Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

If `2sin^(2)_(theta)-3sinta_(theta)+1=0` `theta` being positive angle, then the value of `theta` are (यदि धन न्यूनं कोण है तो `theta` के मान है)A. `30^(@),90^(@)`B. `60^(@),55^(@)`C. `60^(@),45^(@)`D. `45^(@),60^(@)`

Answer» Correct Answer - a
According to the question.
`2sin^(2)theta-3sintheta+1=0`
Put `theta=30^(@)`
`2xx sin^(2)30^(@)-3sin30^(@)+1=0`
Let ` theta=30^(@)`
`rArr4xxsin^(2)30^(@)-1=0`
`rArr4xx(1)/(4)-1=0`
`rArr0=0` satisfied
`rArr` In the question ,putting `theta=30^(@)`
`rArrcos^(2)theta+tan^(2)theta`
`rArrcos^(2)30^(@)+ tan^(2)30^(@)`
`rArr ((sqrt3)/(2))^(2)+((1)/sqrt(3))^(2)`
`rArr(3)/(4)+(1)/(3)rArr(13)/(12)`
202.

यदि `cos^(4)theta-sin^(4)theta=(2)/(3)` है तो `1-2sin^(2)theta` का मान क्या होगा?A. `(4)/(3)`B. `0`C. `(2)/(3)`D. `(1)/(3)`

Answer» Correct Answer - c
`cos^(2)theta-sin^(4)theta=(2)/(3)`
`rArr(cos^(@)theta-sin^(2)theta)(cos^(2)theta+sin^(2)theta)=(2)/(3)`
`rArrcos^(2)theta-sin^(2)theta=(2)/(3)`
`rArr1-sin^(2)theta-sin^(2)theta=(2)/(3)`
`rArr1-2sin^(2)theta=(2)/(3)`
203.

The value of `(sinA)/(1+cosA)+(sinA)/(1-cosA)` is `(0^(@) lt A lt 90^(@))`A. 2 co s ec AB. 2 sec AC. 2 sin AD. 2 cos A

Answer» Correct Answer - a
`(sinA)/(1+cosA)+(sinA)/(1-cosA)`
`rArr(sinA(1- cosA)+sinA(1+cosA))/((1+cosA)(1-cosA))`
`rArr(sinA-sinAcosA+sinA+sinAcosA)/(1-cos^(2)A)`
`rArr(2sinA)/(sin^(2)A)=2co s ecA`
204.

SinA = 1/x then CosA = ?1. \({\sqrt{x^2 + 1} \over x}\)2. \(x \over \sqrt{x^2-1}\)3. \({\sqrt{x^2-1} \over x}\)4. \(x \over \sqrt{x^2 + 1}\)

Answer» Correct Answer - Option 3 : \({\sqrt{x^2-1} \over x}\)

Given:

SinA = 1/x

Concept Used:

Sinθ = Perpendicular / Hypotenuse

Cosθ = Base / Hypotenuse

Base2 + Perpendicular2 = Hypotenuse2

Calculation:

Sinθ = Perpendicular / Hypotenuse

SinA = 1/x

Comparing get,

Perpendicular = 1 and Hypotenuse = x

Base = √x2 - 1

CosA = Base / Hypotenuse

⇒ CosA = \({\sqrt{x^2-1} \over x}\)

∴ CosA = \({\sqrt{x^2-1} \over x}\).

205.

tanα = a/b then the value of Sinα + Cosα is:1. \(\sqrt{a^2 + b^2} \over {a + b}\)2. \({a + b} \over \sqrt{a^2 + b^2}\)3. \(\sqrt{a^2 - b^2} \over {a + b}\)4. \({a + b} \over \sqrt{a^2 - b^2}\)

Answer» Correct Answer - Option 2 : \({a + b} \over \sqrt{a^2 + b^2}\)

Given:

tanα = a/b

Concept Used:

tanθ = Perpendicular/Base

Sinθ = Perpendicular/Hypotenuse

Cosθ = Base/Hypotenuse

Base2 + Perpendicular2 = Hypotenuse2

Calculation:

tanα = a/b

and tanα = Perpendicular/Base

Comparing above two get,

Perpendicular = a and Base = b

Hypotenuse = √a2 + b2

Sinα = Perpendicular/Hypotenuse

⇒ Sinθ = a/√a2 + b2

Cosα = Base/Hypotenuse

⇒ Cosα = b/√a2 + b2

Sinα + Cosα =  (a/√a2 + b2) + (b/√a2 + b2)

⇒ Sinα + Cosα = \({a + b} \over \sqrt{a^2 + b^2}\)

∴ Sinα + Cosα = \({a + b} \over \sqrt{a^2 + b^2}\)

206.

यदि `sec^(2)theta+tan^(2)theta=sqrt(3)` हो, तो `sec^(4)theta-tan^(4)theta` का मान है-A. `(1)/(sqrt(3))`B. 1C. `sqrt(3)`D. 0

Answer» Correct Answer - c
`sec^(2)theta+tan^(2)theta=sqrt(3)`
We know that `sec^(2)theta-tan^(2)theta=1`
then `sec^(4)theta-tan^(4)theta`
`=(sec^(2)theta+tan^(2)theta)(sec^(2)theta-tan^(2)theta)`
`= sqrt(3)xx1=sqrt(3)`
207.

यदि `sec(4x-50^(@))="co s ec"(50^(@)-x),` तो `x` का मान क्या है ?A. `45^(@)`B. `90^(@)`C. `30^(@)`D. `60^(@)`

Answer» Correct Answer - c
`sec(4x-50^(@))=co s ec(50^(@)-x)`
`sec(4x-50^(@))=co s ec(90^(@)-x)`
`sec(4x-50^(@))=s ec140^(@)+x`
`4x-50^(@)=40^(@)+x`
`3x=90^(@)`
`x=30^(@)`
208.

