InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
If `2sin^(2)_(theta)-3sinta_(theta)+1=0` `theta` being positive angle, then the value of `theta` are (यदि धन न्यूनं कोण है तो `theta` के मान है)A. `30^(@),90^(@)`B. `60^(@),55^(@)`C. `60^(@),45^(@)`D. `45^(@),60^(@)` |
|
Answer» Correct Answer - a According to the question. `2sin^(2)theta-3sintheta+1=0` Put `theta=30^(@)` `2xx sin^(2)30^(@)-3sin30^(@)+1=0` Let ` theta=30^(@)` `rArr4xxsin^(2)30^(@)-1=0` `rArr4xx(1)/(4)-1=0` `rArr0=0` satisfied `rArr` In the question ,putting `theta=30^(@)` `rArrcos^(2)theta+tan^(2)theta` `rArrcos^(2)30^(@)+ tan^(2)30^(@)` `rArr ((sqrt3)/(2))^(2)+((1)/sqrt(3))^(2)` `rArr(3)/(4)+(1)/(3)rArr(13)/(12)` |
|
| 202. |
यदि `cos^(4)theta-sin^(4)theta=(2)/(3)` है तो `1-2sin^(2)theta` का मान क्या होगा?A. `(4)/(3)`B. `0`C. `(2)/(3)`D. `(1)/(3)` |
|
Answer» Correct Answer - c `cos^(2)theta-sin^(4)theta=(2)/(3)` `rArr(cos^(@)theta-sin^(2)theta)(cos^(2)theta+sin^(2)theta)=(2)/(3)` `rArrcos^(2)theta-sin^(2)theta=(2)/(3)` `rArr1-sin^(2)theta-sin^(2)theta=(2)/(3)` `rArr1-2sin^(2)theta=(2)/(3)` |
|
| 203. |
The value of `(sinA)/(1+cosA)+(sinA)/(1-cosA)` is `(0^(@) lt A lt 90^(@))`A. 2 co s ec AB. 2 sec AC. 2 sin AD. 2 cos A |
|
Answer» Correct Answer - a `(sinA)/(1+cosA)+(sinA)/(1-cosA)` `rArr(sinA(1- cosA)+sinA(1+cosA))/((1+cosA)(1-cosA))` `rArr(sinA-sinAcosA+sinA+sinAcosA)/(1-cos^(2)A)` `rArr(2sinA)/(sin^(2)A)=2co s ecA` |
|
| 204. |
SinA = 1/x then CosA = ?1. \({\sqrt{x^2 + 1} \over x}\)2. \(x \over \sqrt{x^2-1}\)3. \({\sqrt{x^2-1} \over x}\)4. \(x \over \sqrt{x^2 + 1}\) |
|
Answer» Correct Answer - Option 3 : \({\sqrt{x^2-1} \over x}\) Given: SinA = 1/x Concept Used: Sinθ = Perpendicular / Hypotenuse Cosθ = Base / Hypotenuse Base2 + Perpendicular2 = Hypotenuse2 Calculation: Sinθ = Perpendicular / Hypotenuse SinA = 1/x Comparing get, Perpendicular = 1 and Hypotenuse = x Base = √x2 - 1 CosA = Base / Hypotenuse ⇒ CosA = \({\sqrt{x^2-1} \over x}\) ∴ CosA = \({\sqrt{x^2-1} \over x}\). |
|
| 205. |
tanα = a/b then the value of Sinα + Cosα is:1. \(\sqrt{a^2 + b^2} \over {a + b}\)2. \({a + b} \over \sqrt{a^2 + b^2}\)3. \(\sqrt{a^2 - b^2} \over {a + b}\)4. \({a + b} \over \sqrt{a^2 - b^2}\) |
|
Answer» Correct Answer - Option 2 : \({a + b} \over \sqrt{a^2 + b^2}\) Given: tanα = a/b Concept Used: tanθ = Perpendicular/Base Sinθ = Perpendicular/Hypotenuse Cosθ = Base/Hypotenuse Base2 + Perpendicular2 = Hypotenuse2 Calculation: tanα = a/b and tanα = Perpendicular/Base Comparing above two get, Perpendicular = a and Base = b Hypotenuse = √a2 + b2 Sinα = Perpendicular/Hypotenuse ⇒ Sinθ = a/√a2 + b2 Cosα = Base/Hypotenuse ⇒ Cosα = b/√a2 + b2 Sinα + Cosα = (a/√a2 + b2) + (b/√a2 + b2) ⇒ Sinα + Cosα = \({a + b} \over \sqrt{a^2 + b^2}\) ∴ Sinα + Cosα = \({a + b} \over \sqrt{a^2 + b^2}\) |
|
| 206. |
यदि `sec^(2)theta+tan^(2)theta=sqrt(3)` हो, तो `sec^(4)theta-tan^(4)theta` का मान है-A. `(1)/(sqrt(3))`B. 1C. `sqrt(3)`D. 0 |
|
Answer» Correct Answer - c `sec^(2)theta+tan^(2)theta=sqrt(3)` We know that `sec^(2)theta-tan^(2)theta=1` then `sec^(4)theta-tan^(4)theta` `=(sec^(2)theta+tan^(2)theta)(sec^(2)theta-tan^(2)theta)` `= sqrt(3)xx1=sqrt(3)` |
|
| 207. |
यदि `sec(4x-50^(@))="co s ec"(50^(@)-x),` तो `x` का मान क्या है ?A. `45^(@)`B. `90^(@)`C. `30^(@)`D. `60^(@)` |
|
Answer» Correct Answer - c `sec(4x-50^(@))=co s ec(50^(@)-x)` `sec(4x-50^(@))=co s ec(90^(@)-x)` `sec(4x-50^(@))=s ec140^(@)+x` `4x-50^(@)=40^(@)+x` `3x=90^(@)` `x=30^(@)` |
|
| 208. |
If `tan alpjha=2`, then he value `("co s ec"^(2) alpha-sec^(2) alpha)/("co s ec"^(2)alpha+sec^(2) alpha)is `A. `-(15)/(9)`B. `(3)/(5)`C. `(3)/(5)`D. `(17)/(5)` |
|
Answer» Correct Answer - c `tan alpha=2` (given) `=(tan^(2)alpha-sec^(2)alpha)/(co s ec^(2)alph+sec^(2)alpha)` (Divide by `co s ec^(2)alpha` "both in N and D") `=(1-tan^(2)alpha)/(1+tan^(2)alpha)` `=(1-(2)^(2))/(1+(2)^(2))` `(1-(2)^(2))/(1+(2)^(2))` ` =-(3)/(5)` |
