InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Find the value of tan 15 degrees |
|
Answer» Let tan(15°) = tan(45°-30°) |
|
| 102. |
If \(\sin x = \frac{3}{5}\), 0 ≤ x ≤ 90º, then the value of \(\cot x.\sec x\) is:1. \(\frac{5}{3}\)2. \(\frac{3}{5}\)3. \(\frac{4}{5}\)4. \(\frac{3}{4}\) |
|
Answer» Correct Answer - Option 1 : \(\frac{5}{3}\) Given: Sinx = 3/5 Formula Used: sinθ = perpendicular/hypotenuse cosθ = Base/hypotenuse cotθ = cosθ/sinθ Calculation: cotx × secx = (cosx/sinx) × 1/cosx = 1/sinx ⇒ cotx × secx = 1/(3/5) = 5/3 ∴ The value of \(\cot x.\sec x\) is 5/3 |
|
| 103. |
Find the value of [(1 + tan2A)/2tan A] × [(1 - tan2A)/(1 + tan2A)]?1. sec2 2A2. tan 2A3. cosec 2A4. cot 2A |
|
Answer» Correct Answer - Option 4 : cot 2A Formula used: sin 2A = 2tanA/(1 + tan2A) cos 2A = (1 - tan2A)/(1 + tan2A) Calculation: [(1 + tan2A)/2tan A] × [(1 - tan2A)/(1 + tan2A)] ⇒ (1/sin 2A) × cos 2A ⇒ cos 2A/sin 2A ⇒ cot 2A |
|
| 104. |
Find the value of sin(60 + θ) - cos(30 - θ). |
|
Answer» Correct Answer - Option 1 : 0 Formula Used: Sin(A +B) = SinACosB + CosASinB Cos(A – B) = CosACosB + SinASinB Calculation: ⇒ Sin(60 + θ) = Sin60×Cosθ + Cos60×Sinθ ⇒ Sin(60 + θ) = (√3/2)Cosθ + (1/2)Sinθ ----(1) ⇒ Cos(30 – θ) = Cos30×Cosθ + Sin30×Sinθ ⇒ Cos(30 – θ) = (√3/2)Cosθ + (1/2)Sinθ ----(2) ⇒ Now the value of Sin(60 + θ) – Cos(30 – θ) from (1) & (2) ⇒ (√3/2)Cosθ + (1/2)Sinθ – (√3/2)Cosθ - (1/2)Sinθ = 0 ∴ The answer is 0 Short Trick: Put θ = 0°, we get ⇒ Sin60 - Cos30 = 0 ∴ From both we get 0 |
|
| 105. |
If 3sinθ + 4cosθ = 5, then find the value of cotθ.1. 3/42. 4/33. 3/54. 4/5 |
|
Answer» Correct Answer - Option 2 : 4/3 Given: 3sinθ + 4cosθ = 5 we have to find the value of cotθ Concept Used: Sin2θ + cos2θ = 1 Cotθ = cosθ/sinθ Calculation: 3sinθ + 4cosθ = 5 ⇒ (3/5)sinθ + (4/5)cosθ = 1 ----(1) We know that, Sin2θ + cos2θ = 1 ----(2) Comparing (1) and (2) get, Sinθ = 3/5 and cosθ = 4/5 Cotθ = cosθ/sinθ ⇒ cotθ = (4/5)/(3/5) ⇒ cotθ = 4/3 ∴ Value of cotθ is 4/3 |
|
| 106. |
What is the value of \(\sin \left( {\frac{\pi }{6}} \right) + cosec\left( {\frac{\pi }{6}} \right)\) ?1. 22. 3/23. 5/24. 7/2 |
|
Answer» Correct Answer - Option 3 : 5/2 Concept used : \(\pi \;radian = 180^\circ \) sin 30° = 1/2 cosec 30° = 2 Solution : \(\\sin \left( {\frac{\pi }{6}} \right) + cosec\left( {\frac{\pi }{6}} \right)\) ⇒ sin 30° + cosec 30° ⇒ (1/2) + 2 ⇒ 5/2 ∴ The value of \(\sin \left( {\frac{\pi }{6}} \right) + cosec\left( {\frac{\pi }{6}} \right)\) is 5/2. |
|
| 107. |
Find the value of the given expression \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\)1. sinθ + cosθ 2. 03. 14. sinθ - cosθ |
|