If `tan alpjha=2`, then he value `("co s ec"^(2) alpha-sec^(2) alpha)/("co s ec"^(2)alpha+sec^(2) alpha)is `A. `-(15)/(9)`B. `(3)/(5)`C. `(3)/(5)`D. `(17)/(5)`

Answer» Correct Answer - c
`tan alpha=2` (given)
`=(tan^(2)alpha-sec^(2)alpha)/(co s ec^(2)alph+sec^(2)alpha)`
(Divide by `co s ec^(2)alpha` "both in N and D")
`=(1-tan^(2)alpha)/(1+tan^(2)alpha)`
`=(1-(2)^(2))/(1+(2)^(2))`
`(1-(2)^(2))/(1+(2)^(2))`
` =-(3)/(5)`
209.

If `sintheta_co s ectheta=2,` then value of `sin^(1000)theta+co s ec^(1000)theta` is equal to.A. 1B. 2C. 3D. 100

Answer» Correct Answer - b
`sintheta+co s ectheta=2`
`sin theta+(1)/(sintheta)=2`
Now, see the value of `sintheta`
which has value 1
`sin theta=sin90^(@)=1`
`rArrsin90^(@)+(1)/(sin90^(@))=2`
`rArr1+(1)/(1)=2`
`rArr2=2`
`rArr sin^(100)theta+co s ec^(100) theta`
`rArr sin^(100)90^(@)+(1) /(sin^(100)90^(@))=(1)^(100)+(1)/((1)^(100))`
210.

If `sin(theta+30^(@))=(3)/(sqrt12)` then findA. `(1)/(4)`B. `(3)/(4)`C. `(sqrt3)/(4)`D. `(1)/(2)`

Answer» Correct Answer - b
`sin(theta+30^(@))=(3)/sqrt(12)=(3)/(2sqrt(3))=sqrt(3)/(2)sin(theta+30^(@))=sin60^(@)`
`therefore theta=30^(@)`
`cos^(2)theta=cos^(2)30^(@)`
`=((sqrt(3))/(2))^(2)`
`=(3)/(4)`
211.

If `cos^(2)theta-sin^(2)theta=(1)/(3)`, where, `theta(0 letheta le90^(@))`, the value of `co^(4)theta` is (यदि `cos^(2)theta-sin^(2)theta=(1)/(3)` और जहाँ `theta(0 letheta le90^(@))` का `co^(4)theta` मान ज्ञात करे)A. `(1)/(3)`B. `(2)/(3)`C. `(1)/(9)`D. `(2)/(9)`

Answer» Correct Answer - a
`3sin theta+5cos theta=5`
`5sin theta-3 cos theta=x`
now,
`a^(2)+ b^(2)=p^(2)+q^(2)`
`3^(2)+5 ^(2)=5^(2)+x^(2)`
`9+25=25+x^ (2)`
`9=x^(2)`
`x=+-3`
212.

If `2cos theta-sintheta`=`(1)/(sqrt2)` `theta(0 letheta le90^(@))` the valie of `2sin theta+cos theta is`A. `(1)/(sqrt2)`B. `sqrt2`C. `(3)/(sqrt2)`D. `(1)/(sqrt3)`

Answer» Correct Answer - c
`2 cos theta-sin theta=(1)/sqrt(2)`
when
`ax+0by=m`
then `bx -+ay =sqrt(a ^(2)+b^(2)-m^(2))`
`2Cos theta-sintheta=(1)/sqrt(2)`
`costheta+2sin thetasqrt(4 +1-(1)/(2))`
`=(3)/sqrt(2)`
213.

The value of `theta(0 letheta le90^(@))` satisfying `2 sin^(2) theta= 3 cos theta is ` `2 sin^(2) theta= 3 cos theta is `(को संतुस्ट करने वाले) `theta(0 letheta le90^(@))` (का मान क्या है )A. `60^(@)`B. `90^(@)`C. `30^(@)`D. `45^(@)`

Answer» Correct Answer - a
Hit `&` Trial method put `theta=60^(@)` option(s) `2sin 60^(@)=3cos60^(@)`
`2((sqrt(3))/(2))^(2)=3((1)/(2))`
`(3)/(2)=(3)/(2)` (LHS=RHS)
214.

If `sinA-cosA=(sqrt(3)-1)/(2)`, then the value of `sinA.cosA` isA. `(1)/(sqrt(3))`B. `(sqrt(3))/(2)`C. `(1)/(4)`D. `(sqrt(3))/(4)`

Answer» Correct Answer - d
`sinA-cosA=(sqrt(3)-1)/(2)`
Shotcut method:-
Put `theta=60^(@)`
`rArrsin60^(@)-cos60^(@)=sqrt(3)/(2)`
`rArrsqrt(3)/(2)-(1)/(2)=sqrt(3-1)/(2)`
`rArr(sqrt(3)-1)/(2)=(sqrt(3)-1)/(2)`
(Mathced)
Hence `SinA.cosA`
`sin60^(@).cos60^(@)`
`rArrsqrt(3)/(2)xx(1)/(2)=sqrt(3)/(4)`
`sinA-cosA=(sqrt(3)-1)/(2)`
Squaring both side,
`rArrsin^(2)A+cos^(2)A-3sinAcosA`
`=((sqrt(3)-1)/(2))^(2)`
`rArr1-2sinA cosA=(3+1-2sqrt(2))/(4)`
`rArr2sinA cosA=101((2-sqrt(3)))/(4)`
`rArr2sinA.cosA=(2-2+sqrt(3))/(2)`
`sinA.cosA=sqrt(3)/(4)`
215.

