Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

If secx + tanx = 3, find cosecx + cotx.1. 32. 13. 04. 2

Answer» Correct Answer - Option 4 : 2

Given:

secx + tanx = 3

Concept Used:

If secx + tanx = y. then secx - tanx = 1/y

cosec2x - cot2x = 1

tanx = 1/cotx

Calculation:

secx + tanx = 3      ----(i)

secx - tanx = 1/3      ----(ii)

Subtracting (ii) from (i), we get 2tanx,

2tanx = 8/3

⇒ tanx = 4/3

⇒ cotx = 3/4

cosecx = √(1 + cot2x)

⇒ √(1 + 9/16)

⇒ √(25/16)

⇒ 5/4

cosecx + cotx = 5/4 +3/4 

⇒ 2

∴ The value of cosecx + cotx is 2.

302.

If sinx + cosx = √2cosx, what will be the value of sinx - cosx ?1. + √2secx2. + √2sinx3. + √2tanx4. + √2cotx

Answer» Correct Answer - Option 2 : + √2sinx

Given:

sinx + cosx = √2cosx

Concept Used:

sin2x + cos2x = 1

Calculation:

sinx + cosx = √2cosx

Squaring the equation on both side, we get

⇒ sin2x + cos2x +2sinxcosx = 2cos2x

⇒ 1 + 2sinxcosx = 2cos2x      ----(i)

Let sinx - cosx = k      ----(ii)

Squaring the equation on both side, we get

⇒ 1 - 2sinxcosx = k2

Adding (i) and (ii), we get

2cos2x + k2 = 2

⇒ k2 = 2(1 - cos2x)

⇒ k2 = 2sin2x

⇒ k = +√2sinx

∴ The value of sinx - cosx = +√2sinx

303.

If \(\cos θ = \frac 5 {13},\) then the value of tan2 θ + sec2 θ is equal to:1. \(\frac {313}{25}\)2. \(\frac {323}{25}\)3. \(\frac {233}{25}\)4. \(\frac {303}{25}\)

Answer» Correct Answer - Option 1 : \(\frac {313}{25}\)

Given:

\(\cos θ = \frac 5 {13}\)

Concept used:

1 + tan2 θ = sec2 θ

cosθ = 1/secθ 

Calculations:

⇒ tan2 θ + sec2 θ

⇒ sec2 θ - 1 + sec2 θ

⇒ 2sec2 θ - 1

⇒ secθ = 13/5

⇒ (2 × 169)/25 - 1

⇒ (338/25) - 1

⇒ (338 - 25)/25

⇒ 313/25

∴ The value of tan2 θ + sec2 θ is 313/25.

304.

If sec θ + tan θ = 3, then the value of sec θ is:1. 3 / 52. 5 / 33. 3 / 44. 4 / 3

Answer» Correct Answer - Option 2 : 5 / 3

Given:

 sec θ + tan θ = 3

Concept used:

sec θ + tan θ = x

sec θ - tan θ = 1/x

Calculations:

⇒  sec θ + tan θ = 3          ------(1)

⇒ sec θ + tan θ = 1/3          ------(2)

By adding equation (1) and (2)

⇒ 2secθ = 3 + 1/3

⇒ 2secθ = 10/3

⇒ secθ = 5/3

∴ The value of secθ is 5/3.

305.

If sin (x + y) = cos (x - y), then the value of cos2 x is:1. 32. 53. 1 / 44. 1 / 2

Answer» Correct Answer - Option 4 : 1 / 2

GIVEN:

sin (x + y) = cos (x - y)

CONCEPT USED:

sinθ1 = cosθ2 , when θ1 + θ2 = 90° 

CALCULATION:

sin (x + y) = cos (x - y)

⇒ (x + y) + (x - y) = 90° 

⇒ 2x = 90° 

⇒ x = 45° 

⇒ cos2x = cos245° 

⇒ (1/√2)2 

⇒ 1/2

∴ cos2x  = 1/2

306.

If cosec 39° = x, then the value of \(\frac 1 {\rm cosec^2\;51^\circ} + \sin^2 39^\circ + \tan^2 51^\circ - \frac 1 {\sin^2 51^\circ\sec^2 39^\circ}\) is:1. \(\sqrt {x^2 - 1}\)2. x2 - 13. 1 - x24. \(\sqrt {1 - x^2}\)

Answer» Correct Answer - Option 2 : x2 - 1

Given:

\(\frac 1 {\rm cosec^2\;51^\circ} + \sin^2 39^\circ + \tan^2 51^\circ - \frac 1 {\sin^2 51^\circ\sec^2 39^\circ}\)

Concept used:

sin2θ + cos2θ = 1

1 + cot2θ = cosec2θ 

sinθ = 1/x

sin(90° - θ) = cosθ 

sin39° = co51° = 1/x

Calculatuions:

⇒ sin251° + sin239° + tan251° - (cos239°/sin251°)

⇒ sin251° + {sin(90° - 51°)}2 + tan251° - [cos239°/{sin(90° - 39°)}2]

⇒ sin251° + cos251° + tan251° - [cos239°/cos239°]                        

⇒ 1 + tan251° - 1

⇒ tan251°

⇒ {tan(90° - 39°)}2

⇒ cot239° 

⇒ cosec239° - 1

⇒ x2 - 1

∴ The value is x2 - 1

 

 

 

307.

