

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
151. |
If `int ((x^2-x+1)/(x^2+1) ) e^(cot^(-1)x dx)=A(x) e^(cot^(-1)x)+c, A=`A. `-x`B. xC. `sqrt(1-x)`D. `sqrt(1+x)` |
Answer» Correct Answer - B `LHS=int[(x^(2)+1)/(x^(2)+1)-(x)/(x^(2)+1)]e^(cot^(-1)x)dx` `=int1.e^(cot^(-1)x)dx-int(1)/(x^(2)+1)e^(cot^(-1)x)dx` On integration by parts, we get `xe^(cot(-1)x)-int x.e^(cot^(-1)x)(-(1)/(1+x^(2)))dx-int(x)/(1+x^(2))e^(cot^(-1)x)dx+C` `=xe^(cot^(-1)x)+C` |
|
152. |
`int(x^(2))/((x^(3) +4)^(3))dx` |
Answer» Correct Answer - `(1)/(-6(x^(3) +4)^(2))+c` | |
153. |
If `l_(n)=intx^(n).e^(cx)dx` for `n ge 1`, then `C.l_(n)+n.l_(n-1)` is equal toA. `x^(n)e^(cx)`B. `x^(n)`C. `e^(cx)`D. `x^(n)+e^(cx)` |
Answer» Correct Answer - A Given, `l_(n)=int x^(n).e^(cx)dx=x^(n).(e^(cx))/(c)-int nx^(n-1).(e^(cx))/(c)dx` `rArr" "l_(n)=(e^(cx).x^(n))/(c)-(n)/(c)l_(n-1)` `rArr" "cl_(n)+nl_(n-1)=e^(cx).x^(n)` |
|
154. |
`int32x^(3)(logx)^(2)` dx is equal otA. `8x^(4)(logx)^(2)+C`B. `x^(4){8(logx)^(2)-4log x+1}+C`C. `x^(4){8(logx)^(2)-4logx}+C`D. `x^(3){(logx)^(2)+2logx}+C` |
Answer» Correct Answer - B `int 32x^(3)(logx)^(2)dx` On using integration by parts, we get `32{(logx)^(2).(x^(4))/(4)-int 2 log x.(1)/(x).(x^(4))/(4)dx}` `=8x^(4)(logx)^(2)-16intx^(3)log x dx` Again using integration by parts, we get `8x^(4)(logx)^(2)-16{logx.(x^(4))/(4)-int(1)/(x).(x^(4))/(4)dx}` `=8x^(4)(logx)^(2)-4x^(4)logx+4int x^(3)dx` `=8x^(4)(logx)^(2)-4x^(4)logx+x^(4)+C` `=x^(4)[8(logx)^(2)-4logx+1]+C` |
|
155. |
`int(1)/(1-x-x^(2))dx` |
Answer» Correct Answer - `(1)/(sqrt(5))log |(sqrt(5)+2x+1)/(sqrt(5)-2x-1)|+c` | |
156. |
`int(1)/(2x^(2)-4x+1)dx` |
Answer» Correct Answer - `(1)/(2sqrt(2)) log |(sqrt(2x)-sqrt(2)-1)/(sqrt(2x)-sqrt(2)+1)|+c` | |
157. |
The value of the integral `intx sin^(-1)xdx` is equal toA. `(1)/(2)x^(2)sin^(-1)x+(1)/(4)xsqrt(1-x^(2))-(1)/(4)sin^(-1)x+C`B. `(1)/(2)x^(2)sin^(-1)x-(1)/(4)xsqrt(1-x^(2))-(1)/(4)sin^(-1)x+C`C. `(1)/(2)x^(2)sin^(-1)x+(1)/(4)xsqrt(1-x^(2))+(1)/(4)sin^(-1)x+C`D. `(1)/(2)x^(2)sin^(-1)x+(1)/(4)sqrt(1-x^(2))-(1)/(4)sin^(-1)x+C` |
