Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Range of `"cosec"^(-1)x` isA. `(-pi/2,pi/2)`B. `[-pi/2,pi/2]`C. `[-pi/2,pi/2]-{0}`D. none of these

Answer» Correct Answer - C
2.

The value of `"cosec"^(-1)("cosec"(4pi)/3)` isA. `(3pi)/4`B. `pi/4`C. `-pi/4`D. none of these

Answer» Correct Answer - B
Let `"cosec"^(-1)("cosec"(4pi)/3)=x`, where `x in [-pi/2, pi/2]-{0}`.
Then, `"cosec"x="cosec"(4pi)/3="cosec:(pi+pi/3)=-"cosec"pi/3="cosec"(-[i/3)`.
`therefore x=-pi/3`.
3.

Find the principalvalue of `sec^(-1)((-2)/(sqrt(3)))`A. `pi/6`B. `-pi/6`C. `(5pi)/6`D. `(7pi)/6`

Answer» Correct Answer - C
Let `sec^(-1)(-2/sqrt(3))=x`, where `x in [0,pi]-{pi/2}`
Then, `secx=-2/sqrt(3)=-secpi/6 = sec(pi-pi/6)=sec(5pi)/6 rArr x=(5pi)/6`.
4.

The principal value of `"cosec"^(-1)(-sqrt(2))` isA. `-pi/4`B. `(3pi)/4`C. `(5pi)/4`D. none of these

Answer» Correct Answer - A
Let `"cosec"^(-1)(-sqrt(2))=x`, where `xin [-pi/2,pi/2]-{0}`.
Then, `"cosec"x=-sqrt(2)=-"cosec"pi/4="cosec"(-pi/4) rArr x=-pi/4`.
5.

Find the principal value of each of the following: i) `cos^(-1)(-1/sqrt(2))`, ii) `cos^(-1)(-1/2)`, iii) `cot^(-1)(-1/sqrt(3))`

Answer» i) We know that the range of the principal value of `cos^(-1)` is `[0,pi]`.
Let `cos^(-1)(-1/sqrt(2))=theta`. Then,
`costheta=-1/sqrt(2)=-cospi/4=cos(pi-pi/4)=cos(3pi)/4`.
`therefore theta=(3pi)/4 in [0, pi]`.
Hence, the principal value of `cos^(-1)(-1/sqrt(2))` is `(3pi)/4`.
ii) We know that the range of the principal value of `cos^(-1)` is `[0,pi]`.
Let `cos^(-1)(-1/2)=theta`. Then,
`costheta=-1/2=-cospi/3=cos(pi-pi/3)=cos""(2pi)/3`.
iii) We know that the range of the principal value of `cot^(-1)` is `(0,pi)`.
Let `cot^(-1)(-1/sqrt(3))=theta`. Then,
`cottheta=-1/sqrt(3)=-cotpi/3=cot(pi-pi/3)=cot(2pi)/3`.
`therefore theta=(2pi)/3 in (0,pi)`.
Hence, the principal value of `cot^(-1)(-1/sqrt(3))` is `(2pi)/3.`
6.

Find the principal value of each of the following: i) `cot^(-1)(-sqrt(3))` ii) `sec^(-1)(-sqrt(2))` iii) `"cosec"^(-1)(-1)`.

Answer» i) We know that the range of the principal value of `cot^(-1)` is `(0,pi)`. Let `cot^(-)(-sqrt(3))=theta`. Then, `cottheta=-sqrt(3)=-cotpi/6=cot(pi-pi/6)=cot(5pi)/6`.
`therefore theta=(5pi)/6 in (0, pi)`.
Hence, the principal value of `cot^(-1)(-sqrt(3))` is `(5pi)/6`.
ii) We know that the range of principal value of `sec^(-1)` is `[0,pi]-{pi/2}`.
Let `sec^(-1)(-sqrt(2))=theta`. Then,
`sec^(-1)(-sqrt(2))=theta`. Then,
`sectheta=-sqrt(2)=-secpi/4 = sec(pi-pi/4)=sec(3pi)/4`.
`therefore theta=(3pi)/4 in [0,pi]-{pi/2}`.
Hence, the principal value of `sec^(-1)(-sqrt(2))` is `(3pi)/4`.
iii) We know that the range of the princiapl value of `"cosec"^(-1)` is `[-pi/2,pi/2]-{0}`.
Let `"cosec"^(-1)(-1)=theta`. Then, `"cosec"theta=-1`.
`"cosec"theta=-1=-"cosec"pi/2="cosec"(-pi/2)`.
`therefore theta=-pi/2 in [-pi/2, pi/2]-{0}`.
Hence, the principal value of `"cosec"^(-1)(-1)` is `pi/2`.
7.