Answer» Correct Answer - Option 3 : 1 Given: Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\) Formula used: sin2θ = 2sinθ cosθ sin2θ + cos2θ = 1 (a + b)2 = a2 + b2 + 2ab Calculation: Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\) ⇒ (cosθ + sinθ)/√(sin2θ + cos2θ + 2sinθ cosθ) ⇒ (cosθ + sinθ)/√(sinθ + cosθ)2 ⇒ (cosθ + sinθ)/(sinθ + cosθ) ⇒ 1 ∴ The value of the given expression is 1 |
|
| 108. |
\(\frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\;\) is equal to:1. 2cos x2. 2sin x3. 2sec x4. 2cosec x |
|
Answer» Correct Answer - Option 3 : 2sec x Given: \( \frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\) Concept Used: sin2x + cos2x = 1 Calculation: \( \frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\) ⇒ {cos2x + (1 + sinx)2}/{(1 + sinx) × cosx} ⇒ (cos2x + 1 + sin2x + 2sinx)/{(1 + sinx) × cosx} ⇒ (1 + 1 + 2sinx)/{(1 + sinx) × cosx} [∵ sin2x + cos2x = 1] ⇒ 2(1 + sinx)/{(1 + sinx) × cosx} ⇒ 2/cosx ⇒ 2secx ∴ \( \frac{{\cos x}}{{1 + \sin x}} + \frac{{1 + \sin x}}{{\cos x}}\) = 2secx |
|
| 109. |
If sin θ - cos θ = 0, and 0 |
|
Answer» Correct Answer - Option 2 : 45° Concept: tan 45° = 1
Calculation: sin θ - cos θ = 0 ⇒ sin θ = cos θ ⇒ \(\rm \frac{\sin θ }{\cos θ }=1\) ⇒ tan θ = 1 So, θ = 45° Hence, option (2) is correct. |
|
| 110. |
if sin θ = 3/5, then cos θ = 1. 5/32. 9/253. 16/254. 4/5 |
|
Answer» Correct Answer - Option 4 : 4/5 Concept: \(\rm sin ^2θ +cos^2θ =1\)
Calculation: Here, sin θ = 3/5, We know, \(\rm sin ^2θ +cos^2θ =1\) \(\rm \Rightarrow cos^2θ =1 -(\frac 3 5)^2\\ =\frac{25-9}{25}\) = 16/25 ∴ cos θ = 4/5 Hence, option (3) is correct. |
|
| 111. |
if sin 2A = 2 sin A, then A = 1. 0° 2. 30° 3. 45° 4. 90° |
|
Answer» Correct Answer - Option 1 : 0° Concept: sin 2θ = 2 sin θ cos θ
Calculation: We know, sin 2A = 2 sin A cos A Given: sin 2A = 2 sin A ⇒ 2 sin A cos A = 2 sin A ⇒ 2 sin A cos A - 2 sin A = 0 ⇒ 2 sin A(cos A - 1) = 0 So, cos A = 1,when A = 0° And 2 sin A = 0 when A= 0° ∴ If sin 2A = 2 sin A then A = 0° Hence, option (1) is correct. |
|
| 112. |
If tan θ = √5, then sec θ = 1. 1+ √52. √3/2 3. √64. 2/√3 |
|
Answer» Correct Answer - Option 3 : √6 Concept: \(\rm 1+\tan ^2θ =sec^2θ\)
Calculation: Given: tan θ = √5 We know that, \(\rm 1+\tan ^2θ =sec^2θ\) \(\rm sec^2θ = 1 + (√ 5)^2=1+5\) = 6 ∴ sec θ = √6 Hence, option (3) is correct. |
|
| 113. |
यदि एक त्रिभुज ABC में `sinA=cosB` हो, तो `cosC` का मान कितना है ?A. `(sqrt(3))/(2)`B. 0C. 1D. `(1)/(sqrt(2))` |
|
Answer» Correct Answer - b In `Delta,angleA+angleB+angleC` `=180^(@)` .......(i) `sinA=cosB` `sinA=sin(90-B)` `A=90^(@)-B` `A+B=90^(@)` ........(ii) from equation (i) and (ii) `angleC=90^(@)` So, `cosC=c os90^(@)=0` |
|
| 114. |
When tanx = 1, what does x equal? |
|
Answer» tan x = 1 , but as tan (π/4) = 1 However, as period of tan function is π and the function repeats after every π , the general solution for tan x = 1 = tan (π/4) is x = nπ + π/4 , where n is an integer. |