Answer» Correct Answer - A Let `l=int x sin^(-1)xdx` On using integration by parts, we get `l=(sin^(-1)x)(x^(2))/(2)-int(1)/(sqrt(1-x^(2))).(x^(2))/(2)dx` `rArr" "l=(x^(2))/(2)sin^(-1)x+(1)/(2)int(-x^(2))/(sqrt(1-x^(2)))dx` `=(x^(2))/(2)sin^(-1)x+(1)/(2)int(1-x^(2)-1)/(sqrt(1-x^(2)))dx` `rArr" "=(x^(2))/(2)sin^(-1)x+(1)/(2){int(1-x^(2))/(sqrt(1-x^(2)))dx-int(1)/(sqrt(1-x^(2)))dx}` `rArr ,=(x^(2))/(2)sin^(-1)x+(1)/(2){int sqrt(1-x^(2))dx-int(1)/(sqrt(1-x^(2)))dx}` `=(x^(2))/(2)sin^(-1)x+(1)/(2)[{(1)/(2)xsqrt(1-x^(2))+(1)/(2)sin^(-1)x}-sin^(-1)x]+C` `rArr l=(1)/(2)x^(2)sin^(-1)x+(1)/(4)xsqrt(1-x^(2))-(1)/(4)sin^(-1)x+C` |
|
158. |
`int(4x-3)/(3x^2+2x-5)dx` |
Answer» Correct Answer - `(2)/(3) log |3x^(2)+2x-5|-(13)/(24)log |(3x-3)/(3x+5)|+c` | |
159. |
`int[sin(logx)+cos(logx)]dx`A. `x log (logx)+C`B. `sin(logx)+C`C. `cos(logx)+C`D. `x sin (logx)+C` |
Answer» Correct Answer - D `int[sin(logx)+cos(logx)]dx` `=intsin(logx)dx+intcos(logx)dx` `=x sin (logx)-int(xcos (logx))/(x)dx+intcos(logx)dx+C` `=x sin (logx)+C` |
|
160. |
`int x/(x+a)dx` |
Answer» Correct Answer - `x-a log (x+a) +c` | |
161. |
If `l_(1)=int sin^(-1)x dx` and `l_(2) =int sin^(-1)sqrt(1-x^(2))dx`, thenA. `l_(1)=l_(2)`B. `l_(2)=(pi)/(2)l_(1)`C. `l_(1)+l_(2)=(pi)/(2)x`D. `l_(1)+l_(2)=(pi)/(2)` |
Answer» Correct Answer - C Given, `l_(1)=int sin^(-1)xdx` and `l_(2)=int sin^(-1)sqrt(1-x^(2))dx rArr l_(2)=int cos^(-1)xdx` Now, `l_(1)+l_(2)=int(sin^(-1)x+cos^(-1)x)dx=int(pi)/(2)dx=(pi)/(2)x` `therefore" "l_(1)+l_(2)=(pi)/(2)x` |
|
162. |
Evaluate:`int1/(sinx(3+2cosx)dx` |
Answer» Correct Answer - `(1)/(10) log |1-cos x|-(1)/(2)log |1+ cos x|+(2)/(5) log | 3+2 cos x|+c` | |
163. |
`int (x^(2) +2x -5)/(sqrt(x))dx` |
Answer» Correct Answer - `(2)/(3) x^(5//2) +(4)/(3)x^(3//2) -10 sqrt(x)+c` | |
164. |
The value of `int(1)/(x+sqrt(x-1))dx`, isA. `log(x+sqrt(x-1))+sin^(-1)(sqrt((x-1)/(x)))+C`B. `log(x+sqrt(x-1))+C`C. `log(x+sqrt(x-1))-(2)/(sqrt3)tan^(-1)((2sqrt(x-1)+1)/(sqrt3))+C`D. None of the above |
Answer» Correct Answer - C Let `l=int(dx)/(x+sqrt(x-1))` Put`" "x=t^(2)+1 rArr dx=2tdt` `therefore" "l=int(2t)/(t^(2)+t+1)dt=int(2t+1)/(t^(2)+t+1)dt-int(1)/(t^(2)+t+1)dt` `=log(t^(2)+t+1)-int(1)/((t+(1)/(2))^(2)+((sqrt3)/(2))^(2))dt` `=log(t^(2)+t+1)-(2)/(sqrt3)tan^(-1)((2t+1)/(sqrt3))` `=log(x+sqrt(x-1))-(2)/(sqrt3)tan^(-1)((2sqrt(x-1)+1)/(sqrt3))+C` |