|
| 209. |
If `sintheta_co s ectheta=2,` then value of `sin^(1000)theta+co s ec^(1000)theta` is equal to.A. 1B. 2C. 3D. 100 |
|
Answer» Correct Answer - b `sintheta+co s ectheta=2` `sin theta+(1)/(sintheta)=2` Now, see the value of `sintheta` which has value 1 `sin theta=sin90^(@)=1` `rArrsin90^(@)+(1)/(sin90^(@))=2` `rArr1+(1)/(1)=2` `rArr2=2` `rArr sin^(100)theta+co s ec^(100) theta` `rArr sin^(100)90^(@)+(1) /(sin^(100)90^(@))=(1)^(100)+(1)/((1)^(100))` |
|
| 210. |
If `sin(theta+30^(@))=(3)/(sqrt12)` then findA. `(1)/(4)`B. `(3)/(4)`C. `(sqrt3)/(4)`D. `(1)/(2)` |
|
Answer» Correct Answer - b `sin(theta+30^(@))=(3)/sqrt(12)=(3)/(2sqrt(3))=sqrt(3)/(2)sin(theta+30^(@))=sin60^(@)` `therefore theta=30^(@)` `cos^(2)theta=cos^(2)30^(@)` `=((sqrt(3))/(2))^(2)` `=(3)/(4)` |
|
| 211. |
If `cos^(2)theta-sin^(2)theta=(1)/(3)`, where, `theta(0 letheta le90^(@))`, the value of `co^(4)theta` is (यदि `cos^(2)theta-sin^(2)theta=(1)/(3)` और जहाँ `theta(0 letheta le90^(@))` का `co^(4)theta` मान ज्ञात करे)A. `(1)/(3)`B. `(2)/(3)`C. `(1)/(9)`D. `(2)/(9)` |
|
Answer» Correct Answer - a `3sin theta+5cos theta=5` `5sin theta-3 cos theta=x` now, `a^(2)+ b^(2)=p^(2)+q^(2)` `3^(2)+5 ^(2)=5^(2)+x^(2)` `9+25=25+x^ (2)` `9=x^(2)` `x=+-3` |
|
| 212. |
If `2cos theta-sintheta`=`(1)/(sqrt2)` `theta(0 letheta le90^(@))` the valie of `2sin theta+cos theta is`A. `(1)/(sqrt2)`B. `sqrt2`C. `(3)/(sqrt2)`D. `(1)/(sqrt3)` |
|
Answer» Correct Answer - c `2 cos theta-sin theta=(1)/sqrt(2)` when `ax+0by=m` then `bx -+ay =sqrt(a ^(2)+b^(2)-m^(2))` `2Cos theta-sintheta=(1)/sqrt(2)` `costheta+2sin thetasqrt(4 +1-(1)/(2))` `=(3)/sqrt(2)` |
|
| 213. |
The value of `theta(0 letheta le90^(@))` satisfying `2 sin^(2) theta= 3 cos theta is ` `2 sin^(2) theta= 3 cos theta is `(को संतुस्ट करने वाले) `theta(0 letheta le90^(@))` (का मान क्या है )A. `60^(@)`B. `90^(@)`C. `30^(@)`D. `45^(@)` |
|
Answer» Correct Answer - a Hit `&` Trial method put `theta=60^(@)` option(s) `2sin 60^(@)=3cos60^(@)` `2((sqrt(3))/(2))^(2)=3((1)/(2))` `(3)/(2)=(3)/(2)` (LHS=RHS) |
|
| 214. |
If `sinA-cosA=(sqrt(3)-1)/(2)`, then the value of `sinA.cosA` isA. `(1)/(sqrt(3))`B. `(sqrt(3))/(2)`C. `(1)/(4)`D. `(sqrt(3))/(4)` |
|
Answer» Correct Answer - d `sinA-cosA=(sqrt(3)-1)/(2)` Shotcut method:- Put `theta=60^(@)` `rArrsin60^(@)-cos60^(@)=sqrt(3)/(2)` `rArrsqrt(3)/(2)-(1)/(2)=sqrt(3-1)/(2)` `rArr(sqrt(3)-1)/(2)=(sqrt(3)-1)/(2)` (Mathced) Hence `SinA.cosA` `sin60^(@).cos60^(@)` `rArrsqrt(3)/(2)xx(1)/(2)=sqrt(3)/(4)` `sinA-cosA=(sqrt(3)-1)/(2)` Squaring both side, `rArrsin^(2)A+cos^(2)A-3sinAcosA` `=((sqrt(3)-1)/(2))^(2)` `rArr1-2sinA cosA=(3+1-2sqrt(2))/(4)` `rArr2sinA cosA=101((2-sqrt(3)))/(4)` `rArr2sinA.cosA=(2-2+sqrt(3))/(2)` `sinA.cosA=sqrt(3)/(4)` |
|
| 215. |
The general solution of cot θ + tan θ = 2 is1. \(\theta = n\pi + {( - 1)^n}\frac{\pi }{8}\)2. \(\theta = \frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{6}\)3. \(\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{4}\)4. \(\theta = \frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{8}\) |
|
Answer» Correct Answer - Option 3 : \(\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{4}\) Calculation: Given cot θ + tan θ = 2 \(\rm {1\over \tanθ} +\tan θ = 2\) tan2 θ - 2 tan θ + 1 = 0 (tan θ - 1)2 = 0 tan θ = 1 θ = \({\pi\over4}, {5\pi\over4}, {9\pi\over4}...\) = \(\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{4}\), (n ∈ N) |
|
| 216. |
How to prove sec4A-sec2A=tan4A+tan2A |
|
Answer» Solution: Explanation: Use one of the Pythagorean identity namely, sec2A=1+tan2A LHS = sec4A−sec2A =tan4A+tan2A = RHS |
|
| 217. |
`sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+ . . . .+sin^(2)85^(@)+sin^(2)90^(@)` is equal toA. `7(1)/(2)`B. `8(1)/(2)`C. `9`D. `9(1)/(2)` |
