Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Find the value of tan 15 degrees

Answer»

Let  tan(15°) = tan(45°-30°)

We know that tan(A - B) = (tanA - tanB) /(1 + tan A tan B)

⇒tan(45°-30°) = (tan45°- tan30°)/(1+tan45°tan30°)

= {1- (1/√3)} / {1+(1/√3)}

∴ tan15° = (√3 - 1) / (√3 + 1)

102.

If \(\sin x = \frac{3}{5}\), 0 ≤ x ≤ 90º, then the value of \(\cot x.\sec x\) is:1. \(\frac{5}{3}\)2. \(\frac{3}{5}\)3. \(\frac{4}{5}\)4. \(\frac{3}{4}\)

Answer» Correct Answer - Option 1 : \(\frac{5}{3}\)

Given:

Sinx = 3/5 

Formula Used:

sinθ = perpendicular/hypotenuse 

cosθ = Base/hypotenuse

cotθ = cosθ/sinθ  

Calculation:

cotx × secx = (cosx/sinx) × 1/cosx = 1/sinx 

⇒ cotx × secx = 1/(3/5) = 5/3

∴ The value of  ​\(\cot x.\sec x\) is 5/3

103.

Find the value of [(1 + tan2A)/2tan A] × [(1 - tan2A)/(1 + tan2A)]?1. sec2 2A2. tan 2A3. cosec 2A4. cot 2A

Answer» Correct Answer - Option 4 : cot 2A

Formula used:

sin 2A = 2tanA/(1 + tan2A)

cos 2A = (1 - tan2A)/(1 + tan2A)

Calculation:

[(1 + tan2A)/2tan A] × [(1 - tan2A)/(1 + tan2A)]

⇒ (1/sin 2A) × cos 2A

⇒ cos 2A/sin 2A

⇒ cot 2A

104.

Find the value of sin(60 + θ) - cos(30 - θ).

Answer» Correct Answer - Option 1 : 0

Formula Used:

Sin(A +B) = SinACosB + CosASinB

 

Cos(A – B) = CosACosB + SinASinB

Calculation:

⇒ Sin(60 + θ) = Sin60×Cosθ + Cos60×Sinθ

⇒ Sin(60 + θ) = (√3/2)Cosθ + (1/2)Sinθ       ----(1)

⇒ Cos(30 – θ) = Cos30×Cosθ + Sin30×Sinθ

⇒ Cos(30 – θ) = (√3/2)Cosθ + (1/2)Sinθ      ----(2)

⇒ Now the value of Sin(60 + θ) – Cos(30 – θ) from (1) & (2)

⇒ (√3/2)Cosθ + (1/2)Sinθ – (√3/2)Cosθ - (1/2)Sinθ = 0

The answer is 0 

Short Trick:

Put θ = 0°, we get 

⇒ Sin60 - Cos30 = 0

∴ From both we get 0

105.

If 3sinθ + 4cosθ = 5, then find the value of cotθ.1. 3/42. 4/33. 3/54. 4/5

Answer» Correct Answer - Option 2 : 4/3

Given:

3sinθ + 4cosθ = 5 we have to find the value of cotθ

Concept Used:

Sin2θ + cos2θ = 1

Cotθ = cosθ/sinθ

Calculation:

3sinθ + 4cosθ = 5

⇒ (3/5)sinθ + (4/5)cosθ = 1      ----(1)

We know that, Sin2θ + cos2θ = 1      ----(2)

Comparing (1) and (2) get,

Sinθ = 3/5 and cosθ = 4/5

Cotθ = cosθ/sinθ

⇒ cotθ = (4/5)/(3/5)

⇒ cotθ = 4/3

Value of cotθ is 4/3

106.

What is the value of \(\sin \left( {\frac{\pi }{6}} \right) + cosec\left( {\frac{\pi }{6}} \right)\) ?1. 22. 3/23. 5/24. 7/2

Answer» Correct Answer - Option 3 : 5/2

Concept used :

\(\pi \;radian = 180^\circ \)

sin 30° = 1/2

cosec 30° = 2

Solution :

\(\\sin \left( {\frac{\pi }{6}} \right) + cosec\left( {\frac{\pi }{6}} \right)\)

⇒ sin 30° + cosec 30°

⇒ (1/2) + 2

⇒ 5/2

∴ The value of \(\sin \left( {\frac{\pi }{6}} \right) + cosec\left( {\frac{\pi }{6}} \right)\) is 5/2.

107.