The general solution of cot θ + tan θ = 2 is1. \(\theta = n\pi + {( - 1)^n}\frac{\pi }{8}\)2. \(\theta = \frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{6}\)3. \(\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{4}\)4. \(\theta = \frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{8}\)

Answer» Correct Answer - Option 3 : \(\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{4}\)

Calculation:

Given cot θ + tan θ = 2

\(\rm {1\over \tanθ} +\tan θ = 2\)

tan2 θ - 2 tan θ + 1 = 0

(tan θ - 1)2 = 0

tan θ = 1

θ = \({\pi\over4}, {5\pi\over4}, {9\pi\over4}...\) = \(\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{4}\), (n ∈ N)

216.

How to prove sec4A-sec2A=tan4A+tan2A

Answer»

Solution: 

Explanation: Use one of the Pythagorean identity namely,

sec2A=1+tan2A

LHS = sec4A−sec2A
=(sec2A)2−sec2A
=(1+tan2A)2−(1+tan2A)
=1+2tan2A+tan4A−1−tan2A

=tan4A+tan2A

= RHS

217.

`sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+ . . . .+sin^(2)85^(@)+sin^(2)90^(@)` is equal toA. `7(1)/(2)`B. `8(1)/(2)`C. `9`D. `9(1)/(2)`

Answer» Correct Answer - d
`(sin^(2)5^(@)+sin^(2)10^(@)+..........+sin^(2)85^(@))+sin^(2)90^(@)`
No. of term`={((85-5)/(5))+1}+1`
`=(17)/(2)+1`
sum of seris `=9(1)/(2)`
[use this approach in eaxm]
218.

यदि `angleA` और `angleB` एक दूसरे के पूरक कोण है तो `Sec^(2)A+Sec^(2)B-Sec^(2)A.Sec^(2)B` का मान ज्ञात करे?A. 1B. `-1`C. `2`D. 0

Answer» Correct Answer - d
`A+B=90^(@)`
`B=90-A`
`sec^(2)A+sec^(2)B-sec^(2)A.sec^(2)B`
`sec^(2)A+sec^(2)(90-A)-sec^(2)A`.
`sec^(2)(90-A)`
`sec^(2)A+co s ec^(2)A-sec^(2)A.co s ec^(2)A`.
`(1)/(cos^(2)A)+(1)/(sin^(2)A)-(1)/(cos^(2)A) xx(1)/(sin^(2)A)`
`(sin^(2)A+cos^(2)A)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A .sin^(2)A)`
`(1)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A .sin^(2)A)`
`(1)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A.sin^(2)A)`
`(1)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A.sin^(2)A)=0`
219.

The value of `(sin39^@)/(cos51^(@))+2(tan11^(@)tan31^(@)tan45^(@)tan59^(@)tan79^(@))-3(sin^(2)21^(@)+sin^(2)69^(@))` is-A. 2B. `-1`C. 1D. 0

Answer» Correct Answer - d
`(sin39^(@))/(cos51^(@))+2(tan11^(@)tan31^(@)tan45^(@)tan59^(@)tan79^(@))-3(sin^(2)21^(@)+sin^(2)69^(@)]`
if `A+B=90^(@)`
then
Than `A. tan B=1`
`Sin^(2)A+sin^(2)B=1`
`1+2( tan11.tan79)(Tan31.tan59)`
`.tan45^(@)-3xx1`
`1+2-3=0`
220.

यदि `sinalphasec(30^(@)+alpha)=1,(0lealphale60^(@))` है तो `sinalpha+1cos2alpha` का मान क्या होगा?A. `1`B. `(2sqrt(3))/(2sqrt(3))`C. 0D. `sqrt(2)`

Answer» Correct Answer - a
`sin alpha sec (30^(@)+alpha)=1`
Shortcut method
Put `alpha` value between `0^(@)` to `60^(@)`
if `a=30^(@)`
`sin30^(@)sec(30^(@)+30^(@))=1`
`sin30^(@)sec60^(@)=1`
`(1)/(2)xx2=1`
1=1 (satisfy)
so `alpha=30^(@)`
`sin alpha+cos2alpha`
`=sin30^(@)+cos2xx30^(@)=sin30^(@)+cos60^(@)`
`=(1)/(2)+(1)/(2)=1`
Alternate
if `,sin alpha sec beta=1`
then `alpha+beta=90^(@)`
`sin alpha sec(30^(@)+alpha)=1`
`alpha+30^(@)+alpha=90^(@)`
`2alpha=60^(@)`
`alpha=30^(@)`
`sin alpha+cos2alpha`
`sin30+cos2xx30=1`
221.

sin 3x is equal to ?1. 3 sin x - 4cos3 x2. ​3 sin x - 4sin3 x3. 4 cos3 x - 3 cos x4. 4sin3 x - 3 sin x

Answer» Correct Answer - Option 2 : ​3 sin x - 4sin3 x

Concept:

sin (A + B) = sin A cos B + cos A sin B

cos2 x =  1 - sin2 x

cos 2x = 1 - 2sinx

 

Calculations:

Consider, sin 3x 

⇒sin (2x + x)

⇒ sin 2x cos x + cos 2x sin x

⇒ 2 sin x cos x. cos x + (1 - 2sinx) sin x

⇒ 2 sin x cos2 x + (1 - 2sinx) sin x

⇒ 2 sin x (1 - sin2 x) + (sin x - 2sinx)

⇒ 2 sin x  - 2sin3 x + sin x - 2sinx

⇒ 3 sin x  - 4sin3 x 

Hence, sin 3x = 3 sin x  - 4sin3 x 

222.

Find the value of sin (-450°)

Answer» Correct Answer - Option 2 : -1

Concept:

Trigonometry Formula:

sin (-θ) = - sin θ

sin (360 + θ) = sin θ

sin 90° = 1

Calculation:

sin (-450°)

= - sin 450°        [∵ sin (-θ) = - sin θ]

= - sin (360° + 90°)

= - sin 90°          [∵ sin (360 + θ) = sin θ]

= -1

223.

