secA+tanA=alpha` `2secA=alpha+(1)/(alpha)` ` 2sec(1)/(A)=(a^(2)+1)/(alpha)` `sec theta=(alpha^(@)+1)/(2alpha)` so, `cos theta=(2alpha)/(a^(2)+1)` |
|
| 349. |
`cos^(2)20^(@)+cos^(2)70^(@)` का मान ज्ञात करो ।A. `sqrt(2)`B. 1C. `(1)/(3)`D. 2 |
|
Answer» Correct Answer - b `cos^(2)20^(@)+cos^(2)70^(@)=cos^(2)(90-70)+cos^(2)70^(@)` `Sin^(2)70^(@)+cos^(2)70^(@)` ` sin^(2)70^(@)+cos^(2)70^(@)=1` |
|
| 350. |
यदि `sinthetaxxcostheta=1//2` हो, तो `sintheta-costheta` का मान क्या होगा, जहाँ `0^(@)ltthetalt90^(@)` |
|
Answer» Correct Answer - a `sin thetaxx cos theta=(1)/(2)` Multiply by 2 both side `2sin theta cos theta=1` `sin theta=2` `sin 2theta=sin90^(@)` `2theta=90^(@)` `2theta=45^(@)` `theta=45^(@)` So, `sin theta-cos theta` `=sin45^(@)-cos45^(@)` `=(1)/sqrt(2)-(1)/sqrt(2)` |
|