|
Answer» Correct Answer - d `(sin^(2)5^(@)+sin^(2)10^(@)+..........+sin^(2)85^(@))+sin^(2)90^(@)` No. of term`={((85-5)/(5))+1}+1` `=(17)/(2)+1` sum of seris `=9(1)/(2)` [use this approach in eaxm] |
|
| 218. |
यदि `angleA` और `angleB` एक दूसरे के पूरक कोण है तो `Sec^(2)A+Sec^(2)B-Sec^(2)A.Sec^(2)B` का मान ज्ञात करे?A. 1B. `-1`C. `2`D. 0 |
|
Answer» Correct Answer - d `A+B=90^(@)` `B=90-A` `sec^(2)A+sec^(2)B-sec^(2)A.sec^(2)B` `sec^(2)A+sec^(2)(90-A)-sec^(2)A`. `sec^(2)(90-A)` `sec^(2)A+co s ec^(2)A-sec^(2)A.co s ec^(2)A`. `(1)/(cos^(2)A)+(1)/(sin^(2)A)-(1)/(cos^(2)A) xx(1)/(sin^(2)A)` `(sin^(2)A+cos^(2)A)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A .sin^(2)A)` `(1)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A .sin^(2)A)` `(1)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A.sin^(2)A)` `(1)/(cos^(2)Asin^(2)A)-(1)/(cos^(2)A.sin^(2)A)=0` |
|
| 219. |
The value of `(sin39^@)/(cos51^(@))+2(tan11^(@)tan31^(@)tan45^(@)tan59^(@)tan79^(@))-3(sin^(2)21^(@)+sin^(2)69^(@))` is-A. 2B. `-1`C. 1D. 0 |
|
Answer» Correct Answer - d `(sin39^(@))/(cos51^(@))+2(tan11^(@)tan31^(@)tan45^(@)tan59^(@)tan79^(@))-3(sin^(2)21^(@)+sin^(2)69^(@)]` if `A+B=90^(@)` then Than `A. tan B=1` `Sin^(2)A+sin^(2)B=1` `1+2( tan11.tan79)(Tan31.tan59)` `.tan45^(@)-3xx1` `1+2-3=0` |
|
| 220. |
यदि `sinalphasec(30^(@)+alpha)=1,(0lealphale60^(@))` है तो `sinalpha+1cos2alpha` का मान क्या होगा?A. `1`B. `(2sqrt(3))/(2sqrt(3))`C. 0D. `sqrt(2)` |
|
Answer» Correct Answer - a `sin alpha sec (30^(@)+alpha)=1` Shortcut method Put `alpha` value between `0^(@)` to `60^(@)` if `a=30^(@)` `sin30^(@)sec(30^(@)+30^(@))=1` `sin30^(@)sec60^(@)=1` `(1)/(2)xx2=1` 1=1 (satisfy) so `alpha=30^(@)` `sin alpha+cos2alpha` `=sin30^(@)+cos2xx30^(@)=sin30^(@)+cos60^(@)` `=(1)/(2)+(1)/(2)=1` Alternate if `,sin alpha sec beta=1` then `alpha+beta=90^(@)` `sin alpha sec(30^(@)+alpha)=1` `alpha+30^(@)+alpha=90^(@)` `2alpha=60^(@)` `alpha=30^(@)` `sin alpha+cos2alpha` `sin30+cos2xx30=1` |
|
| 221. |
sin 3x is equal to ?1. 3 sin x - 4cos3 x2. 3 sin x - 4sin3 x3. 4 cos3 x - 3 cos x4. 4sin3 x - 3 sin x |
|
Answer» Correct Answer - Option 2 : 3 sin x - 4sin3 x Concept: sin (A + B) = sin A cos B + cos A sin B cos2 x = 1 - sin2 x cos 2x = 1 - 2sin2 x
Calculations: Consider, sin 3x ⇒sin (2x + x) ⇒ sin 2x cos x + cos 2x sin x ⇒ 2 sin x cos x. cos x + (1 - 2sin2 x) sin x ⇒ 2 sin x cos2 x + (1 - 2sin2 x) sin x ⇒ 2 sin x (1 - sin2 x) + (sin x - 2sin3 x) ⇒ 2 sin x - 2sin3 x + sin x - 2sin3 x ⇒ 3 sin x - 4sin3 x Hence, sin 3x = 3 sin x - 4sin3 x |
|
| 222. |
Find the value of sin (-450°) |
|
Answer» Correct Answer - Option 2 : -1 Concept: Trigonometry Formula: sin (-θ) = - sin θ sin (360 + θ) = sin θ sin 90° = 1 Calculation: sin (-450°) = - sin 450° [∵ sin (-θ) = - sin θ] = - sin (360° + 90°) = - sin 90° [∵ sin (360 + θ) = sin θ] = -1 |
|
| 223. |
What is the value of 2 sin 75° cos 75° ?1. \(\frac 12\)2. \(\frac 1 {\sqrt 2}\)3. \(\frac {\sqrt 3}2\)4. None of these |
|
Answer» Correct Answer - Option 1 : \(\frac 12\) Concept: 2sinx cos x = sin 2x sin (90° + x) = cos x Calculation: Given, 2 sin 75° cos 75° = sin [2 (75°)] = sin (150°) = sin (90° + 60°) = cos 60° = \(\rm \dfrac 1 2\) Hence, the value of 2 sin 75° cos 75° is \(\rm \dfrac 1 2\) |
|
| 224. |
The complementary angle of 45° 45' is ______.A. 45° 55'B. 44° 25'C. 44° 15'D. 46° 25'1. B2. C3. D4. A |
|
Answer» Correct Answer - Option 2 : C Given: Angle 45° 45' is a complementry angle Concept used: Sum of complementary angles is 90° 1° = 60 minutes Calculation: Let the other angle is x ⇒ x + 45° 45' = 90° ⇒ x = 90° – 45° 45' ⇒ x = 44° 15' ∴ Complementry angle of 45° 45' is 44° 15'. |
|
| 225. |
What is the value of 2cos2 15° - 1 ?1. \(\frac 12\)2. \(\frac 1 {\sqrt 2}\)3. \(\frac {\sqrt 3}2\)4. \(\sqrt 3 - 1\) |