What is the value of 2 sin 75° cos 75° ?1. \(\frac 12\)2. \(\frac 1 {\sqrt 2}\)3. \(\frac {\sqrt 3}2\)4. None of these

Answer» Correct Answer - Option 1 : \(\frac 12\)

Concept:

2sinx cos x = sin 2x

sin (90° + x) = cos x

Calculation:

Given, 2 sin 75° cos 75°

= sin [2 (75°)]

= sin (150°)

= sin (90° + 60°)

= cos 60°

\(\rm \dfrac 1 2\)

Hence, the value of 2 sin 75° cos 75° is \(\rm \dfrac 1 2\)

224.

The complementary angle of 45° 45' is ______.A. 45° 55'B. 44° 25'C. 44° 15'D. 46° 25'1. B2. C3. D4. A

Answer» Correct Answer - Option 2 : C

Given:

Angle 45° 45' is a complementry angle

Concept used:

Sum of complementary angles is 90° 

1° = 60 minutes

Calculation:

Let the other angle is x

⇒ x + 45° 45' = 90° 

⇒ x = 90° – 45° 45'

⇒ x = 44° 15'

∴ Complementry angle of 45° 45' is 44° 15'.

225.

What is the value of 2cos2 15° - 1 ?1. \(\frac 12\)2. \(\frac 1 {\sqrt 2}\)3. \(\frac {\sqrt 3}2\)4. \(\sqrt 3 - 1\)

Answer» Correct Answer - Option 3 : \(\frac {\sqrt 3}2\)

Concept:

2cos2 θ  - 1 = cos 2θ 

 

Calculations:

Consider, 2cos2 15° - 1

= cos 2 (15°) 

= cos (30°) 

\(\dfrac {\sqrt 3}2\)

226.

यदि `cos^(2)x+cos^(4)x=1` हो, तो `tan^(2)x+tan^(4)x` का मान क्या है ?

Answer» Correct Answer - b
`cos^(2)x+cos^(4)x=1`
`cos^(4)x=1-cos^(2)x`
`cos^(4)x=1 -cos^(2)x`
`cos^(4)x=sin^(2)x`
`cos^(2) x=tan^(2)x` ......(i)
`cos^(4)x=tan^(4)x`
`tan^(2)x+tan^(4)x`
`cos^(2)x+cos^(4)x=1`
(From eq. (i) and (ii))
227.

यदि `"co s ec"theta+sintheta=5//2` है, तब `"co s ec"theta-sintheta` का मान ज्ञात कीजिए ?A. `-3//2`B. `3//2`C. `-sqrt(3)//2`D. `sqrt(3)//2`

Answer» Correct Answer - b
`co s ec theta+sintheta=(5)/(2)`
`(1)/(sintheta)+sin theta=(5)/(2)`
Squaring both sides
`sin^(2)theta+(1)/(sin^(2)theta)+2sintheta(1)/(sintheta)=(25)/(4)`
`sin^(2)theta+(1)/(sin^(2)theta)=(25)/(4)-2=(17)/(4)` .....(i)
So, `(co s ectheta-sintheta)^(2)=((1)/(sintheta)-sintheta)^(2)`
`=(1)/(sin^(2)theta)+sin^(2)theta-2sintheta.(1)/(sintheta)`
`(co s ectheta-sintheta)^(2)=(17)/(2)-2`
`co s ec theta-sintheta=sqrt((17-8)/(4))`
`=sqrt((9)/(4))=(3)/(2)`
228.

Consider the following statements:I. If P, Q and R are the angles of triangle then tan (P + Q)/2 = sec (R/2)II. Sin (X + Y)/2 = Cos (Z/2) only possible if X + Y + Z = 180°Find which statement is/are correct?1. Only 12. Only 23. Both 1 and 24. Neither 1 nor 2

Answer» Correct Answer - Option 2 : Only 2

Given:

Two statements are given

Formula Used:

Basic concept of trigonometric ratio and identities

We know that if A, B and C is the angles of triangle or their sum is 180°

∴ tan (A + B)/2 = cot (C/2)

∴ sin (A + B)/2 = cos (C/2)

∴ sec (A + B)/2 = cosec (C/2)

Where versa vice is possible

Calculation:

P, Q and R are the angles of a triangle

∴ tan (P + Q)/2 = cot (R/2)

But it is given in statement I

tan (P + Q)/2 = sec (R/2)

∴ Statement 1 is incorrect

Now, X + Y + Z = 180°

∴ Sin (X + Y)/2 = Cos (Z/2)

So, Statement 2 is correct

Hence, option (2) is correct

229.

If sec (θ + 45) ° = √8/2 then find then calculate of tan θ?

Answer» Correct Answer - Option 1 : 0

Given:

It is given that sec (θ + 45) ° = √8/2

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

Sec 45° = √2 and tan 0° = 0

Calculation:

We can simplifies the given expression

∴ Sec (θ + 45) ° = 2√2/2

⇒ Sec (θ + 45) ° = √2

⇒ Sec (θ + 45) ° = Sec 45°

⇒ (θ + 45) ° = 45°

⇒ θ = 0°

Now, we have to find tan θ

∴ tan0° = 0

Hence, option (1) is correct

230.

Consider the following statement(1) Value of Cos26° + Cos220 °+ Cos284 °+ Cos270° is 2.(2) Sin 45° = Cos 45°.(3) Sin 0° + Cos 0° is 1.Which of the above statement(s) is/are right?1. Only 12. Only 23. Only 34. 1, 2 and 3

Answer» Correct Answer - Option 4 : 1, 2 and 3

Concept

Sin2A + Cos2A = 1

Calculation

Statement 1

Cos2(90°– 84°) + Cos2 (90° – 70°) + Cos284° + Cos2 70°

⇒  Sin284° + Sin270° + Cos284 °+ Cos270°

⇒  Sin284 °+ Cos284 °+ Sin270°+ Cos270°

⇒  1 + 1

⇒  2

Statement 2

Sin 45° = (1/√2)

Cos 45° = (1/√2)

Statement 3

Sin 0° + Cos 0°

⇒   0 + 1

⇒   1

Hence, every statement is right

231.