Find the value of the given expression \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\)1. sinθ + cosθ 2. 03. 14. sinθ - cosθ

Answer» Correct Answer - Option 3 : 1

Given:

 Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\)

Formula used:

sin2θ = 2sinθ cosθ

sin2θ + cos2θ = 1

(a + b)2 = a2 + b2 + 2ab

Calculation:

Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\) 

⇒ (cosθ + sinθ)/√(sin2θ + cos2θ + 2sinθ cosθ)

⇒ (cosθ + sinθ)/√(sinθ + cosθ)2

⇒ (cosθ + sinθ)/(sinθ + cosθ)

⇒ 1

∴ The value of the given expression is 1

108.

\(\frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\;\) is equal to:1. 2cos x2. 2sin x3. 2sec x4. 2cosec x

Answer» Correct Answer - Option 3 : 2sec x

Given:

\( \frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\)

Concept Used:

sin2x + cos2x = 1

Calculation:

\( \frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\)

⇒ {cos2x + (1 + sinx)2}/{(1 + sinx) × cosx}

⇒ (cos2x + 1 + sin2x + 2sinx)/{(1 + sinx) × cosx}

⇒ (1 + 1 + 2sinx)/{(1 + sinx) × cosx}              [∵ sin2x + cos2x = 1]

⇒ 2(1 + sinx)/{(1 + sinx) × cosx}

⇒ 2/cosx

⇒ 2secx

∴ \( \frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\) = 2secx

109.

If sin θ - cos θ = 0, and 0

Answer» Correct Answer - Option 2 : 45° 

Concept:

tan 45° = 1

 

Calculation:

sin θ - cos θ = 0 

⇒ sin θ = cos θ 

⇒ \(\rm \frac{\sin θ }{\cos θ }=1\)

⇒ tan θ  = 1 

So, θ = 45° 

Hence, option (2) is correct. 

110.

if sin θ = 3/5, then cos θ = 1. 5/32. 9/253. 16/254. 4/5

Answer» Correct Answer - Option 4 : 4/5

Concept:

\(\rm sin ^2θ +cos^2θ =1\)

 

Calculation:

Here, sin θ = 3/5, 

We know, \(\rm sin ^2θ +cos^2θ =1\)

\(\rm \Rightarrow cos^2θ =1 -(\frac 3 5)^2\\ =\frac{25-9}{25}\)

= 16/25

∴ cos θ  = 4/5

Hence, option (3) is correct.

111.

if sin 2A = 2 sin A, then A = 1. 0° 2. 30° 3. 45° 4. 90°

Answer» Correct Answer - Option 1 : 0° 

Concept:

sin 2θ = 2 sin θ cos θ 

 

Calculation: 

We know, sin 2A = 2 sin A cos A 

Given: sin 2A = 2 sin A

⇒ 2 sin A cos A  = 2 sin A

⇒ 2 sin A cos A - 2 sin A = 0

⇒ 2 sin A(cos A - 1) = 0

So, cos A = 1,when A = 0° 

And 2 sin A = 0 when A= 0° 

∴ If sin 2A = 2 sin A then  A = 0° 

Hence, option (1) is correct.

112.

If tan θ = √5, then sec θ = 1. 1+ √52. √3/2 3. √64. 2/√3

Answer» Correct Answer - Option 3 : √6

Concept:

\(\rm 1+\tan ^2θ =sec^2θ\)

 

Calculation:

Given: tan θ = √5

We know that, \(\rm 1+\tan ^2θ =sec^2θ\)

\(\rm sec^2θ = 1 + (√ 5)^2=1+5\)

= 6

∴ sec θ = √6

Hence, option (3) is correct. 

113.

यदि एक त्रिभुज ABC में `sinA=cosB` हो, तो `cosC` का मान कितना है ?A. `(sqrt(3))/(2)`B. 0C. 1D. `(1)/(sqrt(2))`

Answer» Correct Answer - b
In `Delta,angleA+angleB+angleC`
`=180^(@)` .......(i)
`sinA=cosB`
`sinA=sin(90-B)`
`A=90^(@)-B`
`A+B=90^(@)` ........(ii)
from equation (i) and (ii)
`angleC=90^(@)`
So, `cosC=c os90^(@)=0`
114.

When tanx = 1, what does x equal?

Answer»

tan x = 1 , but as tan (π/4) = 1 

However, as period of tan function is π and the function repeats after every π , the general solution for tan x = 1 = tan (π/4) is 

x = nπ + π/4 , where n is an integer.

115.

How do you solve tan x = − 1 ?