The principal value of `cot^(-1)(-1)` isA. `-pi/4`B. `pi/4`C. `(5pi)/4`D. `(3pi)/4`

Answer» Correct Answer - D
Let `cos^(-1)(-1)=x`, where `x in [0,pi]`.
Then, `cotx=-1=-cotpi/4=cot(pi-pi/4)=cot(3pi)/4 rArr x=(3pi)/4`.
8.

Find the principal valuesof each of the following:`cot^(-1)(-sqrt(3))`(ii) `cot^(-1)(sqrt(3))`A. `-pi/6`B. `pi/6`C. `(7pi)/6`D. `(5pi)/6`

Answer» Correct Answer - D
Let `cot^(-1)(-sqrt(3))=x`, where `x in [0,pi]`
Then, `cotx=-sqrt(3)=-cotpi/6=cot(pi-pi/6)=cot(5pi)/6 rArr x=(5pi)/6`.
9.

If `tan^(-1)x=pi/4-tan^(-1)(1/3)` then `x` isA. `1/2`B. `1/4`C. `1/6`D. none of these

Answer» Correct Answer - A
`pi/4-tan^(-1)1/3=tan^(-1)1=tan^(-1){(1-1/3)/(1+1/3)}=tan^(-1)1/2 rArr x=1/2`.
10.

The value of `tan^(-1)(tan(8*pi/6))` isA. `(7pi)/6`B. `(5pi)/3`C. `pi/3`D. none of these

Answer» Correct Answer - C
Let `tan^(-1)(tan(8pi)/6)=x`, where `x in (-pi/2,pi/2)`.
Then, `tanx=tan(8pi)/6 = tan(pi+2pi/6)=tanpi/3 rArr x=pi/3`.
11.

Prove that `cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))`

Answer» Let `cos^(-1)x=theta`. Then, `x=cot(theta)`.
`"cosec"theta=sqrt(1+cot^(2)theta)=sqrt(1+x^(2))`
`sintheta=1/sqrt(1+x^(2))`
`sin(cot^(-1)x)=1/sqrt(1+x^(2))[ therefore theta=cot^(-1)x]`
`tan^(-1){sin(cot^(-1)x)}=tan^(-1)1/sqrt(1+x^(2))=phi` (say)
`rArr cos[tan^(-1){sin(cot^(-1)x)]=cosphi`………………….(i)
Now, `tan^(-1)1/sqrt(1+x^(2))=phi rArr tanphi=1/sqrt(1+x^(2))`
`rArr secphi=sqrt(1+tan^(2)phi)= sqrt(1+1/(1+x^(2))=sqrt((2+x^(2))/(1+x^(2))`
`rArr cosphi=sqrt(1+x^(2))/(2+x^(2))`...............(ii)
From (i) and (ii), we get
`cos[tan^(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2)]`
12.

Prove that: `tan^(-1){pi/4+1/2 cos^(-1)a/b}+tan{pi/4-1/2 cos^(-1)a/b}=(2b)/a`

Answer» Let `cos^(-1)a/b)=theta`. Then, `a/b=costheta`.
`therefore` LHS `=tan(pi/4+1/1theta}=tan{pi/4-1/2theta}`
`=(1+tan(theta/2))/(1-tan(theta/2))+(1-tan(theta/2))/(1+tan(theta/2))`
`=(1+tan(theta/2)^(2)+1-tan(theta/2)^(2))/(1-tan^(2)theta/2)`
`=2{(1+tan^(2)(theta/2))/(1-tan^(2)theta/2}=2/(costheta)=(2b)/a`=RHS
Hence, LHS=RHS.
13.

Prove that `2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))`

Answer» Let `tan^(-1)1/x=theta`. Then, `1/x=tantheta rArr x=cottheta`.
`therefore` LHS `=2tan^(-1)1/x=2theta`.
RHS `=sin^(-1)(2cottheta)/(cot^(2)theta+1)=sin^(-1)(2tantheta)/(1+tan^(2)theta)`
`=sin^(-1)(sin 2theta)=2theta`
`therefore` LHS=RHS.
Hence, `2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))`.
14.