|
165. |
`intsqrt((x-1)/(x+1))dx` is equal toA. `2sqrt(x^(2)+1)+sin^(-1)x+C`B. `sqrt(x^(2)-1)-sin^(-1)x+C`C. `sqrt(x^(2)-1)+sin^(-1)x+C`D. `(sqrt(x^(2)-1))/(2)+sin^(-1)x+C` |
Answer» Correct Answer - B Let `l=intsqrt((x-1)/(x+1))dx` `rArr" "l=int(x-1)/(sqrt(x^(2)-1))dx=int(x)/(sqrt(x^(2)-1))dx-int(1)/(sqrt(x^(2)-1))dx` `=sqrt(x^(2)-1)-sin^(-1)x+C` |
|
166. |
`int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx` is equal toA. `e^(x)+C`B. `(1)/(2)(e^(x)-e^(-x))^(2)+C`C. `(1)/(2)(e^(x)+e^(-x))^(2)+C`D. `(1)/(3)(e^(x)+e^(-x))^(3)+C` |
Answer» Correct Answer - D Let `l=int(e^(x)+e^(-x))^(2).(e^(x)-e^(-x))dx` Put `e^(x)+e^(-x)=t rArr (e^(x)-e^(-x))dx=dt` `therefore" "l=int t^(2)dt=(t^(3))/(3)+C=((e^(x)+e^(-x))^(3))/(3)+C` |
|
167. |
Evaluate: `int1/(x (x^4+1)) dx` |
Answer» Correct Answer - `(1)/(2) log |(x^(4))/(x^(4)+1)|+c` | |
168. |
`int(tan x + cos x)^(2) dx ` |
Answer» Correct Answer - `tan x=cot x+c` | |
169. |
`intcos^(3)xe^(log(sinx))dx` is equal toA. `(-sinn^(4)x)/(4)+C`B. `-(cos^(4)x)/(4)+C`C. `(e^(sinx))/(4)+C`D. None of these |
Answer» Correct Answer - B Let `l=int cos^(3)x e^(log sinx)dx=int cos^(3)x sin x dx` Put `cos x = t rArr - sin x dx = dt` `therefore" "l=-int t^(3)dt=-(t^(4))/(4)+C=-(cos^(4)x)/(4)+C` |
|
170. |
Evaluate:`int1/(1+x+x^2+x^3)dx` |
Answer» Correct Answer - `(1)/(2) log | 1+x|-(1)/(4) log |1+x^(2)|+(1)/(2)tan^(-1) x+c` | |
171. |
`int(sinx-cosx)^(4)(sinx+cosx)dx` is equal toA. `(sin x - cosx)/(5)+C`B. `((sin x - cosx)^(5))/(5)+C`C. `((sin x-cosx)^(4))/(4)+C`D. `((sinx+cosx)^(5))/(5)+C` |
Answer» Correct Answer - B Let `l=int(sinx-cosx)^(4)(sinx +cosx)dx` Put`" "Sinx-cosx=t` `rArr" "(cos x+sin x)dx=dt` `therefore" "l=int t^(4)dt=(t^(5))/(5)+C=((sinx-cosx)^(5))/(5)+C` |
|
172. |
` sqrt(sin 2x) cos 2x`A. `(1)/(3)(sinx)^(3//2)+C`B. `(1)/(3)(sin x)^(1//2)+C`C. `(1)/(3)(sin 2x)^(3//2)+C`D. `(1)/(3)(sin 2x)^(1//2)+C` |