Answer»

Use trig table of special arcs: 

When tan x = - 1

x = 3π/4

General answers: 

x = 3π/4 + kπ

116.

If \(\frac{{\cos θ + \sin θ }}{{\cos θ - \sin θ }} = 8\), then the value of cot θ is equal to:1. 7/62. 9/73. 6/54. 8/5

Answer» Correct Answer - Option 2 : 9/7

Given:

(cos θ + sin θ)/(cos θ - sin θ) = 8

Formula:

If x/y = a/b, then

Dividendo and Componendo rule

(x + y)/(x - y) = (a + b)/(a - b)

Calculation:

(cos θ + sin θ)/(cos θ - sin θ) = 8/1

Dividendo and Componendo rule

⇒ cos θ/sin θ = (8 + 1)/(8 - 1)

⇒ cot θ = 9/7

117.

If tan A - tan B = x and cot B - cot A = y, then cot (A - B) is equal to1. \(\dfrac{1}{x}+\dfrac{1}{y}\)2. \(\dfrac{1}{x}-\dfrac{1}{y}\)3. \(-\dfrac{1}{x}+\dfrac{1}{y}\)4. \(-\dfrac{1}{x}-\dfrac{1}{y}\)

Answer» Correct Answer - Option 1 : \(\dfrac{1}{x}+\dfrac{1}{y}\)

Concept:

The identities of trigonometry are:

  • \(\rm \tan a={\sin a\over \cos a}\)
  • \(\rm \cot a ={\cos a\over\sin a} = {1\over \tan a}\)
  • \(\rm \tan (a+b)={\tan a +\tan b\over{1-\tan a \tan b}}\)
  • \(\rm \tan (a-b)={\tan a -\tan b\over{1+\tan a \tan b}}\)

 

Calculation:

Given 

cot B - cot A = y

⇒ \(\rm {1\over\tan B}-{1\over\tan A} =y\)

⇒ \(\rm {\tan A - \tan B\over\tan A\tan B} =y\)

Given tan A - tan B = x

⇒ \(\rm {x\over\tan A\tan B} =y\)

⇒ \(\boldsymbol{\rm \tan A\tan B ={x\over y}}\)

Now, \(\rm \tan (A-B)={\tan A -\tan B\over{1+\tan A \tan B}}\)

⇒ tan (A - B) = \(\rm {x\over{1+{x\over y}}}\) 

⇒ tan (A - B) = \(\rm {xy\over{x+y}}\)

cot (A - B) = \(\rm 1\over\tan (A - B)\) 

⇒ cot (A - B) = \(\rm x+y\over xy\) 

⇒ cot (A - B) = \(\boldsymbol{\rm {1\over y} + {1\over x}}\) 

118.

If Sin D = 3/5, then (sin D + cos D)2 =?A. 1B. 24/25C. 49/25D. 12/251. A2. B3. D4. C

Answer» Correct Answer - Option 4 : C

Given:

Sin D = 3/5, we have to find the value of (sin D + cos D)2

Concept Used:

Sinθ = Height/Hypotenuse

Cosθ = Base/Hypotenuse

In a Right angle triangle, Height2 + Base2 = Hypotenuse

Calculation:

 Sin D = 3/5 = Height/Hypotenuse

⇒ Height = 3k and Hypotenuse = 5k     [Where k is a constant]

We know,

Height2 + Base2 = Hypotenuse

⇒ (3x)2 + Base2 = (5x)2

⇒ Base2 = 25x2 - 9x2

⇒ Base2 = 16x2

⇒ Base = 4x

Cos D = 4x/5x

⇒ Cos D = 4/5

(sin D + cos D)2

⇒ (3/5 + 4/5)2

⇒ (7/5)2

⇒ 49/25

∴ The required value of (sin D + cos D)2 is 49/25.

119.

Find the radian measure of 72° 30'.1. 35π/362. 25π/363. 29π/724. 30π/72

Answer» Correct Answer - Option 3 : 29π/72

Given:

degree = 72° 30'

Concept Used:

Radian measure = (π/180) × degree measure

1 degree = 60 minutes

Calculation:

Value of 72° 30' = (72 + 30/60)  

Value = (72 + 1/2) = (145/2)° 

Substituting the values in the formula 

Radian measure of 72° 30' = (145/2) × (π/180)

Radian measure of 72° 30' =  29π/72

∴ The radian measure of 72° 30' is 29π/72.

120.