If \(\rm cosec\;\theta = \frac {13}{12}\), then the value of \( \frac{{2\sin\theta - 3\cos\theta }}{{4\sin\theta - 9\cos\theta }}\) is:1. 32. 43. 14. 2

Answer» Correct Answer - Option 1 : 3

Given:

cosec θ = 13/12

Forumula used:

H = hypotenuse, P = perpendicular, B = base

H2 = P2 + B2

cosecθ = H/P, sinθ = P/H, cosθ = B/P

Calculation:

⇒ cosec θ = 13/12 = H/P

⇒ H = 13, P = 12, B2 = H2 – P2

⇒ B2 = 132 – 122 = 52

⇒ B = 5

⇒ sinθ = 12/13, cosθ = 5/13, and cosec θ = 13/12

putting the value of sinθ and cosθ in \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\)

⇒ \(\frac{{2 \times \frac{{12}}{{13}} - 3 \times \frac{5}{{13}}}}{{4 \times \frac{{12}}{{13}} - 9 \times \frac{5}{{13}}}}\)

⇒ 3

∴ The value of \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\) is 3.

308.

If tanθ + cotθ = 2 and θ is acute, then the value of tan100θ + cot100θ is equal to:

Answer» Correct Answer - Option 3 : 2

Given:

tanθ + cotθ = 2

Calculation:

Put the value of θ = 45o, tan45o = 1, and cot45o = 1

Then, tanθ + cotθ = 2

⇒ tan45o + cot45o = 2

⇒ 1 + 1 = 2

putting the value θ = 45 in tan100θ + cot100θ

⇒ tan10045 + cot10045 

⇒ 1100 + 1100

⇒ 2

∴ The value of tan100θ + cot100θ is 2.

309.

If 2cos2θ – 5cosθ + 2 = 0 where, 0° < θ < 90°. Find the value of \(\sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}{\rm{\theta }}}}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}{\rm{\theta }}}}} \)?1. √3/22. √63. √2/34. 1

Answer» Correct Answer - Option 2 : √6

Given:

2cos2θ – 5cosθ + 2 = 0

Concept used:

Using the concept of trigonometric ratios with respect to standard angles.

Calculation:

2cos2θ – 5cosθ + 2 = 0

⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0

⇒ 2cosθ(cosθ – 2) – 1(cosθ – 2) = 0

⇒ (cosθ – 2)(2cosθ – 1) = 0

⇒ (cosθ – 2) = 0 or (2cosθ – 1) = 0

⇒ cosθ = 2 or cosθ = 1/2

cosθ ≠ 2, because maximum value of cosθ is 1.

So, cosθ = 1/2

⇒ cosθ = cos60°      [0° < θ < 90°]

⇒ θ = 60° 

\(\sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}{\rm{θ }}}}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}{\rm{θ }}}}} \)

\( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}60^\circ }}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}60^\circ }}} \)

\( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;}}{{\left( {\sqrt 3 } \right)}^2}}}{{1{\rm{\;}} - {\rm{\;}}{{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}}}} \)

\( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;}}3}}{{1{\rm{\;}} - {\rm{\;}}\frac{1}{3}}}} \)

\( \Rightarrow \sqrt {\frac{4}{{{\rm{\;}}\frac{2}{3}}}} \)

⇒ √6

The value is √6.

310.

If 3 sec2 x - 4 = 0, then the value of x (0 < x < 90°) 1. 45° 2. 15° 3. 30° 4. 60°

Answer» Correct Answer - Option 3 : 30° 

Given:

3 sec2 x - 4 = 0

Formula:

sec 30° = 2/√3

Calculation:

3 sec2 x - 4 = 0

⇒ sec2 x = 4/3

⇒ sec x = 2/√3

⇒ sec x = sec 30°

∴ x = 30°

311.

If tan4A = cot(A – 20°), 0°

Answer» Correct Answer - Option 3 : 22°

Given :

tan4A = cot(A – 20°)

Formula used :

tanθ = cot (90° – θ)

Calculations :

cot (90° – 4A) = cot (A – 20°)

⇒ 90°– 4A = A – 20° 

⇒ 5A = 110° 

⇒ A = 22° 

∴ The value of A will be 22° 

312.

If sin θ + cosec θ = 2, then the value of sin2 θ + cosec2 θ is:1. 42. 83. 24. 1

Answer» Correct Answer - Option 3 : 2

Given:

sinθ + cosecθ = 2

Formula Used:

cosecθ = 1/sinθ

Calculation:

Let sinθ = x

⇒ sinθ + cosecθ = x + 1/x = 2

⇒ (x + 1/x)2 = 22

⇒ x2 + 2 + 1/x2 = 4

⇒ x2 + 1/x2 = 2

∴ sin2θ + cosec2θ = 2

313.