|
| 115. |
How do you solve tan x = − 1 ? |
|
Answer» Use trig table of special arcs: When tan x = - 1 x = 3π/4 General answers: x = 3π/4 + kπ |
|
| 116. |
If \(\frac{{\cos θ + \sin θ }}{{\cos θ - \sin θ }} = 8\), then the value of cot θ is equal to:1. 7/62. 9/73. 6/54. 8/5 |
|
Answer» Correct Answer - Option 2 : 9/7 Given: (cos θ + sin θ)/(cos θ - sin θ) = 8 Formula: If x/y = a/b, then Dividendo and Componendo rule (x + y)/(x - y) = (a + b)/(a - b) Calculation: (cos θ + sin θ)/(cos θ - sin θ) = 8/1 Dividendo and Componendo rule ⇒ cos θ/sin θ = (8 + 1)/(8 - 1) ⇒ cot θ = 9/7 |
|
| 117. |
If tan A - tan B = x and cot B - cot A = y, then cot (A - B) is equal to1. \(\dfrac{1}{x}+\dfrac{1}{y}\)2. \(\dfrac{1}{x}-\dfrac{1}{y}\)3. \(-\dfrac{1}{x}+\dfrac{1}{y}\)4. \(-\dfrac{1}{x}-\dfrac{1}{y}\) |
|
Answer» Correct Answer - Option 1 : \(\dfrac{1}{x}+\dfrac{1}{y}\) Concept: The identities of trigonometry are:
Calculation: Given cot B - cot A = y ⇒ \(\rm {1\over\tan B}-{1\over\tan A} =y\) ⇒ \(\rm {\tan A - \tan B\over\tan A\tan B} =y\) Given tan A - tan B = x ⇒ \(\rm {x\over\tan A\tan B} =y\) ⇒ \(\boldsymbol{\rm \tan A\tan B ={x\over y}}\) Now, \(\rm \tan (A-B)={\tan A -\tan B\over{1+\tan A \tan B}}\) ⇒ tan (A - B) = \(\rm {x\over{1+{x\over y}}}\) ⇒ tan (A - B) = \(\rm {xy\over{x+y}}\) cot (A - B) = \(\rm 1\over\tan (A - B)\) ⇒ cot (A - B) = \(\rm x+y\over xy\) ⇒ cot (A - B) = \(\boldsymbol{\rm {1\over y} + {1\over x}}\) |
|
| 118. |
If Sin D = 3/5, then (sin D + cos D)2 =?A. 1B. 24/25C. 49/25D. 12/251. A2. B3. D4. C |
|
Answer» Correct Answer - Option 4 : C Given: Sin D = 3/5, we have to find the value of (sin D + cos D)2 Concept Used: Sinθ = Height/Hypotenuse Cosθ = Base/Hypotenuse In a Right angle triangle, Height2 + Base2 = Hypotenuse Calculation: Sin D = 3/5 = Height/Hypotenuse ⇒ Height = 3k and Hypotenuse = 5k [Where k is a constant] We know, Height2 + Base2 = Hypotenuse ⇒ (3x)2 + Base2 = (5x)2 ⇒ Base2 = 25x2 - 9x2 ⇒ Base2 = 16x2 ⇒ Base = 4x Cos D = 4x/5x ⇒ Cos D = 4/5 (sin D + cos D)2 ⇒ (3/5 + 4/5)2 ⇒ (7/5)2 ⇒ 49/25 ∴ The required value of (sin D + cos D)2 is 49/25. |
|
| 119. |
Find the radian measure of 72° 30'.1. 35π/362. 25π/363. 29π/724. 30π/72 |
|
Answer» Correct Answer - Option 3 : 29π/72 Given: degree = 72° 30' Concept Used: Radian measure = (π/180) × degree measure 1 degree = 60 minutes Calculation: Value of 72° 30' = (72 + 30/60) Value = (72 + 1/2) = (145/2)° Substituting the values in the formula Radian measure of 72° 30' = (145/2) × (π/180) Radian measure of 72° 30' = 29π/72 ∴ The radian measure of 72° 30' is 29π/72. |
|
| 120. |
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?1. 24°2. 45°3. 21°4. 19° |
|