If 4θ is an acute angle, and cot 4θ = tan (θ - 5°)  , then what is the value of θ?1. 24°2. 45°3. 21°4. 19°

Answer» Correct Answer - Option 4 : 19°

Given:

4θ is an acute angle,

And cot 4θ = tan (θ - 5°).

Formula used:

tan (90° - θ) = cot θ 

Calculation:

cot 4θ = tan (θ -5°)

⇒ tan (90° - 4θ) = tan (θ -5°)

⇒ 90° - 4θ = θ -5° 

⇒ 90° + 5° = θ + 4θ 

⇒ 95° = 5θ 

⇒ θ = 19° 

∴ the value of θ is 19°.

121.

`sin^(2)theta-3sintheta+2=0` willl be true if `sin^(2)theta-3sintheta+2=0` सही होगा यदि?A. `0 le theta lt 90^(@)`B. `0 lt theta lt 90^(@)`C. `theta=0^(@)`D. `theta=90^(@)`.

Answer» Correct Answer - d
`sin^(2)theta-3sintheta+2=0`
`rArrsin^(2)theta-2sintheta-sin theta+2=0`
`rArr sin theta(sin theta-2)-1(sin theta-2)=0`
`rArr(sin thea-1)(sin theta-2)=0`
`[sin thetacancel=2]`
`rArr sin theta=1rArrsin90^(@)`
`rArrtheta=90^(@)`
Alternate
Put value of `theta=90^(@)`
[take help from option]
`sin^(2)theta-3sintheta+2=0`
`sin^(2)90^(@)-3sin90^(@)+2=0`
1-3xx1+2 =0
`[sin90^(@)=1]0=0`
[mathced]
so this is answer.
122.

If 2 sin θ = x and x sec θ = 2 then find the value of 2tanθ + 1?1. 12. 43. 34. √2

Answer» Correct Answer - Option 3 : 3

Given:

It is given that 2 sin θ = x and x sec θ = 2

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

tanθ = sinθ/cosθ

secθ = 1/cosθ

Calculation:

2sinθ = x

∴ sinθ = x/2

And x secθ = 2

∴ Secθ = 2/x

⇒ cosθ = x/2

Now, we have to find the value of 2tanθ + 1 = 2(sinθ/cosθ) + 1

Put the value of sin θ and cos θ in the given expression

∴ 2[(x/2)/(x/2)] + 1 = 2 + 1 = 3

Hence, option (3) is correct

123.

If `xcostheta-sintheta=1," then "x^(2)-(1+x^(2))sintheta` equalsA. 1B. -1C. 0D. 2

Answer» Correct Answer - a
Given let x=1 and `theta=0^(@)`
`rArrx cos theta-sintheta+1`..........(i)
`rArr1xx1-(0)=1`
`rArr1=1`
putting value `x=1` and `theta=0^(@)` in following equation
`rArrx^(2)-(1+x^(2))sintheta`
`rArr1^(2)-(1+1^(2))xx sin0^(@)`
=1
124.

Consider the following statements and state which one is correct:I. Sin 75° = (√3 + 1)/2√2II. Cos 75° = (√3 - 1)/2√21. Only 12. Only 23. Both 1 and 24. Neither 1 nor 2

Answer» Correct Answer - Option 3 : Both 1 and 2

Formula Used:

Sin(A ± B) = SinACosB ± SinBCosA

Cos(A + B) = CosACosB - SinBsinA

Cos(A - B) = CosACosB + SinBsinA

Calculation:

We have to calculate the value of Sin 75°

∴ Sin 75° = Sin (45 + 30)° = Sin45°Cos30° + Sin30°Cos45°

⇒ Sin 75° = 1/√2 × √3/2 + 1/2 × 1/√2 = (√3 + 1)/2√2

So, statement 1 is correct

Now the value of Cos 75°

∴ Cos 75° = cos(45 - 30)° = Cos45°Cos30° - Sin45°sin30°

⇒ Cos 75° = 1/√2 × √3/2 - 1/2 × 1/√2 = (√3 - 1)/2√2

So, statement 2 is correct

Hence, option (3) is correct

125.

If 2sec2θ + tan2θ = 17 then find the value of cotθ. 1. √52. (1/√5)3. √34. (1/√3)

Answer» Correct Answer - Option 2 : (1/√5)

Given

2sec2θ + tan2θ = 17 

Concept

Sec2θ - tan2θ = 1

Sec2θ = 1 + tan2θ 

Cotθ = (1/tanθ)

Calculation

 We have 2sec2θ + tan2θ = 17

⇒ 2(1 + tan2θ ) + tan2θ = 17

⇒ 2 + 2tan2θ + tan2θ = 17

⇒ 3tan2θ = 15

⇒ tan2θ = (15/3)

⇒ tan2θ = 5 

⇒ tanθ = √5 

⇒ cotθ = (1/√5)

∴ Cotθ = (1/√5)

126.