|
Answer» Correct Answer - Option 3 : \(\frac {\sqrt 3}2\) Concept: 2cos2 θ - 1 = cos 2θ
Calculations: Consider, 2cos2 15° - 1 = cos 2 (15°) = cos (30°) = \(\dfrac {\sqrt 3}2\) |
|
| 226. |
यदि `cos^(2)x+cos^(4)x=1` हो, तो `tan^(2)x+tan^(4)x` का मान क्या है ? |
|
Answer» Correct Answer - b `cos^(2)x+cos^(4)x=1` `cos^(4)x=1-cos^(2)x` `cos^(4)x=1 -cos^(2)x` `cos^(4)x=sin^(2)x` `cos^(2) x=tan^(2)x` ......(i) `cos^(4)x=tan^(4)x` `tan^(2)x+tan^(4)x` `cos^(2)x+cos^(4)x=1` (From eq. (i) and (ii)) |
|
| 227. |
यदि `"co s ec"theta+sintheta=5//2` है, तब `"co s ec"theta-sintheta` का मान ज्ञात कीजिए ?A. `-3//2`B. `3//2`C. `-sqrt(3)//2`D. `sqrt(3)//2` |
|
Answer» Correct Answer - b `co s ec theta+sintheta=(5)/(2)` `(1)/(sintheta)+sin theta=(5)/(2)` Squaring both sides `sin^(2)theta+(1)/(sin^(2)theta)+2sintheta(1)/(sintheta)=(25)/(4)` `sin^(2)theta+(1)/(sin^(2)theta)=(25)/(4)-2=(17)/(4)` .....(i) So, `(co s ectheta-sintheta)^(2)=((1)/(sintheta)-sintheta)^(2)` `=(1)/(sin^(2)theta)+sin^(2)theta-2sintheta.(1)/(sintheta)` `(co s ectheta-sintheta)^(2)=(17)/(2)-2` `co s ec theta-sintheta=sqrt((17-8)/(4))` `=sqrt((9)/(4))=(3)/(2)` |
|
| 228. |
Consider the following statements:I. If P, Q and R are the angles of triangle then tan (P + Q)/2 = sec (R/2)II. Sin (X + Y)/2 = Cos (Z/2) only possible if X + Y + Z = 180°Find which statement is/are correct?1. Only 12. Only 23. Both 1 and 24. Neither 1 nor 2 |
|
Answer» Correct Answer - Option 2 : Only 2 Given: Two statements are given Formula Used: Basic concept of trigonometric ratio and identities We know that if A, B and C is the angles of triangle or their sum is 180° ∴ tan (A + B)/2 = cot (C/2) ∴ sin (A + B)/2 = cos (C/2) ∴ sec (A + B)/2 = cosec (C/2) Where versa vice is possible Calculation: P, Q and R are the angles of a triangle ∴ tan (P + Q)/2 = cot (R/2) But it is given in statement I tan (P + Q)/2 = sec (R/2) ∴ Statement 1 is incorrect Now, X + Y + Z = 180° ∴ Sin (X + Y)/2 = Cos (Z/2) So, Statement 2 is correct Hence, option (2) is correct |
|
| 229. |
If sec (θ + 45) ° = √8/2 then find then calculate of tan θ? |
|
Answer» Correct Answer - Option 1 : 0 Given: It is given that sec (θ + 45) ° = √8/2 Formula Used: Basic concept of trigonometric ratio and identities We know that Sec 45° = √2 and tan 0° = 0 Calculation: We can simplifies the given expression ∴ Sec (θ + 45) ° = 2√2/2 ⇒ Sec (θ + 45) ° = √2 ⇒ Sec (θ + 45) ° = Sec 45° ⇒ (θ + 45) ° = 45° ⇒ θ = 0° Now, we have to find tan θ ∴ tan0° = 0 Hence, option (1) is correct |
|
| 230. |
Consider the following statement(1) Value of Cos26° + Cos220 °+ Cos284 °+ Cos270° is 2.(2) Sin 45° = Cos 45°.(3) Sin 0° + Cos 0° is 1.Which of the above statement(s) is/are right?1. Only 12. Only 23. Only 34. 1, 2 and 3 |
|
Answer» Correct Answer - Option 4 : 1, 2 and 3 Concept Sin2A + Cos2A = 1 Calculation Statement 1 Cos2(90°– 84°) + Cos2 (90° – 70°) + Cos284° + Cos2 70° ⇒ Sin284° + Sin270° + Cos284 °+ Cos270° ⇒ Sin284 °+ Cos284 °+ Sin270°+ Cos270° ⇒ 1 + 1 ⇒ 2 Statement 2 Sin 45° = (1/√2) Cos 45° = (1/√2) Statement 3 Sin 0° + Cos 0° ⇒ 0 + 1 ⇒ 1 Hence, every statement is right |
|
| 231. |
Find the value of tan(210°).A. 1/√3B. -1/√3C. -1D. 11. D2. A3. C4. B |
|
Answer» Correct Answer - Option 2 : A Given: tan(210°) Concept used: tan(180° + θ) = tanθ, tan is positive in 3rd quadrant. Calculation: tan(210°) = tan(180° + 30°) ⇒ tan(210°) = tan30° ⇒ tan(210°) = 1/√3 ∴ The value of tan(210°) is 1/√3. |
|
| 232. |
Find the value of Cos 225° 1. 0.70712. -0.8663. 0.8664. -0.7071 |
|
Answer» Correct Answer - Option 4 : -0.7071 Given: Cos 225° Formula Used: Cos (180° + θ ) = -Cos θ Concept Used: Cosθ in the third quadrant gives negative value. Cos 45° = 1/√2 √2 = 1.414 Calculation: Cos 225° = Cos (180° + 45° ) ⇒ Cos 225° = -Cos 45° ⇒ -Cos 45° = -1/√2 = 1000/1414 = -0.7071 ∴ The value of Cos 225° is -1/√2 or -0.7071 |