`152(sin30^(@)+2cos^(@)45^(@)+3sin30^(@)+4cos2^(2)45+ . . . .+17sin30^(@)+18cos^(2)45^(@)` का मान क्या होगा?A. An interger but not perfect squareB. a rational number but not an intergerC. a perfect square of an integerD. irrational

Answer» Correct Answer - c
`152(sin30^(@)+2cos^(2)45^(@)+3sin30^(@).........+17sin30^(@)+18cos^(2)45^(@))`
`=152[(1)/(2)+2((1)/sqrt(2))^(2)+3xx(1)/(2)........17xx(1)/(2)+18((1)/sqrt(2))^(2)]`
`rArr 152[(1)/(2)+1+1(1)/(2)+...........+ 8(1)/(2)+9]`
`rArr` This is in A.P. where `a=(1)/(2),d=(1)/(2),n= 18`
`rArr 15 2[(18)/(2)(2xx(1) /(2)+(18-1)(1)/(2))]`
`rArr 152 [(18)/(2)(1+(17)/(2))]`
`rArr 152xx9xx(19)/(2)rArr12996`
`rarrsqrt(12996)`
=114
314.

Find the value of the expression: cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8)1. 52. 73. 94. 11

Answer» Correct Answer - Option 2 : 7

 

Given:

cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8)

Concept Used:

cos2θ + sin2θ = 1

π = 180° 

Calculation:

cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8)

⇒ {cos2(π/8) + sin2(π/8)} + 4cos245° – sec245° + 2tan260°

⇒ 1 + 4(1/√2)2 – (√2)2 + 2(√3)2

⇒ 1 + 2 – 2 + 6

⇒ 7

∴ The value of the expression cos2(π/8) + 4cos2(π/4) – sec2(π/4) + 2tan2(π/3) + sin2(π/8) is 7.

315.

If cosec θ = α ⇒ cosec-1α = θ and secΦ = β ⇒ sec-1β = Φ  then what will be the value of cosec-1γ + sec-1γ?1. 45°2. 90°3. 60°4. 30°

Answer» Correct Answer - Option 2 : 90°

Given:

cosec θ = α ⇒ cosec-1α = θ

secΦ = β ⇒ sec-1β = Φ  

Formula used:

Sec x = cosec(90° – x)

Calculation:

Let sec-1 γ  be x

⇒ sec x = γ 

⇒ cosec(90° – x) =  γ 

⇒ 90° – x = cosec-1γ 

⇒ cosec-1​γ + x =  90°

⇒ cosec-1​γ + sec-1 γ = 90° 

∴  The value of cosec-1​γ + sec-1 γ is 90° 

316.

If cos x = – 3/5 , x lies in the third quadrant, find the values of other five trigonometric functions.

Answer»

Since cos x = - 3/5 , we have sec x = - 5/3
Now sin2 x + cos2 x = 1, i.e., sin2 x = 1 – cos2 x
or sin2 x = 1 – 9/25 = 16/25
Hence sin x = ± 4/5
Since x lies in third quadrant, sin x is negative. Therefore
sin x = – 4/5
which also gives
cosec x = – 5/4

Further, we have
tan x = sinx/cosx = 4/3 and cot x = cosx/sinx = 3/4 .

317.

समीकरण `cos^(2)theta=((x+y)^(2))/(4xy)` तभी संभव है?A. `x=-y`B. `x gt y`C. `x=y`D. `x lt y`

Answer» Correct Answer - c
`cos^(2)theta=((x+y)^(2))/(4xy)`
max. value of `cos^(2)theta=1`
`rArrf1=((x+y)^(2))/(4xy)`
`rArr4xy=(x+y)^(2)`
`rArr4xy=x^(2)+y ^(2)2xy`
`rArr0=x^(2)+y^(2)-2xy`
`rArr0=(x-y)^(2)`
`rArr0=x-yrArrx=y`
318.

`2sin^(2)theta+3cos^(2)theta` का न्यूनतम मान ज्ञात करे?

Answer» Correct Answer - c
`2sin^(2)theta+3cos^(2)theta`
Minimum vlaue is 2
[If `x sin^(2)theta+ycos^(2)theta`, if `xgty`, then x will be always maximum value and y is minimum if `ygtx`, vice versa will happen]
319.

`(2sintheta+3costheta)` का अधिकतम मान क्या होगा?A. 2B. `sqrt(13)`C. `sqrt(15)`D. 1

Answer» Correct Answer - b
`(2sin theta+3cos theta)`
`rArr` Max. value of `a sin theta+bcos theta= +sqrt(a^(2)+b^(2))`
`rArrsqrt(2^(2)+3^(2))rArrsqrt(4+9)rArrsqrt(13)`
320.