Find the value of tan(210°).A. 1/√3B. -1/√3C. -1D. 11. D2. A3. C4. B

Answer» Correct Answer - Option 2 : A

Given:

tan(210°)

Concept used:

tan(180° + θ) = tanθ, tan is positive in 3rd quadrant.

Calculation:

tan(210°) = tan(180° + 30°)

⇒ tan(210°) = tan30° 

⇒ tan(210°) = 1/√3

∴ The value of tan(210°) is 1/√3.

232.

Find the value of Cos 225° 1. 0.70712. -0.8663. 0.8664. -0.7071

Answer» Correct Answer - Option 4 : -0.7071

Given:

Cos 225°

Formula Used:

Cos (180° + θ ) = -Cos θ

Concept Used:

Cosθ  in the third quadrant gives negative value.

Cos 45° = 1/√2

√2 = 1.414

Calculation: 

Cos 225° = Cos (180° + 45° )

⇒ Cos 225° = -Cos 45°

⇒ -Cos 45° = -1/√2 = 1000/1414 = -0.7071

The value of Cos 225° is -1/√2 or -0.7071

233.

Find the value of \({\cot ^{ - 1}}\left( {\frac{4}{5}} \right) + {\cot ^{ - 1}}\left( { - \frac{4}{5}} \right)\).

Answer» Correct Answer - Option 3 : π 

Concept:

It is known that \({\cot ^{ - 1}}\left( { - x} \right) = \pi - {\cot ^{ - 1}}\left( x \right)\) for all value \(x \in R\).

Calculation:

The expression be rewritten as \({\cot ^{ - 1}}\left( {\frac{4}{5}} \right) + {\cot ^{ - 1}}\left( { - \frac{4}{5}} \right)\)

\(= {\cot ^{ - 1}}\left( {4/5} \right) + \left( {\pi - {{\cot }^{ - 1}}\left( {4/5} \right)} \right)\)

\(= {\cot ^{ - 1}}\left( {4/5} \right) + \pi - {\cot ^{ - 1}}\left( {4/5} \right)\)

\(= \pi\)

234.

Find the value of \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}}\).1. \({\cos ^{ - 1}}\frac{{13}}{{64}}\)2. \({\tan ^{ - 1}}\frac{{13}}{{84}}\)3. \({\sin ^{ - 1}}\frac{{13}}{{64}}\)4. 0

Answer» Correct Answer - Option 2 : \({\tan ^{ - 1}}\frac{{13}}{{84}}\)

Concept:

\({\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {1 - {x^2}} }}} \right)\)

\({\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x - y}}{{1 + xy}}} \right)\)

Calculation:

As we know, \({\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {1 - {x^2}} }}} \right)\)

⇒ \({\cos ^{ - 1}}\frac{4}{5} = {\tan ^{ - 1}}\frac{3}{4}\;\ and\ {\cos ^{ - 1}}\frac{{15}}{{17}} = {\tan ^{ - 1}}\frac{8}{{15}}\)

The expression \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}}\)  can be rewritten as follows:

\({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}} = {\tan ^{ - 1}}\frac{3}{4} - {\tan ^{ - 1}}\frac{8}{{15}}\)

As we know that, \({\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x - y}}{{1 + xy}}} \right)\)

\({\tan ^{ - 1}}\frac{3}{4} - {\tan ^{ - 1}}\frac{8}{{15}} = {\tan ^{ - 1}}\left( {\frac{{\frac{3}{4} - \frac{8}{{15}}}}{{1 + \frac{2}{5}}}} \right)\)

\(= {\tan ^{ - 1}}\left( {\frac{{13}}{{84}}} \right)\)

235.

For \(x \in \left( { - \frac{{3\pi }}{2},\frac{\pi }{2}} \right)\), the expression \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right)\) can be simplified as:1. \(\frac{\pi }{4} + \frac{x}{2}\)2. \(\frac{\pi }{4} - \frac{x}{2}\)3. tan x4. tan (-x)

Answer» Correct Answer - Option 1 : \(\frac{\pi }{4} + \frac{x}{2}\)

Concept:

  • \({\cot ^{ - 1}}\left( {\cot x} \right) = x\)
  • \(\cot \left( {x + y} \right) = \frac{{\cot x\cot y - 1}}{{\cot y + \cot x}}\)

 

Calculation:

The expression \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right)\) can be written as follows:

\({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right) = {\cot ^{ - 1}}\left( {\frac{{{{\cos }^2}\left( {x/2} \right) + {{\sin }^2}\left( {x/2} \right) - 2\sin \left( {x/2} \right)\cos \left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right) - {{\sin }^2}\left( {x/2} \right)}}} \right)\)

\( = {\cot ^{ - 1}}\left( {\frac{{{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)}^2}}}{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)\left( {\cos \left( {x/2} \right) + \sin \left( {x/2} \right)} \right)}}} \right)\)

\(= {\cot ^{ - 1}}\left( {\frac{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)}}{{\left( {\cos \left( {x/2} \right) + \sin \left( {x/2} \right)} \right)}}} \right)\)

Dividing the numerator and denominator of RHS by sin(x/2) , we get

\({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right) = {\cot ^{ - 1}}\left( {\frac{{\left( {cot(\frac{x}{2})\ cot \frac{\pi}{4} - \ 1} \right)}}{{\left( {cot(\frac{\pi}{4} + \cot \left( {\frac{x}{2}} \right)} \right)}}} \right)\)

As we know that, \(\cot \left( {x + y} \right) = \frac{{\cot x\cot y - 1}}{{\cot y + \cot x}}\)

\(= {\cot ^{ - 1}}\left( {\cot \left( {\frac{\pi }{4} + \frac{x}{2}} \right)} \right)\)

\(= \frac{\pi }{4} + \frac{x}{2}\)

236.