|
| 233. |
Find the value of \({\cot ^{ - 1}}\left( {\frac{4}{5}} \right) + {\cot ^{ - 1}}\left( { - \frac{4}{5}} \right)\). |
|
Answer» Correct Answer - Option 3 : π Concept: It is known that \({\cot ^{ - 1}}\left( { - x} \right) = \pi - {\cot ^{ - 1}}\left( x \right)\) for all value \(x \in R\). Calculation: The expression be rewritten as \({\cot ^{ - 1}}\left( {\frac{4}{5}} \right) + {\cot ^{ - 1}}\left( { - \frac{4}{5}} \right)\) \(= {\cot ^{ - 1}}\left( {4/5} \right) + \left( {\pi - {{\cot }^{ - 1}}\left( {4/5} \right)} \right)\) \(= {\cot ^{ - 1}}\left( {4/5} \right) + \pi - {\cot ^{ - 1}}\left( {4/5} \right)\) \(= \pi\) |
|
| 234. |
Find the value of \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}}\).1. \({\cos ^{ - 1}}\frac{{13}}{{64}}\)2. \({\tan ^{ - 1}}\frac{{13}}{{84}}\)3. \({\sin ^{ - 1}}\frac{{13}}{{64}}\)4. 0 |
|
Answer» Correct Answer - Option 2 : \({\tan ^{ - 1}}\frac{{13}}{{84}}\) Concept: \({\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {1 - {x^2}} }}} \right)\) \({\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x - y}}{{1 + xy}}} \right)\) Calculation: As we know, \({\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {1 - {x^2}} }}} \right)\) ⇒ \({\cos ^{ - 1}}\frac{4}{5} = {\tan ^{ - 1}}\frac{3}{4}\;\ and\ {\cos ^{ - 1}}\frac{{15}}{{17}} = {\tan ^{ - 1}}\frac{8}{{15}}\) The expression \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}}\) can be rewritten as follows: \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}} = {\tan ^{ - 1}}\frac{3}{4} - {\tan ^{ - 1}}\frac{8}{{15}}\) As we know that, \({\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x - y}}{{1 + xy}}} \right)\) \({\tan ^{ - 1}}\frac{3}{4} - {\tan ^{ - 1}}\frac{8}{{15}} = {\tan ^{ - 1}}\left( {\frac{{\frac{3}{4} - \frac{8}{{15}}}}{{1 + \frac{2}{5}}}} \right)\) \(= {\tan ^{ - 1}}\left( {\frac{{13}}{{84}}} \right)\) |
|
| 235. |
For \(x \in \left( { - \frac{{3\pi }}{2},\frac{\pi }{2}} \right)\), the expression \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right)\) can be simplified as:1. \(\frac{\pi }{4} + \frac{x}{2}\)2. \(\frac{\pi }{4} - \frac{x}{2}\)3. tan x4. tan (-x) |
|
Answer» Correct Answer - Option 1 : \(\frac{\pi }{4} + \frac{x}{2}\) Concept:
Calculation: The expression \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right)\) can be written as follows: \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right) = {\cot ^{ - 1}}\left( {\frac{{{{\cos }^2}\left( {x/2} \right) + {{\sin }^2}\left( {x/2} \right) - 2\sin \left( {x/2} \right)\cos \left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right) - {{\sin }^2}\left( {x/2} \right)}}} \right)\) \( = {\cot ^{ - 1}}\left( {\frac{{{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)}^2}}}{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)\left( {\cos \left( {x/2} \right) + \sin \left( {x/2} \right)} \right)}}} \right)\) \(= {\cot ^{ - 1}}\left( {\frac{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)}}{{\left( {\cos \left( {x/2} \right) + \sin \left( {x/2} \right)} \right)}}} \right)\) Dividing the numerator and denominator of RHS by sin(x/2) , we get \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right) = {\cot ^{ - 1}}\left( {\frac{{\left( {cot(\frac{x}{2})\ cot \frac{\pi}{4} - \ 1} \right)}}{{\left( {cot(\frac{\pi}{4} + \cot \left( {\frac{x}{2}} \right)} \right)}}} \right)\) As we know that, \(\cot \left( {x + y} \right) = \frac{{\cot x\cot y - 1}}{{\cot y + \cot x}}\) \(= {\cot ^{ - 1}}\left( {\cot \left( {\frac{\pi }{4} + \frac{x}{2}} \right)} \right)\) \(= \frac{\pi }{4} + \frac{x}{2}\) |
|
| 236. |
Find the value of \(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right)\).1. \(\frac{1}{{\sqrt 5 }}\)2. \(\frac{{2\sqrt 6 }}{5}\)3. \(- \frac{1}{{\sqrt 5 }}\)4. \( - \frac{{2\sqrt 6 }}{5}\) |