यदि `0^(@) lt theta lt 90^(@)` है तो `sintheta+costheta` तो मान ज्ञात करे ?A. equal to 1B. greater than 1C. lesss than 1D. equal to 2

Answer» Correct Answer - b
for greater value, take `theta=45^(@)`
`rArrsintheta+cos theta`
`=sin 45^(@)+costheta`
`=sin45^(@)+cos45^(@)`
`=(1)/sqrt(2)+(1)/sqrt(2)=(1+1)/sqrt(2)=(2)/sqrt(2)xxsqrt(2)/sqrt(2)=sqrt(2)`
`sqrt(2)=1.414gtrArr` greater than 1
321.

if `(cosalpha)/(cosbeta)=a and (sinalpha)/(sinbeta)=b`, then the value of `sin^(2)beta` in terms of a and b isA. `(a^(2+1))/(a^(2)-b^(2))`B. `(a^(2)-b^(2))/(a^(2)+b^(2))`C. `(a^(2)-1)/(a^(2)-b^(2))`D. `(a^(2)-1)/(a^(2)+b^(2))`

Answer» Correct Answer - c
`(cos alpha)/(cos beta)=arArr cos alpha=a cos beta`
On squaring both sides
`cos^(2)alpha=a^(2)cos^(2)beta`
`rArr1-sin^(2)alpha=a^(2)(1-sin^(2)beta)` .........i
Again `sin alpha=6sin beta`
Squaring both sides
`rARrsin^(2)alpha=b^(2)sin^(2)beta`
put the value of `sin^(2)alpha` in equation (i)
`1-b^(2)sin^(2)beta=a^(2)-a^(2)sin^(2)beta`
`a^(2)-1=a^(2)sin^(2)beta-b^(2)sin^(2)beta`
`a^(2)-1=sin^(2)beta(a^(2)-b^(2))`
`rArr sin^(2)beta=(a^(2)-1)/(a^(2)-b^( 2))`
322.

`sec^(2)17^(@)-(1)/(tan^(2)73^(@))-sin17^(@)sec73^(@)` का मान क्या है ?A. 1B. 0C. -1D. 2

Answer» Correct Answer - b
`sec^(1)17^(@)-(1)/(tan^(2)73^(@))-sin17^(@)`
Sec 73
`=sec^(2)17^(@)-cot^(2)73^(@)-sin17^(@)`
`sec(90^(@)-17^(@))`
`=sec^(2)17^(@)-cot^(2)(90^(@)-17^(@))-sin17^(@)co s ec17^(@)=sec^(2)17-tan^(2)17-1`
`=1-1[because sec^(2)theta-tan^(2)theta=1]`
=0
323.

`sintheta=0.7`, then `costheta,0 le theta lt 90^(@)` is `sintheta=0.7` है तो `costheta=? (0 le theta lt 90^(@)` है )A. `0.3`B. `sqrt(0.49)`C. `sqrt(0.51)`D. `sqrt(0.9)`

Answer» Correct Answer - c
`sin theta=0.7`
`sin^(2)theta+cos^(2)theta=1`
`(0.7)^(2)+cos^(2)theta=1`
`0.49+cos^(2)theta=1`
`cos^(2)theta=1-0.49`
`cos theta=sqrt(0.51)`
324.

यदि `x=acosthetacosphi,y=acosthetasinphi` और `z=asintheta` हो तो `x^(2)+y^(2)+z^(2)` का मान क्या है ?A. `2a^(2)`B. `4a^(2)`C. `9a^(2)`D. `a^(2)`

Answer» Correct Answer - d
`x^(2)+y^(2)+z^(2)=a^(2)cos^(2)thetacos^(2)phi`
`+a^(2)cos^(2)thetasin^(2)phi+a^(2)sintheta`
`=a^ (2)cos^(2)theta(cos^(2)phi+sin^(2)phi)+a^(2) sin^(2)theta`
`=a^(2)(cos^(2)theta+a^(2)sin^(2)theta)`
`=a^(2)(cos^(2)theta+sin^(2)theta)`
`x ^(2)+y^(2)+z^(2)=a^(2)`
325.

If `sec theta+tan theta= sqrt3(0^(@)le theta le 90^(@))` then the value of `tan^(3)theta=?`(यदि `sec theta+tan theta= sqrt3(0^(@)le theta le 90^(@))` है तो)A. undefinedB. `(1)/(sqrt3)`C. `(1)/(sqrt2)`D. `sqrt3`

Answer» Correct Answer - a
`sec theta+tan theta=sqrt(3)`.........(i)
`rArrsec^(2)theta-tan^(2)theta=1`
`[1+tan^(2)theta=sec^(2)theta]`
`rArr(sec theta-tantheta)(sec theta+tan theta)=1`
`rArr(sec theta-tan theta)(sec theta+tan theta)=1`
`rArr sectheta-tan theta=(1)/sqrt(3)` ..........(ii)
subtract equation (ii) from (i)
`rArr 2tan theta=sqrt(3)-(1)/sqrt(3)`
`rArr 2tan theta=(3-1)/sqrt(3)=(2) /sqrt(3)`
`rArrtan theta=(1)/sqrt(3)=tan 30^(@)`
`rArr theta=30^(@)[tan30^(@)=(1)/sqrt(3)]`
`rArr tanA^(3)theta =tan90^(@)` (underfined)
326.