Find the value of \(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right)\).1. \(\frac{1}{{\sqrt 5 }}\)2. \(\frac{{2\sqrt 6 }}{5}\)3. \(- \frac{1}{{\sqrt 5 }}\)4. \( - \frac{{2\sqrt 6 }}{5}\)

Answer» Correct Answer - Option 2 : \(\frac{{2\sqrt 6 }}{5}\)

Concept:

\({\cos ^{ - 1}}\left( {\cos x} \right) = x\)

Calculation:

\(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right)\)

Let,

\({\sin ^{ - 1}}\frac{1}{5} = x\)

\(\sin x = \frac{1}{5}\)

We know,

\({\sin ^2}x + {\cos ^2}x = 1\)

\({\left( {\frac{1}{5}} \right)^2} + {\cos ^2}x = 1\)

\({\cos ^2}x = 1 - {\left( {\frac{1}{5}} \right)^2}\)

\({\cos ^2}x = \frac{{24}}{{25}}\)

\(\cos x = \frac{{2\sqrt 6 }}{5}\)

\(x = {\cos ^{ - 1}}\frac{{2\sqrt 6 }}{5}\)

Now substitute  for \({\sin ^{ - 1}}\frac{1}{5}\) in \(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right)\)

\(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right) = \cos \left( {{{\cos }^{ - 1}}\frac{{2\sqrt 6 }}{5}} \right)\)

\( = \frac{{2\sqrt 6 }}{5}\)

237.

If \({\sin ^{ - 1}}\left( {1 - x} \right) + 2{\sin ^{ - 1}}(2x) + {\cos ^{ - 1}}(2x) = \frac{\pi }{2}\), the value of x is:1. 12. -13. None of these4. 2

Answer» Correct Answer - Option 3 : None of these

Concept:

\({\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \frac{\pi }{2}\) and \({\sin ^{ - 1}}\left( { - x} \right) = - {\sin ^{ - 1}}x\)

Calculation:

\({\sin ^{ - 1}}\left( {1 - x} \right) + 2{\sin ^{ - 1}}\left( {2x} \right) + {\cos ^{ - 1}}\left( {2x} \right) = \frac{\pi }{2}\)

\({\sin ^{ - 1}}\left( {1 - x} \right) + 2{\sin ^{ - 1}}\left( {2x} \right) + {\cos ^{ - 1}}\left( {2x} \right) = {\sin ^{^{ - 1}}}\left( {2x} \right) + {\cos ^{ - 1}}\left( {2x} \right)\)

\({\sin ^{ - 1}}\left( {1 - x} \right) + {\sin ^{ - 1}}2x = 0\)

\({\sin ^{ - 1}}\left( {1 - x} \right) = - {\sin ^{ - 1}}\left( {2x} \right)\)

\({\sin ^{ - 1}}\left( {1 - x} \right) = {\sin ^{ - 1}}\left( { - 2x} \right)\)

\(1 - x = - 2x\)

\(x = - 1\)

But as we can see that, by substituting x = - 1 in the given equation we get, sin-1(2) + sin-1(-2) = 0, but we know that domain of sin-1 x is [-1, 1]

So, x = - 1 is not possible solution of the given equation.

Hence, there is no value of x which satisfies the given equation

238.

Find the value of \(2{\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) .1. \( -\frac{\pi }{4}\)2. \( - \frac{\pi }{3}\)3. \(\frac{\pi }{4}\)4. \( - \frac{\pi}{2}\)

Answer» Correct Answer - Option 4 : \( - \frac{\pi}{2}\)

Concept:

If x = sin θ then \(θ = {\sin ^{ - 1}}x\)

Similarly, if x = tan θ then \(θ = {\tan ^{ - 1}}x\)

Calculation: 

The expression \({\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) can be rewritten as:

\({\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right] = {\tan ^{ - 1}}\left[ {2\cos \left( {\frac{{2\pi }}{3}} \right)} \right]\)

\(= {\tan ^{ - 1}}\left[ {2\left( { - \frac{1}{2}} \right)} \right]\)

\(= {\tan ^{ - 1}}\left( { - 1} \right)\)

\(= - \frac{\pi}{4}\)

\(2{\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) \(= - 2 \times \frac{\pi}{4} = - \frac{\pi}{2}\)

239.

Find the value of y if \(y = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) + 3{\sin ^{ - 1}}x\),where x ∈ [-1, 1] ?1. \(\frac{\pi }{2}\)2. \(\frac{{3\pi }}{2}\)3. 4π 4. \( - \frac{\pi }{2}\)

Answer» Correct Answer - Option 2 : \(\frac{{3\pi }}{2}\)

Concept:

It is known that, \({\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \frac{\pi }{2},x \in \left[ { - 1,1} \right]\)

Calculation:

\(y = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) + 3{\sin ^{ - 1}}x\)---------(1)

Take \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)\)

Let us substitute x = cos θ in \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)\)

\({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) = {\cos ^{ - 1}}\left( {4{{\cos }^3}θ - 3\cos θ } \right)\)

\(= {\cos ^{ - 1}}\left( {\cos 3θ } \right)\)

\(= 3θ \)

\(= 3{\cos ^{ - 1}}x\)

Now substitute the value of \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)\) in equation (1)

\(y = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) + 3{\sin ^{ - 1}}x\)

\( = 3{\cos ^{ - 1}}x + 3{\sin ^{ - 1}}x\)

As we know that, \({\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \frac{\pi }{2},x \in \left[ { - 1,1} \right]\)

\( y = \frac{3\pi}{2}\)

240.