Answer» Correct Answer - Option 4 : 19° Given: 4θ is an acute angle, And cot 4θ = tan (θ - 5°). Formula used: tan (90° - θ) = cot θ Calculation: cot 4θ = tan (θ -5°) ⇒ tan (90° - 4θ) = tan (θ -5°) ⇒ 90° - 4θ = θ -5° ⇒ 90° + 5° = θ + 4θ ⇒ 95° = 5θ ⇒ θ = 19° ∴ the value of θ is 19°. |
|
| 121. |
`sin^(2)theta-3sintheta+2=0` willl be true if `sin^(2)theta-3sintheta+2=0` सही होगा यदि?A. `0 le theta lt 90^(@)`B. `0 lt theta lt 90^(@)`C. `theta=0^(@)`D. `theta=90^(@)`. |
|
Answer» Correct Answer - d `sin^(2)theta-3sintheta+2=0` `rArrsin^(2)theta-2sintheta-sin theta+2=0` `rArr sin theta(sin theta-2)-1(sin theta-2)=0` `rArr(sin thea-1)(sin theta-2)=0` `[sin thetacancel=2]` `rArr sin theta=1rArrsin90^(@)` `rArrtheta=90^(@)` Alternate Put value of `theta=90^(@)` [take help from option] `sin^(2)theta-3sintheta+2=0` `sin^(2)90^(@)-3sin90^(@)+2=0` 1-3xx1+2 =0 `[sin90^(@)=1]0=0` [mathced] so this is answer. |
|
| 122. |
If 2 sin θ = x and x sec θ = 2 then find the value of 2tanθ + 1?1. 12. 43. 34. √2 |
|
Answer» Correct Answer - Option 3 : 3 Given: It is given that 2 sin θ = x and x sec θ = 2 Formula Used: Basic concept of trigonometric ratio and identities We know that tanθ = sinθ/cosθ secθ = 1/cosθ Calculation: 2sinθ = x ∴ sinθ = x/2 And x secθ = 2 ∴ Secθ = 2/x ⇒ cosθ = x/2 Now, we have to find the value of 2tanθ + 1 = 2(sinθ/cosθ) + 1 Put the value of sin θ and cos θ in the given expression ∴ 2[(x/2)/(x/2)] + 1 = 2 + 1 = 3 Hence, option (3) is correct |
|
| 123. |
If `xcostheta-sintheta=1," then "x^(2)-(1+x^(2))sintheta` equalsA. 1B. -1C. 0D. 2 |
|
Answer» Correct Answer - a Given let x=1 and `theta=0^(@)` `rArrx cos theta-sintheta+1`..........(i) `rArr1xx1-(0)=1` `rArr1=1` putting value `x=1` and `theta=0^(@)` in following equation `rArrx^(2)-(1+x^(2))sintheta` `rArr1^(2)-(1+1^(2))xx sin0^(@)` =1 |
|
| 124. |
Consider the following statements and state which one is correct:I. Sin 75° = (√3 + 1)/2√2II. Cos 75° = (√3 - 1)/2√21. Only 12. Only 23. Both 1 and 24. Neither 1 nor 2 |
|
Answer» Correct Answer - Option 3 : Both 1 and 2 Formula Used: Sin(A ± B) = SinACosB ± SinBCosA Cos(A + B) = CosACosB - SinBsinA Cos(A - B) = CosACosB + SinBsinA Calculation: We have to calculate the value of Sin 75° ∴ Sin 75° = Sin (45 + 30)° = Sin45°Cos30° + Sin30°Cos45° ⇒ Sin 75° = 1/√2 × √3/2 + 1/2 × 1/√2 = (√3 + 1)/2√2 So, statement 1 is correct Now the value of Cos 75° ∴ Cos 75° = cos(45 - 30)° = Cos45°Cos30° - Sin45°sin30° ⇒ Cos 75° = 1/√2 × √3/2 - 1/2 × 1/√2 = (√3 - 1)/2√2 So, statement 2 is correct Hence, option (3) is correct |
|
| 125. |
If 2sec2θ + tan2θ = 17 then find the value of cotθ. 1. √52. (1/√5)3. √34. (1/√3) |
|
Answer» Correct Answer - Option 2 : (1/√5) Given 2sec2θ + tan2θ = 17 Concept Sec2θ - tan2θ = 1 Sec2θ = 1 + tan2θ Cotθ = (1/tanθ) Calculation We have 2sec2θ + tan2θ = 17 ⇒ 2(1 + tan2θ ) + tan2θ = 17 ⇒ 2 + 2tan2θ + tan2θ = 17 ⇒ 3tan2θ = 15 ⇒ tan2θ = (15/3) ⇒ tan2θ = 5 ⇒ tanθ = √5 ⇒ cotθ = (1/√5) ∴ Cotθ = (1/√5) |