Evaluate: i) `sin{pi/3-sin^(-1)(-1/2)}` ii) `sin(1/2cos^(-1)4/5)` iii) `sin(cot^(-1)x)` iv) `tan1/2(cos^(-1)sqrt(5)/3)`

Answer» i) We know that `sin^(-1)(-theta)=-sin^(-1)theta`.
`therefore sin{pi/3-sin^(-1)(-1/2)}=sin{pi/3+sin^(-1)1/2}=sin(pi/3+pi/6)[therefore sin^(-1)1/2=pi/6]`
`=sin pi/2=1`.
ii) Let `cos^(-1)4/5=theta`, where `theta in [0,pi]`.
Then, `costheta=4/5`.
Since, `theta in [0,pi] rArr 1/2 theta in [0,pi/2] rArr sin1/2theta gt 0`.
`therefore sin(1/2cos^(-1)4/5)=sin1/2theta=sqrt((1-costheta)/(2)) = sqrt((1-(4/5))/(2)=1/sqrt(10)`.
ii) Let `cot^(-1)x=theta`. Then, `theta in [0,pi]`.
`therefore sin(cot^(-1)x)=sin theta gt 0`.
Now, `sin theta=1/("cosec"theta)=1/sqrt(1+cot^(2)theta)=1/sqrt(1+x^(2))`.
`therefore sin(cot^(-1)x)=sintheta=1/sqrt(1+x^(2))`.
iv) Let `cos^(-1)sqrt(5)/3=theta`. Then, `costheta=sqrt(5)/3`, where `theta in [0,pi]`.
`therefore tan1/2(cos^(-1)sqrt(5)/3)=tan1/2theta=sqrt((1-costheta)/(1+costheta))=sqrt((1-sqrt(5)//3)/(1+sqrt(5)//3))=sqrt((3-sqrt(5))/(3+sqrt(5)) xx (3-sqrt(5))/(3-sqrt(5)))=(3-sqrt(5))/(2)`.
15.

Prove that `tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2`

Answer» Putting, `x^(2)=cos2theta`, we get
`tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=tan^(-1)((sqrt(1+cos2theta)+sqrt(1-cos2theta))/(sqrt(1+cos2theta)-sqrt(1-cos2theta)))`
`tan^(-1) (costheta+sintheta)/(costheta-sintheta)=tan^(-1)(1+tantheta)/(1-tantheta)`. [dividing num. and denom. by `cos theta`]
`=tan^(-1){tan(pi/4+theta)}=(pi/4+theta)`
`=pi/4+1/2cos^(-1)x^(2)`
`therefore tan^(-1) ((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2)`.
16.

Evaluate: i) `tan{1/2cos^(-1)sqrt(5)/3}`, ii) `tan{2tan^(-1)1/5-pi/4}`

Answer» i) Let `cos^(-1)sqrt(5)/3=theta`. Then, `costheta=sqrt(5)/3`.
`therefore tan{1/2cos^(-1)sqrt(5)/3}=tantheta/2`
`=sqrt((1-costheta)/(1+costheta))=sqrt((1-sqrt(5)/3)/(1+sqrt(5)/3))=sqrt((3-sqrt(5))/(3+sqrt(5))`
`=sqrt((3-sqrt(5))/(3+sqrt(5)) xx (3-sqrt(5))/(3+sqrt(5)) = (3-sqrt(5))/sqrt(9-5)`
`=(3-sqrt(5))/sqrt(4)=(3-sqrt(5))/(2)`
ii) `tan{2tan^(-1)1/5-pi/4}`
`=tan{tan^(-1)(2 xx 1/5)/(1-1/25))-tan^(-1)1}`
`=tan{tan^(-1)(2/5 xx 25/24)-tan^(-1)1}`.
`=tan{tan^(-1)5/12-tan^(-1)1}`
`=tan{tan^(-1)(5/12-1)/(1+5/12)}=tan{tan^(-1)(-7/17)}=-7/17`.
17.

For the principalvalues, evaluate each of the following :`sin^(-1)(-1/2)+2cos^(-1)(-(sqrt(3))/2)`(ii) `sin^(-1)(-(sqrt(3))/2)+cos^(-1)((sqrt(3))/2)`A. `1/sqrt(26)`B. `5/sqrt(26)`C. `1/sqrt(24)`D. none of these

Answer» Correct Answer - C
Range of `cos^(-1)` is `[0,pi]`.
`cos^(-1)(-sqrt(3)/2)=x rArr cosx=-sqrt(3)/2 =-cospi/6 = cos(pi-pi/6)=cos(5p)/6 rArr x=(5pi)6`
`sin^(-1)(-1/2)+2cos^(-1)(-sqrt(3)/2)=-sin^(-1)1/2+2 xx (5pi)/6 = -pi/6+(5pi)/6=(9pi)/6=(3pi)/2`.
18.