The value of \(\arctan \left( {1/\sqrt 3 } \right) + \operatorname{arcsec} \left( { - 2} \right)\) is:1. \(\frac{\pi }{2}\)2. \( \frac {5\pi}{6} \)3. \(- \frac{\pi }{2}\)4. 0

Answer» Correct Answer - Option 2 : \( \frac {5\pi}{6} \)

Concept:

\(\arctan x = y ⇒ x = \tan y\)

Calculation:

Here, we have to find the value of \(\arctan \left( {1/\sqrt 3 } \right) + \operatorname{arcsec} \left( { - 2} \right)\)

\(\tan x = \frac{1}{{\sqrt 3 }}\) ⇒ \(x = \frac{\pi }{6}\)

Also, \(\sec y = -2\) ⇒ \(y = \frac{2\pi }{3}\)

So, \(\arctan \left( {1/\sqrt 3 } \right) + {\mathop{\rm arcsec}\nolimits} \left( { - 2} \right) = x + y\)

\(= \frac{\pi }{6} + \frac{2\pi }{3}\)

\(= \frac{\pi+4\pi}{6} = \frac {5\pi}{6} \)

241.

If sin(A+B)=1/2 and 2cos(A+B)=1.find A and B.

Answer»

Sin (A + B) = 1/2
A + B = sin-1(1/2) 
A + B = 30° ...... (1)

Now,

2 Cos(A + B) = 1
Cos(A + B) = 1/2
A + B = Cos-1(1/2)
A + B = 60°.........(2)

Equation 1 and 2 contradicts each other.  Hence value of A & B cant be determined from the above two equations.

242.

If \(\rm x+y=\frac{\pi}{4}\), then the value of (1 + tan x)(1 + tan y) is:

Answer» Correct Answer - Option 3 : 2

Concept:

Trigonometric Identities:

\(\rm \tan(A\pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\).

 

Calculation:

Given that \(\rm x+y=\frac{\pi}{4}\).

⇒ \(\rm \tan(x+y)=\tan \frac{\pi}{4}\)

\(\rm \frac{\tan x + \tan y}{1 -\tan x \tan y}=1\)

⇒ tan x + tan y = 1 - tan x tan y            ... (1)

Now, (1 + tan x)(1 + tan y)

= 1 + tan y + tan x + tan x tan y

Using the value in equation (1), we get:

= 1 + 1 - tan x tan y + tan x tan y

= 2.

 

Trigonometric Formula:

sin (A ± B)

sin A cos B ± sin B cos A

cos (A ± B)

cos A cos B ∓ sin A sin B

tan (A ± B)

\(\rm \dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\)

cot (A ± B)

\(\rm \dfrac{\mp1+cot A\cot B}{\pm\cot A+\cot B}\)

243.

If tan A - tan B = x and cot A - cot B = y, then cot (A - B) = ?1. x - y2. \(\rm \frac1x+\frac1y\)3. \(\rm \frac1x-\frac1y\)4. \(\rm \frac1y-\frac1x\)

Answer» Correct Answer - Option 3 : \(\rm \frac1x-\frac1y\)

Concept:

Trigonometric Identities:

  • \(\rm \cot\theta=\frac{1}{\tan\theta}\).
  • \(\rm \cot(A\pm B)=\frac{\mp1+cot A\cot B}{\pm\cot A+\cot B}\).

 

Calculation:

Given: tan A - tan B = x              ... (1)

And, cot A - cot B = y              ... (2)

⇒ \(\rm \frac{1}{\tan A}-\frac{1}{\tan B}=y\)

⇒ \(\rm \frac{\tan B-\tan A}{\tan A\tan B}=y\)

⇒ \(\rm \frac{-x}{\tan A\tan B}=y\)              ... [Using (1).]

⇒ \(\rm \cot A\cot B=-\frac{y}{x}\)              ... (3)

Now, \(\rm \cot(A- B)=\frac{+1+cot A\cot B}{-\cot A+\cot B}\)

\(\rm \frac{+1-\frac yx}{-y}\)              ... [Using (2) and (3).]

\(\rm \frac{y-x}{xy}\)

\(\rm \frac{1}{x}-\frac{1}{y}\).

244.

If 2 × cos(A + B) = 2 × sin(A - B) = 1, find the value of A and B.1. A = 45°  and B = 15° 2. A = 90° and B = 0° 3. A = 30° and B = 60° 4. A = 15°  and B = 45°

Answer» Correct Answer - Option 1 : A = 45°  and B = 15° 

Given

2 × cos(A + B) = 2 × sin(A - B) = 1

Concept

Here all three identities are equal to each other so, take first any two identities then the other two identities.

Calculation

Let 2 × cos(A + B) = 1

⇒ cos(A + B) = (1/2)

⇒  cos(A + B) = cos 60° 

⇒ A + B = 60°     ....(1)

Now,

Let 2 × sin(A - B) = 1

⇒ sin(A - B) = (1/2)

⇒ sin(A - B) = sin30° 

⇒ A - B = 30°     ....(2)

Now, add equation (1) and (2)

⇒ (A + B) + (A - B) = 60° + 30° 

⇒ 2A = 90° 

⇒ A = (90°/2)

⇒ A = 45° 

Now put the value of A in equation (1)

⇒ 45° + B = 60° 

⇒ B = 60° - 45° 

⇒ B = 15° 

∴ A = 45° and B = 15° 

245.

If sin θ + cos θ = 1, then the value of cos 2θ is:1. ±12. 03. \(\frac{\sqrt3}{2}\)4. \(\frac1{2+\sqrt2}\)

Answer» Correct Answer - Option 1 : ±1

Concept:

Trigonometric Identities:

  • sin2 θ + cos2 θ = 1.
  • sin 2θ = 2 sin θ cos θ.
  • cos 2θ = cos2 θ - sin2 θ.