|
Answer» Correct Answer - Option 2 : \(\frac{{2\sqrt 6 }}{5}\) Concept: \({\cos ^{ - 1}}\left( {\cos x} \right) = x\) Calculation: \(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right)\) Let, \({\sin ^{ - 1}}\frac{1}{5} = x\) \(\sin x = \frac{1}{5}\) We know, \({\sin ^2}x + {\cos ^2}x = 1\) \({\left( {\frac{1}{5}} \right)^2} + {\cos ^2}x = 1\) \({\cos ^2}x = 1 - {\left( {\frac{1}{5}} \right)^2}\) \({\cos ^2}x = \frac{{24}}{{25}}\) \(\cos x = \frac{{2\sqrt 6 }}{5}\) \(x = {\cos ^{ - 1}}\frac{{2\sqrt 6 }}{5}\) Now substitute for \({\sin ^{ - 1}}\frac{1}{5}\) in \(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right)\) \(\cos \left( {{{\sin }^{ - 1}}\frac{1}{5}} \right) = \cos \left( {{{\cos }^{ - 1}}\frac{{2\sqrt 6 }}{5}} \right)\) \( = \frac{{2\sqrt 6 }}{5}\) |
|
| 237. |
If \({\sin ^{ - 1}}\left( {1 - x} \right) + 2{\sin ^{ - 1}}(2x) + {\cos ^{ - 1}}(2x) = \frac{\pi }{2}\), the value of x is:1. 12. -13. None of these4. 2 |
|
Answer» Correct Answer - Option 3 : None of these Concept: \({\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \frac{\pi }{2}\) and \({\sin ^{ - 1}}\left( { - x} \right) = - {\sin ^{ - 1}}x\) Calculation: \({\sin ^{ - 1}}\left( {1 - x} \right) + 2{\sin ^{ - 1}}\left( {2x} \right) + {\cos ^{ - 1}}\left( {2x} \right) = \frac{\pi }{2}\) \({\sin ^{ - 1}}\left( {1 - x} \right) + 2{\sin ^{ - 1}}\left( {2x} \right) + {\cos ^{ - 1}}\left( {2x} \right) = {\sin ^{^{ - 1}}}\left( {2x} \right) + {\cos ^{ - 1}}\left( {2x} \right)\) \({\sin ^{ - 1}}\left( {1 - x} \right) + {\sin ^{ - 1}}2x = 0\) \({\sin ^{ - 1}}\left( {1 - x} \right) = - {\sin ^{ - 1}}\left( {2x} \right)\) \({\sin ^{ - 1}}\left( {1 - x} \right) = {\sin ^{ - 1}}\left( { - 2x} \right)\) \(1 - x = - 2x\) \(x = - 1\) But as we can see that, by substituting x = - 1 in the given equation we get, sin-1(2) + sin-1(-2) = 0, but we know that domain of sin-1 x is [-1, 1] So, x = - 1 is not possible solution of the given equation. Hence, there is no value of x which satisfies the given equation |
|
| 238. |
Find the value of \(2{\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) .1. \( -\frac{\pi }{4}\)2. \( - \frac{\pi }{3}\)3. \(\frac{\pi }{4}\)4. \( - \frac{\pi}{2}\) |
|
Answer» Correct Answer - Option 4 : \( - \frac{\pi}{2}\) Concept: If x = sin θ then \(θ = {\sin ^{ - 1}}x\) Similarly, if x = tan θ then \(θ = {\tan ^{ - 1}}x\) Calculation: The expression \({\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) can be rewritten as: \({\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right] = {\tan ^{ - 1}}\left[ {2\cos \left( {\frac{{2\pi }}{3}} \right)} \right]\) \(= {\tan ^{ - 1}}\left[ {2\left( { - \frac{1}{2}} \right)} \right]\) \(= {\tan ^{ - 1}}\left( { - 1} \right)\) \(= - \frac{\pi}{4}\) \(2{\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) \(= - 2 \times \frac{\pi}{4} = - \frac{\pi}{2}\) |
|
| 239. |
Find the value of y if \(y = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) + 3{\sin ^{ - 1}}x\),where x ∈ [-1, 1] ?1. \(\frac{\pi }{2}\)2. \(\frac{{3\pi }}{2}\)3. 4π 4. \( - \frac{\pi }{2}\) |
|
Answer» Correct Answer - Option 2 : \(\frac{{3\pi }}{2}\) Concept: It is known that, \({\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \frac{\pi }{2},x \in \left[ { - 1,1} \right]\) Calculation: \(y = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) + 3{\sin ^{ - 1}}x\)---------(1) Take \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)\) Let us substitute x = cos θ in \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)\) \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) = {\cos ^{ - 1}}\left( {4{{\cos }^3}θ - 3\cos θ } \right)\) \(= {\cos ^{ - 1}}\left( {\cos 3θ } \right)\) \(= 3θ \) \(= 3{\cos ^{ - 1}}x\) Now substitute the value of \({\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)\) in equation (1) \(y = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right) + 3{\sin ^{ - 1}}x\) \( = 3{\cos ^{ - 1}}x + 3{\sin ^{ - 1}}x\) As we know that, \({\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \frac{\pi }{2},x \in \left[ { - 1,1} \right]\) \( y = \frac{3\pi}{2}\) |