|
| 126. |
If tan x + tan y = 2 then what is the value of cot x – cot y?1. 12. 03. -14. √3 |
|
Answer» Correct Answer - Option 2 : 0 Given: It is given that tan x + tan y = 2 Formula Used: Basic concept of trigonometric ratio and identities We know that tan45° = 1 and cot 45° = 1 Calculation: Let x = 45° and y = 45° ∴ tan 45° + tan 45° = 1 + 1 = 2 Now, cot x – cot y = cot 45° – cot 45° = 1 – 1 = 0 Hence, option (2) is correct |
|
| 127. |
If sin (π/2 - θ/3) = √3/2 then find the value of tan θ?1. √32. 13. 04. Not define |
|
Answer» Correct Answer - Option 4 : Not define Given: It is given that sin (π/2 - θ/3) = √3/2 Formula Used: Basic concept of trigonometric ratio and identities We know that sin(90 -θ) = cosθ ⇒ cos30° = √3/2 Calculation: We know that sin (π /2 - θ) = cos θ ∴ sin(π/2 - θ/3) = √3/2 ⇒ cos(θ/3) = cos 30 ° ⇒ θ/3 = 30 ° = θ = 90 ° Now, value of tan θ = tan 90 ° = Not define Hence, option (4) is correct |
|
| 128. |
If `(sinalpha+co s ecalpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha+cot^(2)alpha`, then the value of k isA. 1B. 7C. 3D. 5 |
|
Answer» Correct Answer - b `(sinalpha+co s ecalpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha+cot^(2)alpha` Put `alpha=45^(@)` `rArr (sin45^(@)+co s ec45^(@))^(2)=k+1+1` `(1)/(2)+2+(2sqrt(2)xx(1)/(2))+(1)/(2)+2+(2sqrt(2)xx(1)/sqrt(2))` `rArr4(1)/(2)+4(1)/(2)=k+2` k=7 |
|
| 129. |
यदि `tantheta=(sinalpha+cosalpha)/(sinalpha+cosalpha)` है तो `sinalpha+cosalpha` का मान क्या होगा?A. `+-sqrt(2)sintheta`B. `+-sqrt(2)costheta`C. `+-(1)/(sqrt(2))sintheta`D. `+-(1)/(sqrt(2))costheta` |
|
Answer» Correct Answer - b `tantheta=(sinalpha+cos alpha)/(sinalpha+cos alpha)` `therefore` squaring both sides and after that add 1 both sides `1+tan^(2)theta=1+((sin alpha-cosalpha)^(2))/((sinalpha+cos alpha)^(2))` `sec^(2)theta=((sinalpha+cosalpha)^(2)+(sinalpha-cosalpha)^(2))/((sinalpha+cos alpha)^(2))` `sec^(2)theta=(2(sin^(2)alpha+cos^(2)alpha))/((sinalpha+cosalpha)^(2))` `(1)/(cos^(2)theta)=(2)/((sinalpha+cosalpha)^(2))` `(1)/(costheta)=( +-sqrt(2))/(sinalpha+cos alpha)` `sin alpha+cos alpha=+-sqrt(2)cos theta` |
|
| 130. |
यदि `rsintheta=1,rcostheta=sqrt(3)` है तो `(sqrt(3)tantheta+1)` का मान क्या होगा?A. `sqrt(3)`B. `(1)/(sqrt(3))`C. 1D. 2 |
|
Answer» Correct Answer - d `rsintheta=1` `rcostheta=sqrt(3)` `rArr(rsintheta)/(rcos theta)=(1)/sqrt(3)rArrtantheta=(1)/sqrt(3)` `rArrsqrt(3)tantheta=1` Add 1 both sides `rArrsqrt(3)tan theta+1=1+1` `rArr2` |
|
| 131. |
if `rsintheta=(7)/(2) and rcostheta=(7sqrt(3))/(2),` then value of r isA. 4B. 3C. 5D. 7 |
|