If tan x + tan y = 2 then what is the value of cot x – cot y?1. 12. 03. -14. √3

Answer» Correct Answer - Option 2 : 0

Given:

It is given that tan x + tan y = 2

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

tan45° = 1 and cot 45° = 1

Calculation:

Let x = 45° and y = 45°

∴ tan 45° + tan 45° = 1 + 1 = 2

Now, cot x – cot y = cot 45° – cot 45° = 1 – 1 = 0

Hence, option (2) is correct

127.

If sin (π/2 - θ/3) = √3/2 then find the value of tan θ?1. √32. 13. 04. Not define

Answer» Correct Answer - Option 4 : Not define

Given:

It is given that sin (π/2 - θ/3) = √3/2

Formula Used:

Basic concept of trigonometric ratio and identities

We know that

sin(90 -θ) = cosθ

⇒ cos30° = √3/2

Calculation:

We know that sin (π /2 - θ) = cos θ

∴ sin(π/2 - θ/3) = √3/2

⇒ cos(θ/3) = cos 30 °

⇒ θ/3 = 30 ° = θ = 90 °

Now, value of tan θ = tan 90 ° = Not define

Hence, option (4) is correct

128.

If `(sinalpha+co s ecalpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha+cot^(2)alpha`, then the value of k isA. 1B. 7C. 3D. 5

Answer» Correct Answer - b
`(sinalpha+co s ecalpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha+cot^(2)alpha`
Put `alpha=45^(@)`
`rArr (sin45^(@)+co s ec45^(@))^(2)=k+1+1`
`(1)/(2)+2+(2sqrt(2)xx(1)/(2))+(1)/(2)+2+(2sqrt(2)xx(1)/sqrt(2))`
`rArr4(1)/(2)+4(1)/(2)=k+2`
k=7
129.

यदि `tantheta=(sinalpha+cosalpha)/(sinalpha+cosalpha)` है तो `sinalpha+cosalpha` का मान क्या होगा?A. `+-sqrt(2)sintheta`B. `+-sqrt(2)costheta`C. `+-(1)/(sqrt(2))sintheta`D. `+-(1)/(sqrt(2))costheta`

Answer» Correct Answer - b
`tantheta=(sinalpha+cos alpha)/(sinalpha+cos alpha)`
`therefore` squaring both sides and after that add 1 both sides
`1+tan^(2)theta=1+((sin alpha-cosalpha)^(2))/((sinalpha+cos alpha)^(2))`
`sec^(2)theta=((sinalpha+cosalpha)^(2)+(sinalpha-cosalpha)^(2))/((sinalpha+cos alpha)^(2))`
`sec^(2)theta=(2(sin^(2)alpha+cos^(2)alpha))/((sinalpha+cosalpha)^(2))`
`(1)/(cos^(2)theta)=(2)/((sinalpha+cosalpha)^(2))`
`(1)/(costheta)=( +-sqrt(2))/(sinalpha+cos alpha)`
`sin alpha+cos alpha=+-sqrt(2)cos theta`
130.

यदि `rsintheta=1,rcostheta=sqrt(3)` है तो `(sqrt(3)tantheta+1)` का मान क्या होगा?A. `sqrt(3)`B. `(1)/(sqrt(3))`C. 1D. 2

Answer» Correct Answer - d
`rsintheta=1`
`rcostheta=sqrt(3)`
`rArr(rsintheta)/(rcos theta)=(1)/sqrt(3)rArrtantheta=(1)/sqrt(3)`
`rArrsqrt(3)tantheta=1`
Add 1 both sides
`rArrsqrt(3)tan theta+1=1+1`
`rArr2`
131.

if `rsintheta=(7)/(2) and rcostheta=(7sqrt(3))/(2),` then value of r isA. 4B. 3C. 5D. 7

Answer» Correct Answer - d
`r sin theta=(7)/(2)` .......(i)
`r cos theta=(7sqrt(3))/(2)` .......(ii)
On squaring and adding both equations
`r^(2)sin^(2)theta+r^(2)cos^(2)theta=((7)/(2))^(2)+((7sqrt(3))/(2))^(2)`
`r^(2)(sin^(2)theta+cos^(2)theta)=(49)/(4)+(147)/(4)`
`r^(2)=(196)/(4)=49`
`r=sqrt(49)=7`
132.