|
| 240. |
The value of \(\arctan \left( {1/\sqrt 3 } \right) + \operatorname{arcsec} \left( { - 2} \right)\) is:1. \(\frac{\pi }{2}\)2. \( \frac {5\pi}{6} \)3. \(- \frac{\pi }{2}\)4. 0 |
|
Answer» Correct Answer - Option 2 : \( \frac {5\pi}{6} \) Concept: \(\arctan x = y ⇒ x = \tan y\) Calculation: Here, we have to find the value of \(\arctan \left( {1/\sqrt 3 } \right) + \operatorname{arcsec} \left( { - 2} \right)\) \(\tan x = \frac{1}{{\sqrt 3 }}\) ⇒ \(x = \frac{\pi }{6}\) Also, \(\sec y = -2\) ⇒ \(y = \frac{2\pi }{3}\) So, \(\arctan \left( {1/\sqrt 3 } \right) + {\mathop{\rm arcsec}\nolimits} \left( { - 2} \right) = x + y\) \(= \frac{\pi }{6} + \frac{2\pi }{3}\) \(= \frac{\pi+4\pi}{6} = \frac {5\pi}{6} \) |
|
| 241. |
If sin(A+B)=1/2 and 2cos(A+B)=1.find A and B. |
|
Answer» Sin (A + B) = 1/2 Now, 2 Cos(A + B) = 1 Equation 1 and 2 contradicts each other. Hence value of A & B cant be determined from the above two equations. |
|
| 242. |
If \(\rm x+y=\frac{\pi}{4}\), then the value of (1 + tan x)(1 + tan y) is: |
||||||||
|
Answer» Correct Answer - Option 3 : 2 Concept: Trigonometric Identities: \(\rm \tan(A\pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\).
Calculation: Given that \(\rm x+y=\frac{\pi}{4}\). ⇒ \(\rm \tan(x+y)=\tan \frac{\pi}{4}\) ⇒ \(\rm \frac{\tan x + \tan y}{1 -\tan x \tan y}=1\) ⇒ tan x + tan y = 1 - tan x tan y ... (1) Now, (1 + tan x)(1 + tan y) = 1 + tan y + tan x + tan x tan y Using the value in equation (1), we get: = 1 + 1 - tan x tan y + tan x tan y = 2.
|
|||||||||
| 243. |
If tan A - tan B = x and cot A - cot B = y, then cot (A - B) = ?1. x - y2. \(\rm \frac1x+\frac1y\)3. \(\rm \frac1x-\frac1y\)4. \(\rm \frac1y-\frac1x\) |
|
Answer» Correct Answer - Option 3 : \(\rm \frac1x-\frac1y\) Concept: Trigonometric Identities:
Calculation: Given: tan A - tan B = x ... (1) And, cot A - cot B = y ... (2) ⇒ \(\rm \frac{1}{\tan A}-\frac{1}{\tan B}=y\) ⇒ \(\rm \frac{\tan B-\tan A}{\tan A\tan B}=y\) ⇒ \(\rm \frac{-x}{\tan A\tan B}=y\) ... [Using (1).] ⇒ \(\rm \cot A\cot B=-\frac{y}{x}\) ... (3) Now, \(\rm \cot(A- B)=\frac{+1+cot A\cot B}{-\cot A+\cot B}\) = \(\rm \frac{+1-\frac yx}{-y}\) ... [Using (2) and (3).] = \(\rm \frac{y-x}{xy}\) = \(\rm \frac{1}{x}-\frac{1}{y}\). |
|
| 244. |
If 2 × cos(A + B) = 2 × sin(A - B) = 1, find the value of A and B.1. A = 45° and B = 15° 2. A = 90° and B = 0° 3. A = 30° and B = 60° 4. A = 15° and B = 45° |
|
Answer» Correct Answer - Option 1 : A = 45° and B = 15° Given 2 × cos(A + B) = 2 × sin(A - B) = 1 Concept Here all three identities are equal to each other so, take first any two identities then the other two identities. Calculation Let 2 × cos(A + B) = 1 ⇒ cos(A + B) = (1/2) ⇒ cos(A + B) = cos 60° ⇒ A + B = 60° ....(1) Now, Let 2 × sin(A - B) = 1 ⇒ sin(A - B) = (1/2) ⇒ sin(A - B) = sin30° ⇒ A - B = 30° ....(2) Now, add equation (1) and (2) ⇒ (A + B) + (A - B) = 60° + 30° ⇒ 2A = 90° ⇒ A = (90°/2) ⇒ A = 45° Now put the value of A in equation (1) ⇒ 45° + B = 60° ⇒ B = 60° - 45° ⇒ B = 15° ∴ A = 45° and B = 15° |
|
| 245. |
If sin θ + cos θ = 1, then the value of cos 2θ is:1. ±12. 03. \(\frac{\sqrt3}{2}\)4. \(\frac1{2+\sqrt2}\) |
|
Answer» Correct Answer - Option 1 : ±1 Concept: Trigonometric Identities:
Calculation: Given: sin θ + cos θ = 1 Squaring both sides, we get: ⇒ sin2 θ + cos2 θ + 2 sin θ cos θ = 1 ⇒ 1 + sin 2θ = 1 ⇒ sin 2θ = 0 Using sin2 θ + cos2 θ = 1, we can say: sin2 2θ + cos2 2θ = 1 ⇒ 0 + cos2 2θ = 1 ⇒ cos 2θ = ±1.