Answer» Correct Answer - d `r sin theta=(7)/(2)` .......(i) `r cos theta=(7sqrt(3))/(2)` .......(ii) On squaring and adding both equations `r^(2)sin^(2)theta+r^(2)cos^(2)theta=((7)/(2))^(2)+((7sqrt(3))/(2))^(2)` `r^(2)(sin^(2)theta+cos^(2)theta)=(49)/(4)+(147)/(4)` `r^(2)=(196)/(4)=49` `r=sqrt(49)=7` |
|
| 132. |
What is Sin 20° Cos 70° + Cos 20° Sin 70°?1. 22. 63. 54. 1 |
|
Answer» Correct Answer - Option 4 : 1 Concept Sin(90°- A) = Cos A Cos (90°- A) = Sin A Calculation Sin(90°– 70°) Cos 70°+ Cos(90° – 70°) Sin 70° ⇒ Cos 70°Cos 70°+ Sin 70°Sin 70° ⇒ Cos270 °+ Sin270° ⇒ 1 |
|
| 133. |
The value of sin238° – cos252° is:1. \(\sqrt{2}\)2. 13. 04. \(\frac{1}{\sqrt{2}}\) |
|
Answer» Correct Answer - Option 3 : 0 Given: sin238° – cos252° Concept Used: sin2θ + cos2θ = 1 sin(90° – θ ) = cosθ Calculation: sin238° – cos252° = sin238° – sin2(90° – 52°) ⇒ sin238° – sin238° ⇒ 0 ⇒ sin238° – cos252° = 0 ∴ sin238° – cos252° = 0
|
|
| 134. |
If the value of sec B + tan B = r, then the value of sec B - tan B is equal to: |
|
Answer» Correct Answer - Option 3 : \(\frac{1}{r}\) Given: sec B + tan B = r Formula Used: sec2θ - tan2θ = 1 a2 - b2 = (a + b) (a - b) Calculation: sec2 B - tan2 B = 1 ⇒ (sec B + tan B) (sec B - tan B) = 1 ⇒ (r) (sec B - tan B) = 1 ⇒ sec B - tan B = 1/r ∴ Value sec B + tan B = r then sec B - tan B is 1/r.
|
|
| 135. |
If tan A = 3/4 and tan B = -12/5, then cot (A - B) is1. 12. 23. 34. None of these |
|
Answer» Correct Answer - Option 4 : None of these Concept: tan(A - B) = \(\rm \frac{tanA-tan B}{1+tan AtanB}\)
Calculation: We know, tan(A - B) = \(\rm \frac{tanA-tan B}{1+tan AtanB}\) ∴cot(A - B) = \(\rm \frac{1+tan AtanB}{tanA-tan B}\) \(=\rm \frac{1+\frac{3}{4}\times \frac{-12}{5}}{\frac 3 4 + \frac{12}{5}}\) \(=\rm \frac{1-\frac{36}{20}}{\frac {63}{20}}\) \(=\rm \frac{-16}{20}\times \frac {20}{63}=\frac{-16}{63}\) Hence, option (4) is correct. |
|
| 136. |
If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:1. \(\sqrt{3}\)2. 03. 14. \(\frac{1}{2}\) |
|
Answer» Correct Answer - Option 3 : 1 Given cot A = tan(2A - 45°) Concept If cot A = tan(90° - A) A = 90° - A Calculation cot A = tan(2A - 45°) ⇒ A = 2A - 45° ⇒ A = 45° ⇒ tan A = tan 45°
|
|
| 137. |
The value of \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) is:1. \(\frac{1}{3}\)2. - 33. 34. \(-\frac{1}{3}\) |
|
Answer» Correct Answer - Option 2 : - 3 Given: \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) Identity used: Sin θ = cos(90 - θ) Sin2 θ + cos2 θ = 1 Calculation: \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) using Sin θ = cos(90 - θ) ⇒ \(\frac{{si{n^2}52^\circ \; + \;2\; + \;si{n^2}\left( {90 - 52} \right)^\circ }}{{4co{s^2}43^\circ - 5\; + \;co{s^2}\left( {90\; - 43} \right)^\circ }}\) ⇒ \(\frac{{si{n^2}52^\circ \; + \;2\; + \;co{s^2}52^\circ }}{{4co{s^2}43^\circ - 5\; + \;si{n^2}43^\circ }}\) Applying Sin2 θ + cos2 θ = 1 ⇒ (1 + 2)/(4 - 5) ⇒ -3 ∴ The value of \(\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}\) is -3. |