Answer» Correct Answer - C `intsqrt(sin2x)cos 2xdx` Let `" "sin2x=t" "rArr" "2cos 2x=(dt)/(dx)` `rArr" "dx=(dt)/(2cos 2x)` `therefore int sqrt(sin2x)cos 2x dx=intsqrtt cos 2x(dt)/(2cos 2x)=(1)/(2)int sqrtt dt` `=(1)/(2)(t^(1//2+1))/(((1)/(2)+1))+C=(1)/(3)t^(3//2)+C` `=(1)/(3)(sin2x)^(3//2)+C` |
|
173. |
`int(1)/( 1+cos 2x ) dx` |
Answer» Correct Answer - `(1)/(2) tan x+c` | |
174. |
`int(1+tan^2x)/(1-tan^2x)dx`A. `log((1-tanx)/(1+tanx))+C`B. `log((1+tanx)/(1-tanx))+C`C. `(1)/(2)log((1-tanx)/(1+tanx))+C`D. `(1)/(2)log((1+tanx)/(1-tanx))+C` |
Answer» Correct Answer - D Let `l=int(1+tan^(2)x)/(1-tan^(2)x)dx=int(sec^(2)x)/(1-tan^(2)x)dx` Put`" "tan x= t rArr sec^(2)x dx=dt` ` therefore" "l=int(dt)/(1-t^(2))=(1)/(2xx1)log((1+t)/(1-t))+C` `=(1)/(2)log((1+tanx)/(1-tanx))+C` |
|
175. |
`(i) int (1)/(x(x+1)^(2))dx` `(ii) int (1)/((x+1)^(2)(x-1))dx` |
Answer» Correct Answer - `(i) (1)/(x+1) -log |(x+1)/(x)|+c` `(ii) (1)/(4)log |(x-1)/(x+1)|+(1)/(2(x+1))+c` |
|
176. |
If `l=int(x^(5))/(sqrt(1+x^(3)))dx`, then l is equal toA. `(2)/(9)(1+x^(3))^((5)/(2))+(2)/(3)(1+x^(3))^((3)/(2))+C`B. `log|sqrtx+sqrt(1+x^(3))|+C`C. `log|sqrtx-sqrt(1+x^(3))|+C`D. `(2)/(9)(1+x^(3))^((3)/(2))-(2)/(3)(1+x^(3))^((1)/(2))+C` |
Answer» Correct Answer - D Given, `" "l=int(x^(5))/(sqrt(1+x^(3)))dx` Let`" "1+x^(3)=t` `rArr" "3x^(2)dx=dt` `therefore" "l=int((t-1))/(sqrtt).(dt)/(3)=(1)/(3)int(sqrtt-t^(-1//2))dt` `=(1)/(3)[(2t^(3//2))/(3)-2t^(1//2)]+c` `=(2)/(9)(1+x^(3))^(3//2)-(2)/(3)(1+x^(3))^(1//2)+C` |
|
177. |
`intsqrt(1+cos 2x) dx` |
Answer» Correct Answer - `sqrt(2) sin x+c` | |
178. |
`int(1)/(1-cos 2x) dx` |
Answer» Correct Answer - `-(1)/(2) cot x+c` | |
179. |
`int_(a)^(2a) (sqrt((a)/(x))+sqrt((x)/(a)))^(2)dx` |
Answer» Correct Answer - `a log 2 + (7a)/(2)` | |
180. |
`int (x)/(x^(2)+2x+1)dx` |
Answer» Correct Answer - `log |x+1|+(1)/(x+1)+c` | |
181. |
`intcos{2tan^(-1)sqrt((1-x)/(1+x))}dx` is equal toA. `(1)/(8)(x^(2)-1)+C`B. `(x^(2))/(4)+C`C. `(x)/(2)+C`D. `(x^(2))/(2)+C` |
Answer» Correct Answer - D Let `l=intcos{2tan^(-1)sqrt((1-x)/(1+x))}dx` Put`" "x= cos theta,` then `l=int cos {2tan^(-1)sqrt((1-cos theta)/(1+cos theta))}dx` `=int cos{2tan^(-1)(tan.(theta)/(2))}dx` `=intcos theta dx=int xdx=(x^(2))/(2)+C` |
|
182. |
`int(x^(2))/(1+x^(6)) dx` |