`"co s ec"^(2)60^(@)+sec^(2)60-cot^(2)60^(@)+tan^(2)30^(@)` का मान क्या होगा ?A. 5B. `5(1)/(2)`C. `5(2)/(3)`D. `5(1)/(3)`

Answer» Correct Answer - d
`co s ec^(2)60^(@) +sec^(2)60^(@)-cot^(2)60^(@)+tan^(2)30^(@)`
`=((2)/(sqrt(3)))^(2)+(2) ^(2)-((1)/(sqrt(3)))^(2)+((1)/(sqrt(3)))^(2)`
`=(4)/(3)+4-(1)/(3)+(1)/(3)`
`=(16)/(3)`
`=5(1)/(3)`
327.

If `co s ec theta-cot theta=(7)/(2)` the value of co s ec? (यदि `co s ec theta-cot theta=(7)/(2)` है तो का मान है )A. `(47)/(28)`B. `(51)/(28)`C. `(53)/(28)`D. `(49)/(28)`

Answer» Correct Answer - c
`co s ec theta-cottheta=1`
`rArr[ coec theta-cot theta][co s ec theta+cot theta)=1`
`rArr(co s ec theta+cot theta)=(1)/((co s ectheta-cottheta))`
`rArr co s ec theta+cot theta=(2)/(7)` ..........(ii)
Adding both equation.
`rArr 2co s ectheta=(7)/(2)+(2)/(7)rArr`
`(49xx4)/(14)=(53)/(14)`
`rArrco s ec theta=(83)/(28)`
328.

`2co s ec^(2)23^(@)" "cos^(2)67^(@)-sin^(2)23-2co s ec^(2)23^(@)cot^(2)67^(@)-sin^(2)23^(@)-sin^(2)67-cot^(2)67^(@)` किसके बराबर है?A. 1B. `sec^(2)23^(@)`C. `tan^(2)23^(@)`D. 0

Answer» Correct Answer - b
According to question,
`rArr2co s ec^(2)23^(@)-cot^(2)57^(@)-sin23^(@)-sin^(2)67^(@)-cot^(2)67^(@)`
`rArr2co s ec^(2)23^(@),cot^(2)(90^(@)-23^(@))-sin^(2)23^(@)90^(@)-23^(@))-cot^(2)67^(@)`
`rArr2co s ec23^(@)tan^(2)23^(@)-(sin^(2)23^(@)+cos^(2)23^(@)).cot^(2)67^(@)`.
`rArr(2)/(cos^(2)23^(@))-1- cot^(2)67^(@)`
`rArr2sec^(2)23^(@)-1-tan^(2)23^(@)`
`rArr2sec^(2)23^(@)-(1+tan^(2)23^(@))`
`rArr2sec^(2)23^(@)-sec^(2)23^(@)`
`rArrsec^(2)23^(@)`
329.

Find the value of tan π/8

Answer»

Solution:

Let Ф = π/8
2Ф = π/4
tan 2Ф = 1  = 2 tan Ф / [ 1 - tan² Ф ]
1 - tan² Ф = 2 tan Ф
tan² Ф + 2 tan Ф - 1 = 0
tan Ф  =  1/2 [ -2 +- √(4 +4) ]  = -1 +- √2 
tan π/8 is > 0 

Therefore,  tan π/8 = √2 - 1

330.

What is the value of \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\)?1. 22. -23. 14. -1

Answer» Correct Answer - Option 1 : 2

GIVEN:

\(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\)

FORMULA USED:

(a + b)(a- b) = a2 – b2

\(co{s^6}\theta \; + \;si{n^6}\theta = 1 - 3{\sin ^2}\theta {\cos ^2}\theta \)

sin2θ + cos2θ = 1

CALCULATION:

\(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\)

\(\left[ {\frac{{\left[ {{{\left( {sin\theta \; + \;cos\theta } \right)}^2} - 1} \right]sec\theta \;cosec\theta }}{{\left( {1 - 3{{\sin }^2}\theta {{\cos }^2}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\)

\(\left[ {\frac{{({{\sin }^2}\theta \; + \;{{\cos }^2}\theta \; + \;2sin\theta \;cos\theta - 1)sec\theta \;cosec\theta }}{{\left( 1 \right)}}} \right]\)

\(\left[ {\frac{{\left( {1\; + \;2sin\theta \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( 1 \right)}}} \right]\)

⇒ 2sin θ cos θ sec θ cosec θ

⇒ 2

331.

The value of \(\frac{{\left[ {4co{s^4}32^\circ cose{c^2}58^\circ - sin63^\circ cos27^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - cose{c^2}24^\circ \; + \;ta{n^2}66^\circ - se{c^2}31^\circ \; + \;co{t^2}59^\circ } \right]{{\cos }^2}32}}\) is –1. 12. -13. 24. -2

Answer» Correct Answer - Option 4 : -2

GIVEN:

\(\frac{{\left[ {4co{s^4}32^\circ cose{c^2}58^\circ - sin63^\circ cos27^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - cose{c^2}24^\circ \; + \;ta{n^2}66^\circ - se{c^2}31^\circ \; + \;co{t^2}59^\circ } \right]{{\cos }^2}32^\circ }}\)

FORMULA USED:

sin(90° - x) = cos x, cosec(90° - x) = sec x

(1 – sin2x) = cos2x

(1 – cos2x) = sin2x

CALCULATION:

\(\frac{{\left[ {4co{s^4}32^\circ cose{c^2}58^\circ - sin63^\circ cos27^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - cose{c^2}24^\circ \; + \;ta{n^2}66^\circ - se{c^2}31^\circ \; + \;co{t^2}59^\circ } \right]\;{{\cos }^2}32^\circ }}\)

\(\frac{{\left[ {4co{s^4}32^\circ se{c^2}32^\circ - sin63^\circ sin63^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - se{c^2}66^\circ \; + \;ta{n^2}66^\circ - cose{c^2}59^\circ \; + \;co{t^2}59^\circ } \right]\;{{\cos }^2}32^\circ }}\)

\(\frac{{\left[ {4co{s^2}32^\circ - {{\sin }^2}63^\circ - co{s^2}63^\circ \; + \;1} \right]}}{{\left[ { - se{c^2}66^\circ \; + \;ta{n^2}66^\circ - cose{c^2}59^\circ \; + \;co{t^2}59^\circ } \right]\;{{\cos }^2}32^\circ }}\)

\(\frac{{\left[ {4co{s^2}32^\circ } \right]}}{{\left[ { - 1 - 1} \right]{{\cos }^2}32^\circ }}\)

= 4/(- 2)

= - 2

332.

If `x costheta=y sin theta=sqrt(x^(2)+y^(2))` and `(cos^(2)theta)/(a^(2))+(sin^(2)theta)/(b^(2))=(1)/(x^(2)+y^(2))` then the value correct releation is (यदि `x costheta=y sin theta=sqrt(x^(2)+y^(2))` और `(cos^(2)theta)/(a^(2))+(sin^(2)theta)/(b^(2))=(1)/(x^(2)+y^(2))` है तो सही सम्बंद क्या होगा )A. `(x^(2))/(b^(2))-(y^(2))/(a^(2))=1`B. `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`C. `(x^(2))/(b^(2))-(y^(2))/(a^(2))=1`D. `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`

Answer» Correct Answer - b
`cos^(2)theta-sin^(2)theta=(1)/(3)` (given)
`cos^(2)theta+sin^(2)theta=1` (property)
`(cos^(2)theta-sin^(2)theta)(cos^(2)theta+sin^(2)theta)`
`=(1)/(3)xx1`
`cos ^(4)theta-sin^(4)theta=(1)/(3)`
`therefore ((a^(2)-b^(2))(a^(2)+b^(2))=a^(4)-b^(4))`
333.

a,b,c are the lengths of three sides of triangle ABC. If a, b c are releated by the releation `a^(2)+b^(2)+c^(2)`=`ab+bc+ca`, then the value ofA. `(3)/(4)`B. `(3)/(2)`C. `(3sqrt3)/(2)`D. `(9)/(4)`

Answer» Correct Answer - d
` a^(2)+b^(2)+c^(2)=ab+bc+ca`
or `a^(2)+b^(2)+c^(2)-ab-bc-ca=0`
or `2a^(2)+2b^(2)+2c^(2)-2ab-2bc-2ca=0`
or `a^(2)+b^(2)-2ab+b^(2)+c^(2)-2bc+c^(2)+a^(2)-2ca=0`
` (a-b)^(2)+(b-c)^(2)+(c-a)^(2)=0`
`therefore `a=b=c`
DeltaABC=` equllateral`Delta`
`therefore angleA=angleB=angleC=60^(@)`
So,`sin^(2)A+sin^(2)B+sin^(2)C`
`=sin^(2)60^(@)+sin^(2)60^(@)+sin^(2)60^(@)`
`=3((sqrt(3))/(2))^(2)`
`(9)/(4)`
334.

Find the value of the trigonometric function sin 765°

Answer»

It is known that the values of sin x repeat after an interval of 2π or 360°.

sin765=sin(8×90+45)

sin⁡765=sin⁡(8×90+45)

⇒sin45=1/√2

335.

यदि `sin3Acos(A-26^(@))` है जहाँ 3A एक न्यूनकोण है तो A का मान ज्ञात करेA. `29^(@)`B. `26^(@)`C. `23^(@)`D. `28^(@)`

Answer» Correct Answer - a
`sin3A=cos(A-90^(@))`
`4A=116^(@)`
`A=29^(@)`
336.

यदि `tanA=ntanB` और `sinA=m,sinB` तो `cos^(2)A` का मान है?A. `(m^(2)+1)/(n^(2)+1)`B. `(m^(2)+1)/(n^(2)-1)`C. `(m^(2)-1)/(n^(2)-1)`D. `(m^(2)-1)/(n^(2)+1)`

Answer» Correct Answer - c
`sinA =msinB`
`sin^(2)A=m^(2)sin^(2)B`........(i)
Now, `tan^(2)A=n^(2)tan^(2)B`
`(sin^(2)A)/(cos^(2)A)=n^(2)(sin^(2)B)/(cos^(2)B)`
from equation (i)
`(1-cos^(2)A)/(n^(2)cos^(2)A)=((1-cos^(2)A))/((m^(2))/(1-(sin^(2)A)/(m^(2))))`
`(1-cos^(2)A)/(n^(2)cos^(2)A)=(1-cos^(2)A)/(m^(2)-1+cos^(2)A) `
`rArrm^(2)-1+cos^(2)A=n^(2)cos^(2)A`
`m^(2)-1=cos^(2)theta(n^(2)-1)`
`cos^(2)A=(m^(2)-1)/(n^(2)-1)`
337.