Trigonometric Identities:
|
|
| 246. |
If sinx=3÷5, cosy=-12÷13, where x and y both lie in second quadrant find the value of sin(x+y) |
|
Answer» We know that sin(x)2 + cos(x)2 = 1 => (3/5) * (-12/13) + (5/13) * (-4/5) => -36 / 65 + -20 / 65 => -56/65 So, sin(x+y) = -56/65 We know that Therefore, sin y =5/13. Substituting the values of sin x, sin y, cos x and cos y in (1), we get Therefore, sin(x+y) = -56/65 |
|
| 247. |
यदि `a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2)` है, तो `sec^(2)x+tan^(2)x=c^(2)` है, तो `sec^(2)x+tan^(2)x` का मान बताइए (यह मानते हुए कि `b^(2)nea^(2)`)A. `(b^(2)-a^(2)+2c^(2))/(b^(2)+a^(2))`B. `(b^(2)+a^(2)-2c^(2))/(b^(2)-a^(2))`C. `(b^(2)-a^(2)-2c^(2))/(b^(2)+a^(2))`D. `(b^(2)-a^(2))/(b^(2)+a^(2)+2c^(2))` |
|
Answer» Correct Answer - b `a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2)` `a^(2)(1+tan^(3)x)-b^(2)tan^(2)x=c^(2)` `a^(2)(1+tan^(3)x)-b^(2)tan^(2)x=c^(2)` `a^(2)+a^(2)tan^(2)x-b^(2)tan^(2)x=c^(2)` `a^(2)-c^(2)=tan^(2)x(b^(2)-a^(2))` `=1+(a^(2)-c^(2))/(b^(2)-a^(2))` `=(b^(2)-a^(2)+a^(2)-c^(2))/(b^(2)-a^(2))` ` =(b^(2)-c^(2))/(b^(2)-a^(2))` `sec^(2)+tan^(2)x` `=(b^(2)-c^(2))/(b^(2)-a^(2))+(a^(2)-c^(2))/(b^(2)-a^(2))` `=(b^(2)+a^(2)-2c^(2))/(b^(2)-a^(2))` lt |
|
| 248. |
`(1+sec20^(@)+cot70^(@))(1-"co s ec"20^(@)+tan70^(@))` is equal to |
|
Answer» Correct Answer - c `(1+sec20+cot70)(1-co s ec20^(@)+tan70^(@))` `[1+sec20+tan20](1-co s ec20+tan20)` put `45^(@)` in place of ` 20^(@)` `(1+sec45^(@)+tan45)(1-co s ec45^(@)+cot45^(@))` ` (1+sqrt(2)+1)(1-sqrt(2)+1)` `(2+sqrt(2))(2-sqrt(2))=2` |
|
| 249. |
यदि `tan^(4)theta+tan^(2)theta=1` हो, तो `cos^(4)theta+cos^(2)theta` का मान क्या होगा ?A. 2B. 0C. 1D. -1 |
|
Answer» Correct Answer - c `tan^(4)theta+tan^(2)theta=1` `because sec^(2)tyheta-tan^(2)theta=1` `tan^(@)(1+tan^(2)theta)=1` ` tan^(2)theta (sec^(2)theta)=1` `tan^(2)theta=(1)/(sec^(2)theta)` `tan^(2)theta=cos^(2)theta` `because cos^(4)theta+cos^(4)theta` `=(cos^(2)theta)^(2)+cos^(2)theta` `=(tan^(2)theta)+tan^(2)theta` =1 frame equation (i) |
|
| 250. |
`8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta)` का मान क्या होगा ?A. 20B. -20C. -4D. 4 |
|
Answer» Correct Answer - c `8(sin^(6)theta+cos^(6)theta)-12` `(sin^(4)theta+cos^(4)theta)` put `theta=0^(@)` put `theta=0^(@)` `=8(sin^(6)0^(@)+cos^(6)theta)-12(sin^(4)0+cos^(4)0)` `=8(0+1)-12(0+1)=-4` |
|