Answer» Correct Answer - `(1)/(3) tan^(-1) x^(3) +c` | |
183. |
`int(x^2)/((a+b x)^2)dx` |
Answer» Correct Answer - `(1)/(b^(3)) [(a +bx) -2a log (a +bx)-(a^(2))/(a+bx)]+c` | |
184. |
`int((log _(e)x)^(3))/(x)dx` |
Answer» Correct Answer - `(1)/(4) (log_(e)x)^(4) +c` | |
185. |
`int dx/(sin^2 x cos^2 x)` equalsA. `tan x-cot x+c`B. `tan x cot x+c`C. `tan x- cot 2x+c`D. |
Answer» Correct Answer - b ` int (dx)/(sin^(2) x cos^(2)x)= int (sin^(2) x+cos ^(2) x)/(sin^(2) x cos^(2) x)dx` `= int (sin^(2)x)/(sin^(2) x cos^(2)x) dx+ int (cos^(2)x)/(sin^(2) x cos ^(2) x)dx` ` = int sec^(2) x dx + int " cosec"^(2) x dc` ` = tan x - cot x+c` |
|
186. |
`int_(1)^(e) (e^(x) (1+xlog x))/(x) dx` |
Answer» Correct Answer - `e^(e)` | |
187. |
`int_(0)^(pi//2) (1)/(4+3 cos x)dx` |
Answer» Correct Answer - `(2)/(sqrt(7)) tan^(-1) .(1)/(sqrt(7))` | |
188. |
`int_(0)^(2) sqrt((2+x)/(2-x)) dx` |
Answer» Correct Answer - `pi+2` | |
189. |
`int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx` |
Answer» Correct Answer - `(1)/(2) (3-sqrt(3))` | |
190. |
`int_(0)^(2) (e^(-1//x))/(x^(2)) dx` |
Answer» Correct Answer - `(sqrt(e)-1)/(e)` | |
191. |
`int_(1)^(2) (1)/(2(1+x^(4)))dx` |
Answer» Correct Answer - `(1)/(4) log (32)/(17)` | |
192. |
`int_(0)^(1) (1)/(1+x+2x^(2))dx` |
Answer» Correct Answer - `(2)/(sqrt(7))[tan^(-1) (5)/(sqrt(7)) -tan^(-1) .(1)/(sqrt(7))]` | |
193. |
`int_(0)^(1) (x sin^(-1)x)/(sqrt(1+2x)^(2))dx` |
Answer» Correct Answer - 1 | |
194. |
`int_(-1)^(2) (x) /((x^(2)+1)^(2))dx` |
Answer» Correct Answer - `(3)/(20)` | |
195. |
`int_(pi//6)^(pi//2) cos x dx` |
Answer» Correct Answer - `(1)/(2)` | |
196. |
`int_(0)^(2) (1)/(4+x+x^(2))dx` |
Answer» Correct Answer - `(1)/(sqrt(17))log |(21+5sqrt(17))/(4)|` | |
197. |
`int_(0)^(pi) sin 3x dx` |
Answer» Correct Answer - `(2)/(3)` | |
198. |
`int_(0)^(pi//4) sin ^(2) x dx` |
Answer» Correct Answer - `(pi -2)/(3sqrt(3))` | |
199. |
`(i) int_(0)^(pi//4) e^(tanx) . sec^(2) x dx` `(ii) int_(0)^(pi//4) (sin (cos 2x))/(" cosec " 2x)dx` |
Answer» Correct Answer - `(i) (e-1) (ii) (1)/(2) (1- cot 1)` | |
200. |
`"F i n d"int_4^9sqrt(x)dx` |
Answer» Correct Answer - `(38)/(3)` | |