|
| 138. |
If \(\sin A = \dfrac{15}{17}\) and \(\sin B = \dfrac{7}{25}\) , then sin (A - B) =?A. \(\dfrac{304}{425}\)B. \(\dfrac{416}{425}\)C. \(\dfrac{297}{425}\)D. \(\dfrac{87}{425}\)1. A2. C3. D4. B |
|
Answer» Correct Answer - Option 1 : A Given: \(\sin A = \dfrac{15}{17}\) and \(\sin B = \dfrac{7}{25}\) Formula used: sin(A - B) = sinAcosB - cosAsinB Calculation: \(\sin A = \dfrac{15}{17}\), then \(\cos A = \dfrac{8}{17}\) \(\sin B = \dfrac{7}{25}\), then \(\cos B = \dfrac{24}{25}\) sin(A - B) = sinAcosB - cosAsinB ⇒ (15/17) × (24/25) - (8/17) × (7/25) ⇒ (72/85) - (56/425) ⇒ (360 - 56)/425 ⇒ 304/425 ∴ The value of sin(A - B) is 304/425. |
|
| 139. |
`cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(Cot17^(@)Sec^(2)68^(@)))` का मान क्या है ? |
|
Answer» Correct Answer - b `rArrcot17^(@)(cot73^(@)cos^(2)22^(@))+(1)/(cot17^(@)sec68^(@))` `=cot17^(@)[ cot(90-17^(@))cos^(2)(90-60)+(tan17^(@)cos^(2)68)` `=cot17^(@)(tan17^(@)cos^(2)68)` `=cot17^(@)(sin^(2)68+cos^(2)68)` =1(1)=1 |
|
| 140. |
The value of `sin^(2)22^(@)+sin^(2)68^(@)+cot^(2)30^(@)` isA. 43589B. 43528C. 3D. 4 |
|
Answer» Correct Answer - d Given `rArrsin^(2)22^(@)+sin68^(@)+cot^(2)30^(@)` `rArrcos^(2)68^(@)+sin^(2)68^(@)+cot^(2)30^(@)` `{sin(90-theta)costheta cos (90-theta)=sin theta}` `rArr1+cot^(2)30^(@)` `rArr1+(sqrt(3))^(2)[becausecot30^(@)=sqrt(3)]` `rarr4` |
|
| 141. |
`sin^(2)5+sin^(2)6^(@)+ . . . +sin^(2)84^(@)+sin^(2)85^(@)=?`A. `30(1)/(2)`B. `40(1)/(2)`C. `40`D. `39(1)/(2)` |
|
Answer» Correct Answer - b `sin^(2)5^(@)+sin^(2)85^(@))+(sin^(2)6^(@)+ sin^(2)84^(@))+`............upto 40 pairs+middle term =40`+sin^(2)45^(@)` `=40+(1)/(2)=40(1)/(2)` Alternate In case, when series is in the form of `sin^(2)theta` or `cos^(2)theta`, then sum of series will always be half of no. of terms. `=(81)/(2=40(1)/(2)` |
|
| 142. |
यदि `x,y` न्यूनकोण है `x lt x +y lt 90^(@)` और `sin(2x-20^(@))=cos(2y+20^(@))`, है तो का मान ज्ञात करे?A. `(1)/(sqrt(3))`B. `(sqrt(3))/(2)`C. `sqrt(3)`D. 1 |
|
Answer» Correct Answer - d `sin(2x-20^(@))=cos(2y+20^(@))` `(2x-20^(@))+(2y+20^(@))=90^(@)` [if `sinA=cos theta` then `A+B=90^(@)`] `2(x+y)=90^(@)` `x+y=45^(@)` |
|
| 143. |
यदि `sin(A-B)=(1)/(2)` और `cos(A+B)` जहाँ और न्यूनकोण है तो `B` का मान ज्ञात करे?A. `(pi)/(6)`B. `(pi)/(12)`C. `(pi)/(4)`D. `(pi)/(2)` |
|
Answer» Correct Answer - b `sin(A-B)=(1)/(2)(A-B=30^(@))` `cos(A+B)=(1)/(2)(A+B= 60^(@))` Adding both side `rArr(A-B)(A+B)=30^(@)+ 60^(@)` `rArr2A=90^(@)` `rArrA=45^(@)` `because A-B=20^(@)` `B=A-30^(@)=45^(@).30^(@)=15^(@)` `rArr(15xxpi)/(180)=(pi)/(12)` radian. |
|
| 144. |