 

Calculation:

Given: sin θ + cos θ = 1

Squaring both sides, we get:

⇒ sin2 θ + cos2 θ + 2 sin θ cos θ = 1

⇒ 1 + sin 2θ = 1

⇒ sin 2θ = 0

Using sin2 θ + cos2 θ = 1, we can say:

sin2 2θ + cos2 2θ = 1

⇒ 0 + cos2 2θ = 1

⇒ cos 2θ = ±1.

 

Trigonometric Identities:

  • sin (A ± B) = sin A cos B ± sin B cos A.
  • cos (A ± B) = cos A cos B ∓ sin A sin B.
246.

If sinx=3÷5, cosy=-12÷13, where x and y both lie in second quadrant  find the value of sin(x+y)

Answer»

We know that  sin(x)2 + cos(x)2 = 1 

(3/5)2 + cos(x)2 = 1 
9/25 + cos(x)2 = 25/25 
cos(x)2 = 16/25 
cos(x) = +/- (4/5) 
Since it is in second quadrant cos(x) = -4/5 
sin(y)2 + (-12/13)2 = 1 
sin(y)2 + 144/169 = 169/169 
sin(y)2 = 25/169 
sin(y) = +/- 5/13 
Since it is in second quadrant sin(y) = 5/13 
sin(x) = 3/5 
cos(x) = -4/5 
sin(y) = 5/13 
cos(y) = -12/13 
sin(x + y) => sin(x)cos(y) + sin(y)cos(x) 

=> (3/5) * (-12/13) + (5/13) * (-4/5) 

=> -36 / 65 + -20 / 65

=> -56/65

So, sin(x+y) = -56/65

We know that 
sin (x + y) = sin x cos y + cos x sin y ... (1) 
Now cos2x = 1 – sin2x = 1 – 9/25 = 16/25 
Therefore cos x = ± 4/5. 
Since x lies in second quadrant, cos x is negative. 
Hence cos x = −4/5 
Now sin2y = 1 – cos2y = 1 – 144/169 = 25/169 
i.e. sin y = ± 5/13. 
Since y lies in second quadrant, hence sin y is positive

Therefore, sin y =5/13. 

Substituting the values of sin x, sin y, cos x and cos y in (1), we get 
sin(x + y) 3/5 × (-12/13) + (−4/5) × 5/13 = (-36/65) –(20/65) = -56/65

Therefore, sin(x+y) = -56/65

247.

यदि `a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2)` है, तो `sec^(2)x+tan^(2)x=c^(2)` है, तो `sec^(2)x+tan^(2)x` का मान बताइए (यह मानते हुए कि `b^(2)nea^(2)`)A. `(b^(2)-a^(2)+2c^(2))/(b^(2)+a^(2))`B. `(b^(2)+a^(2)-2c^(2))/(b^(2)-a^(2))`C. `(b^(2)-a^(2)-2c^(2))/(b^(2)+a^(2))`D. `(b^(2)-a^(2))/(b^(2)+a^(2)+2c^(2))`

Answer» Correct Answer - b
`a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2)`
`a^(2)(1+tan^(3)x)-b^(2)tan^(2)x=c^(2)`
`a^(2)(1+tan^(3)x)-b^(2)tan^(2)x=c^(2)`
`a^(2)+a^(2)tan^(2)x-b^(2)tan^(2)x=c^(2)`
`a^(2)-c^(2)=tan^(2)x(b^(2)-a^(2))`
`=1+(a^(2)-c^(2))/(b^(2)-a^(2))`
`=(b^(2)-a^(2)+a^(2)-c^(2))/(b^(2)-a^(2))`
` =(b^(2)-c^(2))/(b^(2)-a^(2))`
`sec^(2)+tan^(2)x`
`=(b^(2)-c^(2))/(b^(2)-a^(2))+(a^(2)-c^(2))/(b^(2)-a^(2))`
`=(b^(2)+a^(2)-2c^(2))/(b^(2)-a^(2))` lt
248.

`(1+sec20^(@)+cot70^(@))(1-"co s ec"20^(@)+tan70^(@))` is equal to

Answer» Correct Answer - c
`(1+sec20+cot70)(1-co s ec20^(@)+tan70^(@))`
`[1+sec20+tan20](1-co s ec20+tan20)`
put `45^(@)` in place of ` 20^(@)`
`(1+sec45^(@)+tan45)(1-co s ec45^(@)+cot45^(@))`
` (1+sqrt(2)+1)(1-sqrt(2)+1)`
`(2+sqrt(2))(2-sqrt(2))=2`
249.

यदि `tan^(4)theta+tan^(2)theta=1` हो, तो `cos^(4)theta+cos^(2)theta` का मान क्या होगा ?A. 2B. 0C. 1D. -1

Answer» Correct Answer - c
`tan^(4)theta+tan^(2)theta=1`
`because sec^(2)tyheta-tan^(2)theta=1`
`tan^(@)(1+tan^(2)theta)=1`
` tan^(2)theta (sec^(2)theta)=1`
`tan^(2)theta=(1)/(sec^(2)theta)`
`tan^(2)theta=cos^(2)theta`
`because cos^(4)theta+cos^(4)theta`
`=(cos^(2)theta)^(2)+cos^(2)theta`
`=(tan^(2)theta)+tan^(2)theta`
=1 frame equation (i)
250.

`8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta)` का मान क्या होगा ?A. 20B. -20C. -4D. 4

Answer» Correct Answer - c
`8(sin^(6)theta+cos^(6)theta)-12`
`(sin^(4)theta+cos^(4)theta)`
put `theta=0^(@)`
put `theta=0^(@)`
`=8(sin^(6)0^(@)+cos^(6)theta)-12(sin^(4)0+cos^(4)0)`
`=8(0+1)-12(0+1)=-4`