The value of `(1+cottheta-co s ectheta)(1+tantheta+sectheta)` is equal toA. 1B. 2C. 0D. `-1`

Answer» Correct Answer - b
Shotcut method
`=(1+cot theta-co s ectheta)(1+tan theta+sectheta)`
Put, `theta=45^(@)`
`=(1+cot45^(@)-co s ec45^(@))(1+tan45^(@)+sec45^(@))`
`=(1+1-sqrt(2))(1+1+sqrt(2))`
`=(2-sqrt(2))(2+sqrt(2))`
`=[2^(2)-(sqrt(@))^(2))[(a-b)(a+b)=a^(2)`
`-b^(2))] =4-2=2`
338.

If `tantheta+cottheta=5` then `tan^(2)theta+cot^(2)theta` isA. 23B. 24C. 25D. 26

Answer» Correct Answer - a
Given
`tan theta+cot thea=5`
`rArrtantheta+cot theta=5`
`rArr[tan theta+cottheta]^(2)=5^(2)`
(squaring both sides)
`rArrtan^(2)theta+cot^(2)theta+2tan thetacottheta=25`
`rArrtan^(2)theta+cot^(2)theta=25-2[because tan theta . cot theta=1]`
` rArr tan^(2)theta+cot^(2)theta=23`
339.

If `tantheta+cottheta=2`, then the vlaue of `tan^(100)theta+cot^(100)theta` isA. 2B. 0C. 1D. `sqrt(3)`

Answer» Correct Answer - a
`tan theta+cot theta=2`
Put `theta=45^(@)`
1+1=2 (matched)
So, `theta=45^(@)`
`rArrtan^(100)45^(@) +cot^(100)45^(@)`
`rArr1^(100)+1^(100)=2`
340.

\(\frac{{sin\theta }}{{1 + cos\theta }}\; + \;\frac{{1 + cos\theta }}{{sin\theta }} = \frac{4}{{\sqrt 3 }}\) ; 0° 

Answer» Correct Answer - Option 1 : (2 - √3)

Given - 

 ​​\(\frac{{sinθ }}{{1 + cosθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\)

Concept used - 

sin2θ + cos2θ = 1

sinθ × sinθ = (1 - cos2θ)

sinθ × sinθ = (1 + cosθ) × (1 - cosθ)

{sinθ/(1 + cosθ)} = {(1 - cosθ)/sinθ}

Solution - 

\(\frac{{sinθ }}{{1 + cosθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\)

\(⇒ \frac{{sinθ \: \times (1 - cosθ) }}{{(1 + cosθ)(1 -\ cosθ) }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\)

⇒ Sinθ(1 - cosθ)/1 - cos2θ  + (1 + cosθ)/sinθ = 4/√3

⇒ Sinθ (1 - cosθ)/sin2θ + (1 + cosθ)/sinθ = 4/√3

\(⇒ \frac{{(1 - cosθ) }}{{sinθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\)

⇒ (2/sinθ) = (4/√3)

⇒ sinθ = (√3/2) = sin60° 

⇒ θ = 60°

⇒ (secθ + cotθ + cosecθ) - 1

⇒ (sec60° + cot60° + cosec60°) - 1

⇒ {2 + (1/√3) + (2/√3)} - 1

⇒ (2 + √3)  - 1

⇒ 1/(2 + √3)

⇒ ( 2 - √3)

∴ Ans = (2 - √3).

341.

If \(\cot \theta = \frac{1}{{\sqrt 3 }}\), 0°

Answer» Correct Answer - Option 1 : 1

Given:

\(\cot \theta = \frac{1}{{\sqrt 3 }}\)

θ = 60°

Calculation:

 sin 60° =\(\frac{{\sqrt 3 }}{2}\)  

 cos 60° = \(\frac{1}{2}\)

 cosec 60° =\(\frac{2}{\sqrt3}\)

 sec 60° = 2 

substituting the value in the given expression  

 = \(\frac{2-\frac{3}{4}\ }{1-\frac{1}{4}}+(\frac{4}{3}\ -2)\) ⇒\(\frac{\frac{5}{4}\ }{\frac{3}{4}}-\frac{2}{3}\)

 = \(\frac{{5\;}}{3} - \frac{2}{3} = 1\)

∴ the value for the \(\frac{{2 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }} + (cose{c^2}\theta - {\sec} \theta )\) = 1

342.

Find the value of sin (2190°)

Answer» Correct Answer - Option 2 : \(\frac 12\)

Concept:

sin (2nπ + θ) = sin θ

sin (2nπ - θ) = -sin θ

sin (90 + θ) = cos θ

 

Calculation:

To Find: Value of sin (2190°)

⇒ sin (2190°) = sin(360° × 6 + 30°) 

= sin (12π + 30°)             

= sin (30°)                    (∵ sin (2nπ + θ) = sin θ)

\(\frac 12\)
343.