What is Sin 20° Cos 70° + Cos 20° Sin 70°?1. 22. 63. 54. 1

Answer» Correct Answer - Option 4 : 1

Concept

Sin(90°- A) = Cos A

Cos (90°- A) = Sin A

Calculation

Sin(90°– 70°) Cos 70°+ Cos(90° – 70°) Sin 70°

⇒ Cos 70°Cos 70°+ Sin 70°Sin 70°

⇒ Cos270 °+ Sin270°

⇒ 1
133.

The value of sin238° – cos252° is:1. \(\sqrt{2}\)2. 13. 04. \(\frac{1}{\sqrt{2}}\)

Answer» Correct Answer - Option 3 : 0

Given:

sin238° – cos252° 

Concept Used:

sin2θ + cos2θ = 1

sin(90° – θ ) = cosθ 

Calculation:

sin238° – cos252° = sin238° – sin2(90° – 52°)

⇒ sin238° – sin238°

⇒ 0

⇒ sin238° – cos252° = 0

∴ sin238°  cos252° = 0

 

134.

If the value of sec B + tan B = r, then the value of sec B - tan B is equal to:

Answer» Correct Answer - Option 3 : \(\frac{1}{r}\)

Given:

sec B + tan B = r

Formula Used:

sec2θ - tan2θ = 1

a2 - b2 = (a + b) (a - b)

Calculation:

secB - tanB = 1 

⇒ (sec B + tan B) (sec B - tan B) = 1

⇒ (r) (sec B - tan B) = 1 

⇒ sec B - tan B = 1/r

∴ Value sec B + tan B = r then sec B - tan B is 1/r.

 

135.

If tan A = 3/4 and tan B = -12/5, then cot (A - B) is1. 12. 23. 34. None of these

Answer» Correct Answer - Option 4 : None of these

Concept:

tan(A - B) = \(\rm \frac{tanA-tan B}{1+tan AtanB}\)

 

Calculation:

We know, tan(A - B) = \(\rm \frac{tanA-tan B}{1+tan AtanB}\)

∴cot(A - B) = \(\rm \frac{1+tan AtanB}{tanA-tan B}\)

\(=\rm \frac{1+\frac{3}{4}\times \frac{-12}{5}}{\frac 3 4 + \frac{12}{5}}\)

\(=\rm \frac{1-\frac{36}{20}}{\frac {63}{20}}\)

\(=\rm \frac{-16}{20}\times \frac {20}{63}=\frac{-16}{63}\)

Hence, option (4) is correct.
136.

If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:1. \(\sqrt{3}\)2. 03. 14. \(\frac{1}{2}\)

Answer» Correct Answer - Option 3 : 1

Given

cot A = tan(2A - 45°)

Concept

If cot A = tan(90° - A)

A = 90° - A

Calculation

cot A = tan(2A - 45°)

⇒ A = 2A - 45° 

⇒ A = 45° 

⇒ tan A = tan 45° 

 

 

 

 

137.

The value of \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) is:1. \(\frac{1}{3}\)2. - 33. 34. \(-\frac{1}{3}\)

Answer» Correct Answer - Option 2 : - 3

Given:

\(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\)

Identity used:

Sin θ = cos(90 - θ)

Sinθ + cos2 θ = 1

Calculation:

\(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\)

using Sin θ = cos(90 - θ)

⇒ \(\frac{{si{n^2}52^\circ \; + \;2\; + \;si{n^2}\left( {90 - 52} \right)^\circ }}{{4co{s^2}43^\circ - 5\; + \;co{s^2}\left( {90\; - 43} \right)^\circ }}\)

⇒ \(\frac{{si{n^2}52^\circ \; + \;2\; + \;co{s^2}52^\circ }}{{4co{s^2}43^\circ - 5\; + \;si{n^2}43^\circ }}\)

Applying Sinθ + cos2 θ = 1

⇒ (1 + 2)/(4 - 5) ⇒ -3

∴ The value of \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) is -3.

138.