एक त्रिभुज के कोण की मान का अनुपात 2:7:11 है तो कोण की मान ज्ञात करेA. `16^(@),56^(@),88^(@)`B. `18^(@),63^(@),99^@`C. `20^(@),70^(@),90^(@)`D. `25^(@),175^(@),105^(@)` |
|
Answer» Correct Answer - b Angles of triangle are in ratio 2:7:11 According to question `2x+7x+11x=180` `20x=180` `x=9` |
|
| 145. |
यदि `theta` एक न्यूनकोण है और`7sin^(2)theta+3cos^(2)theta=4`, है तो `tantheta` का मान ज्ञात करे ?A. `sqrt(3)`B. `(1)/(sqrt(3))`C. `1`D. `0` |
|
Answer» Correct Answer - b `7sin^(2)theta+3cos^(2)theta=4` `7sin^(2)theta+3(1-sin^(2)theta)=4` `7sin^(2)theta+3-3sin^(2)theta=4` `4sin^(2)theta=1` `sin theta=(1)/(4)rArrsintheta=(1)/(2)` `sin theta=sin30^(@)` `tan 30^(@)=(1)/sqrt(3)` Alternate Put `= 30^(@)` `7xxsin^(2)30^(@)+3cos^(2)30^(@)=4` `7xx(1)/(4)+3xx(3)/(4)=4` `(7)/(4)+(9)/(4)=4` `(16)/(4)=4` `4=4` (satisfied) `therefore tan 30^(@)=(1)/sqrt(3)` |
|
| 146. |
if `tantheta=1` then the value of `(8sintheta+5costheta)/(sin^(3)theta-2cos^(3)theta+7costheta)` isA. 2B. `2(1)/(2)`C. 3D. `(4)/(3)` |
|
Answer» Correct Answer - a If, `tan theta=1` It means `theta=45^(@)` `=(sin theta+5cos theta)/(sin^(2)theta-2cos^(2)theta+7cos theta)` `=(5sin45 ^(@)+5cos45^(@))/(sin^(2)45^(@)-2cos^(3)45^(@)+7cos45^(@))` `(8xx(1)/sqrt(2)+5xx(1)/sqrt(2))/(((1)/sqrt(2))^(3)-((1)/sqrt(2))^(3)+7((1)/sqrt(2)))=2` |
|
| 147. |
The value of `sin^(2)65^(@)+sin^(2)25^(@)+cos^(2)35^(@)+cos^(2)55^(@)` is |
|
Answer» Correct Answer - c `Sin^(2)65^(@)+sin^(2)25^(@)+cos^(2)35^(@)+cos^(2)55^(@)` `=sin^(2)65^(@)+sin^(2)(90^(@)-65^(@))+ ` `[cos ^(2)35^(@)+cos^(2)[90^(@)-35^(@))]` `(sin^(2)65^(@)+cos^(2)65^(@))+(cos^(2)35^(@)+sin^(2)35^(@))~ `=1+1=2` |
|
| 148. |
if `sin(theta+18^(@))=cos60^(@)(0^(@) lt theta lt 90^(@))`, then the value of cos`5theta` isA. `(1)/(2)`B. 0C. `(1)/(sqrt(2))`D. 1 |
|
Answer» Correct Answer - a `sin(theta+18^(@))=cos60^(@)` `theta+18^(@)+60^(@)=90^(@)` `theta=12^(@)` `rArrcos5theta=cos60^(@)=(1)/(2)` |
|
| 149. |
Find the value of the trigonometric function cosec (–1410°) |
|
Answer» It is known that the values of cosec x repeat after an interval of 2π or 360°. cosec(−1410∘)=−cosec1410∘ ⇒−cosec(4×360∘−30∘) ⇒ - cosec30∘ Since cosec(2nπ−θ)=−cosecθ cosec30∘⇒2 Hence cosec(−1410∘)=2 |
|
| 150. |
यदि `tan^(2)alpha=1+2tan^(2)beta(alpha,beta` एक धनात्मक न्यूनकोण है तो `sqrt(2)cosalpha-cosbeta` किसके बराबर है? |
|
Answer» Correct Answer - a `tan^(2)alpha=1+2tan^(2)beta` `rArrsec^(2)alpha-1=1+2(sec^(2)beta-1)` `rArrsec^(2)alpha-1= 2sec^(2)beta-1` `rArr(1)/(cos^(2)alpha)=(2)/(cos^(2)beta)` `sqrt(2)cos alpha-cos beta=0` Alterante `tan^(2)alpha=1+2tan^(2)beta` Put `beta=45^(@)` `tan^(2)alpha=1+2 tan^(2)45^ (@)` `tan^(2)alpha=3` `tanalpha=sqrt(3)` `alpha=60^(@)` Put `alpha =60^(@).beta=45^(@)` `=sqrt(2)cos alpha=cosbeta=sqrt(2)cos60^(@)-cos45^(@)` `=sqrt(2)xx(1)/(2)-(1)/sqrt(2)=(1)/sqrt(2)-(1)/sqrt(2)=0` |
|