If 4(cosec2 57 - tan2 33) - cos 90 + y × tan2 66 × tan2 24 = y/2, then the value of y is:  1. 82. -43. 44. -8

Answer» Correct Answer - Option 4 : -8

Given:

4(cosec2 57 - tan2 33) - cos 90 + y × tan2 66 × tan24 = y/2

Formula used:

(i) cosec(90 - θ) = secθ

(ii) tan(90 - θ) = cotθ

(iii) sec2θ - tan2θ = 1

(iv) tanθ = 1/cotθ 

Calculations:

4(cosec2 (90 - 33) - tan2 33) - cos 90 + y × tan2 66 × tan2 (90 - 66) = y/2

⇒ 4(sec2 57 - tan2 33) - cos 90 + y × tan2 66 × cot2 66 = y/2

⇒ 4 × 1 - 0 + y × tan2 66 × 1/tan66 = y/2

⇒ 4 + y = y/2

⇒ y - y/2 = -4

⇒ y/2 = -4

⇒ y = -8

∴ The value of y is -8.

344.

Find the domain of the inverse trigonometric function \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) is,1. \(\left[ { - 1,1} \right]\)2. \(\left[ {0,\frac{1}{2}} \right]\)3. \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)4. \(\left[ { - \frac{1}{2},\frac{1}{2}} \right]\)

Answer» Correct Answer - Option 3 : \(\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)

Concept:

The domain of inverse sine function, sin x is \(x \in \left[ { - 1,1} \right]\)

Calculation:

Domain of the function is calculated as follows:

\({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\)

\(- 1 \le 2x\sqrt {1 - {x^2}} \le 1\)

\( - \frac{1}{2} \le x\sqrt {1 - {x^2}} \le \frac{1}{2}\)

\({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

\(t - {t^2} - \frac{1}{4} \le 0\)

\({\left( {t - \frac{1}{2}} \right)^2} \le 0\)

\(t \le \frac{1}{2}\)

\({x^2} \le \frac{1}{{\sqrt 2 }}\)

\(x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)

345.

`(cos53^(@)-sin37^(@))` का मान क्या है ?

Answer» Correct Answer - a
`cos53^(@)-sin37^(@)`
`= cos(90^(@)-37^(@))-sin37^(@)`
`=sin37^(@)-sin37^(@)=0`
346.

If two angles the triangle abc 45° and 60° then the ratio of the smallest and greatest sides is

Answer»

Angles are 45°, 60° and 75°. 

The ratio of smallest and greatest sides = sin45°; sin75°= 3 1:1

347.

The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes? (Use π = 3.14).

Answer»

Solution: In 60 minutes, the minute hand of a watch completes one revolution. Therefore,
in 40 minutes, the minute hand turns through 2/3 of a revolution. Therefore,
θ = 2 × 360°/3
or 4π/3
radian. Hence, the required distance travelled is given by
l = r θ = 1.5 × 4π/3 cm = 2π cm = 2 × 3.14 cm = 6.28 cm.

348.

यदि `secA+tanA=a,` हो तो `cosA` का मान होगा ?A. `(a^(2)+1)/(2a)`B. `(2a)/(a^(2)+1)`C. `(a^(2)-1)/(2a)`D. `(2a)/(a^(2)-1)`

Answer» Correct Answer - b
`SecA+tanA=a`
we know that
`sec^(2)A-tan^(2)A=1`
`(secA-tanA)(secA+tanA)=1`
`(secA-tanA)alpha=1`
`secA-tanA=(1)/(alpha)`
`secA+tanA=alpha`
`2secA=alpha+(1)/(alpha)`
` 2sec(1)/(A)=(a^(2)+1)/(alpha)`
`sec theta=(alpha^(@)+1)/(2alpha)`
so, `cos theta=(2alpha)/(a^(2)+1)`
349.

`cos^(2)20^(@)+cos^(2)70^(@)` का मान ज्ञात करो ।A. `sqrt(2)`B. 1C. `(1)/(3)`D. 2

Answer» Correct Answer - b
`cos^(2)20^(@)+cos^(2)70^(@)=cos^(2)(90-70)+cos^(2)70^(@)`
`Sin^(2)70^(@)+cos^(2)70^(@)`
` sin^(2)70^(@)+cos^(2)70^(@)=1`
350.

यदि `sinthetaxxcostheta=1//2` हो, तो `sintheta-costheta` का मान क्या होगा, जहाँ `0^(@)ltthetalt90^(@)`

Answer» Correct Answer - a
`sin thetaxx cos theta=(1)/(2)`
Multiply by 2 both side
`2sin theta cos theta=1`
`sin theta=2`
`sin 2theta=sin90^(@)`
`2theta=90^(@)`
`2theta=45^(@)`
`theta=45^(@)`
So, `sin theta-cos theta`
`=sin45^(@)-cos45^(@)`
`=(1)/sqrt(2)-(1)/sqrt(2)`