If \(\sin A = \dfrac{15}{17}\) and \(\sin B = \dfrac{7}{25}\) , then sin (A - B) =?A. \(\dfrac{304}{425}\)B. \(\dfrac{416}{425}\)C. \(\dfrac{297}{425}\)D. \(\dfrac{87}{425}\)1. A2. C3. D4. B

Answer» Correct Answer - Option 1 : A

Given:

\(\sin A = \dfrac{15}{17}\) and \(\sin B = \dfrac{7}{25}\)

Formula used:

sin(A - B) = sinAcosB - cosAsinB

Calculation:

\(\sin A = \dfrac{15}{17}\), then \(\cos A = \dfrac{8}{17}\)

\(\sin B = \dfrac{7}{25}\), then \(\cos B = \dfrac{24}{25}\)

sin(A - B) = sinAcosB - cosAsinB

⇒ (15/17) × (24/25) - (8/17) × (7/25)

⇒ (72/85) - (56/425)

⇒ (360 - 56)/425

⇒ 304/425

∴ The value of sin(A - B) is 304/425.

139.

`cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(Cot17^(@)Sec^(2)68^(@)))` का मान क्या है ?

Answer» Correct Answer - b
`rArrcot17^(@)(cot73^(@)cos^(2)22^(@))+(1)/(cot17^(@)sec68^(@))`
`=cot17^(@)[ cot(90-17^(@))cos^(2)(90-60)+(tan17^(@)cos^(2)68)`
`=cot17^(@)(tan17^(@)cos^(2)68)`
`=cot17^(@)(sin^(2)68+cos^(2)68)`
=1(1)=1
140.

The value of `sin^(2)22^(@)+sin^(2)68^(@)+cot^(2)30^(@)` isA. 43589B. 43528C. 3D. 4

Answer» Correct Answer - d
Given
`rArrsin^(2)22^(@)+sin68^(@)+cot^(2)30^(@)`
`rArrcos^(2)68^(@)+sin^(2)68^(@)+cot^(2)30^(@)`
`{sin(90-theta)costheta cos (90-theta)=sin theta}`
`rArr1+cot^(2)30^(@)`
`rArr1+(sqrt(3))^(2)[becausecot30^(@)=sqrt(3)]`
`rarr4`
141.

`sin^(2)5+sin^(2)6^(@)+ . . . +sin^(2)84^(@)+sin^(2)85^(@)=?`A. `30(1)/(2)`B. `40(1)/(2)`C. `40`D. `39(1)/(2)`

Answer» Correct Answer - b
`sin^(2)5^(@)+sin^(2)85^(@))+(sin^(2)6^(@)+ sin^(2)84^(@))+`............upto 40 pairs+middle term =40`+sin^(2)45^(@)`
`=40+(1)/(2)=40(1)/(2)`
Alternate In case, when series is in the form of `sin^(2)theta` or `cos^(2)theta`, then sum of series will always be half of no. of terms.
`=(81)/(2=40(1)/(2)`
142.

यदि `x,y` न्यूनकोण है `x lt x +y lt 90^(@)` और `sin(2x-20^(@))=cos(2y+20^(@))`, है तो का मान ज्ञात करे?A. `(1)/(sqrt(3))`B. `(sqrt(3))/(2)`C. `sqrt(3)`D. 1

Answer» Correct Answer - d
`sin(2x-20^(@))=cos(2y+20^(@))`
`(2x-20^(@))+(2y+20^(@))=90^(@)`
[if `sinA=cos theta` then `A+B=90^(@)`]
`2(x+y)=90^(@)`
`x+y=45^(@)`
143.

यदि `sin(A-B)=(1)/(2)` और `cos(A+B)` जहाँ और न्यूनकोण है तो `B` का मान ज्ञात करे?A. `(pi)/(6)`B. `(pi)/(12)`C. `(pi)/(4)`D. `(pi)/(2)`

Answer» Correct Answer - b
`sin(A-B)=(1)/(2)(A-B=30^(@))`
`cos(A+B)=(1)/(2)(A+B= 60^(@))`
Adding both side
`rArr(A-B)(A+B)=30^(@)+ 60^(@)`
`rArr2A=90^(@)`
`rArrA=45^(@)`
`because A-B=20^(@)`
`B=A-30^(@)=45^(@).30^(@)=15^(@)`
`rArr(15xxpi)/(180)=(pi)/(12)` radian.
144.

एक त्रिभुज के कोण की मान का अनुपात 2:7:11 है तो कोण की मान ज्ञात करेA. `16^(@),56^(@),88^(@)`B. `18^(@),63^(@),99^@`C. `20^(@),70^(@),90^(@)`D. `25^(@),175^(@),105^(@)`

Answer» Correct Answer - b
Angles of triangle are in ratio 2:7:11
According to question
`2x+7x+11x=180`
`20x=180`
`x=9`
145.

यदि `theta` एक न्यूनकोण है और`7sin^(2)theta+3cos^(2)theta=4`, है तो `tantheta` का मान ज्ञात करे ?A. `sqrt(3)`B. `(1)/(sqrt(3))`C. `1`D. `0`

Answer» Correct Answer - b
`7sin^(2)theta+3cos^(2)theta=4`
`7sin^(2)theta+3(1-sin^(2)theta)=4`
`7sin^(2)theta+3-3sin^(2)theta=4`
`4sin^(2)theta=1`
`sin theta=(1)/(4)rArrsintheta=(1)/(2)`
`sin theta=sin30^(@)`
`tan 30^(@)=(1)/sqrt(3)`
Alternate
Put `= 30^(@)`
`7xxsin^(2)30^(@)+3cos^(2)30^(@)=4`
`7xx(1)/(4)+3xx(3)/(4)=4`
`(7)/(4)+(9)/(4)=4`
`(16)/(4)=4`
`4=4` (satisfied)
`therefore tan 30^(@)=(1)/sqrt(3)`
146.

if `tantheta=1` then the value of `(8sintheta+5costheta)/(sin^(3)theta-2cos^(3)theta+7costheta)` isA. 2B. `2(1)/(2)`C. 3D. `(4)/(3)`

Answer» Correct Answer - a
If, `tan theta=1`
It means `theta=45^(@)`
`=(sin theta+5cos theta)/(sin^(2)theta-2cos^(2)theta+7cos theta)`
`=(5sin45 ^(@)+5cos45^(@))/(sin^(2)45^(@)-2cos^(3)45^(@)+7cos45^(@))`
`(8xx(1)/sqrt(2)+5xx(1)/sqrt(2))/(((1)/sqrt(2))^(3)-((1)/sqrt(2))^(3)+7((1)/sqrt(2)))=2`
147.

The value of `sin^(2)65^(@)+sin^(2)25^(@)+cos^(2)35^(@)+cos^(2)55^(@)` is

Answer» Correct Answer - c
`Sin^(2)65^(@)+sin^(2)25^(@)+cos^(2)35^(@)+cos^(2)55^(@)`
`=sin^(2)65^(@)+sin^(2)(90^(@)-65^(@))+ `
`[cos ^(2)35^(@)+cos^(2)[90^(@)-35^(@))]`
`(sin^(2)65^(@)+cos^(2)65^(@))+(cos^(2)35^(@)+sin^(2)35^(@))~
`=1+1=2`
148.

if `sin(theta+18^(@))=cos60^(@)(0^(@) lt theta lt 90^(@))`, then the value of cos`5theta` isA. `(1)/(2)`B. 0C. `(1)/(sqrt(2))`D. 1

Answer» Correct Answer - a
`sin(theta+18^(@))=cos60^(@)`
`theta+18^(@)+60^(@)=90^(@)`
`theta=12^(@)`
`rArrcos5theta=cos60^(@)=(1)/(2)`
149.

Find the value of the trigonometric function cosec (–1410°)

Answer»

It is known that the values of cosec x repeat after an interval of 2π or 360°.

cosec(−1410)=−cosec1410

⇒−cosec(4×360−30)

⇒ - cosec30

Since cosec(2nπ−θ)=−cosecθ

cosec30⇒2

Hence cosec(−1410)=2

150.

यदि `tan^(2)alpha=1+2tan^(2)beta(alpha,beta` एक धनात्मक न्यूनकोण है तो `sqrt(2)cosalpha-cosbeta` किसके बराबर है?

Answer» Correct Answer - a
`tan^(2)alpha=1+2tan^(2)beta`
`rArrsec^(2)alpha-1=1+2(sec^(2)beta-1)`
`rArrsec^(2)alpha-1= 2sec^(2)beta-1`
`rArr(1)/(cos^(2)alpha)=(2)/(cos^(2)beta)`
`sqrt(2)cos alpha-cos beta=0`
Alterante
`tan^(2)alpha=1+2tan^(2)beta`
Put `beta=45^(@)`
`tan^(2)alpha=1+2 tan^(2)45^ (@)`
`tan^(2)alpha=3`
`tanalpha=sqrt(3)`
`alpha=60^(@)`
Put `alpha =60^(@).beta=45^(@)`
`=sqrt(2)cos alpha=cosbeta=sqrt(2)cos60^(@)-cos45^(@)`
`=sqrt(2)xx(1)/(2)-(1)/sqrt(2)=(1)/sqrt(2)-(1)/sqrt(2)=0`