`tan(1/2cos^(- 1) sqrt(5)/3)`A. `(3-sqrt(5))/(2)`B. `(3+sqrt(5))/(2)`C. `(5-sqrt(3))/(2)`D. `(5+sqrt(3))/(2)`

Answer» Correct Answer - A
Let `cos^(-1)sqrt(5)/3=theta`. Then, `costheta =sqrt(5)/3`.
`tan1/2(cos^(-1)sqrt(5)/3)=tan1/2theta=(sin(theta/2))/(cos(theta/2))`.
`=sqrt((1-costheta)/(1+costheta))={(1-sqrt(5)/3)/(1+sqrt(5)/3)}^(1//2)`
`((3-sqrt(5))/(3+sqrt(5)))^(1//2)={(3-sqrt(5))/(3+sqrt(5)) xx (3-sqrt(5))/(3-sqrt(5))}^(1//2)=(3-sqrt(5))/(2)`.
19.

Prove that: i) `tan^(-1)(sqrt(x)+sqrt(y))/(1-sqrt(xy))=tan^(-1)sqrt(x)+tan^(-1)sqrt(y)` ii) `tan^(-1)(x+sqrt(x))/(1-x^(3//2))=tan^(-1)x+tan^(-1)sqrt(x)` iii) `tan^(-1)(sinx)/(1+cosx)=x/2`

Answer» i) Put `sqrt(x)=tantheta` and `sqrt(y)=tanphi` on each side.
ii) Put `x=tantheta` and `sqrt(x)=tanphi` on each side.
iii) LHS `=tan^(-1){(2sin(x/2)cos(x/2))/(2cos^(2)x/2)}=tan^(-1)(tanx/2)=x/2`= RHS
20.

दर्शाइए कि (i) `sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1),-(1)/(sqrt(2)) le x le (1)/(sqrt(2))` (ii) `sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1) x,(1)/(sqrt(2)) le x le 1`

Answer» Correct Answer - Put `x=sintheta`
21.

Find the value of: i) `sin ^(-1)(sin (3pi)/5)`, ii) `cos^(-1)(cos(13pi)/6)`, iii) `tan^(-1)(tan (7pi)/6)`.

Answer» i) We know that the principal-value branch of `cos^(-1)` is `[0,pi]`.
`therefore cos^(-1)(cos (13pi)/6) ne (13pi)/6`.
Now, `cos^(-1)(cos (13pi)/6=cos^(-1){cos(2pi+pi/6)}=cos^(-1){cospi/6}[therefore cos(2pi+theta)=costheta]=pi/6`.
Hence, `cos^(-1)(cos (13pi)/6)) =pi/6`.
iii) We know that the principal-value branch of `tan^(-1)` is `(-pi/, pi/2)`.
`therefore tan^(-1)(tan(7pi)/6)) ne (7pi)/6`.
Now, `tan^(-1)(tan(7pi)6) = tan^(-1){tan(pi+pi/6)}`
`=tan^(-1)(tanpi/6) [therefore tan(pi+theta)=tantheta]`
`=pi/6`.
Hence, `tan^(-1)(tan(7pi)/6)=pi/6`.
22.

निम्नलिखित के मान ज्ञात कीजिए : `cos^(-1)(cos""(3pi)/(6))`

Answer» Correct Answer - `pi/6`
Range of `cos^(-1)` is `[0,pi]`.
`cos^(-1)(cos(13pi)/6)=cos^(-1){cos(2pi+pi/6)}`
`=cos^(-1){cospi/6}=pi/6`
23.

Prove that i) `tan^(-1)(1+x)/(1-x)=pi/4 + tan^(-1)x,x lt 1` ii) `tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)`

Answer» i) Put `x=tantheta`, ii) LHS `=tan^(-1)x+1/(tan^(-1)(x+1))`
24.

i) Show that `sin^(-1){sin((3pi)/(4))} ne (3pi)/4` and find its value. ii) Show that `cos^(-1){cos(-pi/3)} ne -pi/3` and find its value. iii) Show that `tan^(-1){tan((5pi)/6)}ne (5pi)/6` and find its value.

Answer» i) We know that the principal-value branch of `sin^(-1)` is `[-pi/2,pi/2]`.
`therefore sin^(-1){sin(3pi)/4} ne (3pi)/4`.
Now, `sin^(-1){sin(3pi)/4)=sin^(-1){sin(pi-pi/4)}=sin^(-1){sinpi/4}[therefore sin(pi-pi/4)=sinpi/4]`
`=pi/4 {therefore pi/4 in [-pi/2, pi/2]}`.
`therefore sin^(-1){sin (3pi)/4}=pi/4`.
ii) We know that the principal-value branch of `cos^(-1){cos(-pi/3)} ne -pi/3`.
Now, `cos^(-1){cos(-pi/3)}=cos^(-1){cospi/3} [therefore cos(-theta)=costheta]=pi/3 [therefore pi/3 in [0,pi]]`.
`therefore cos^(-1){cos(-pi/3)}=pi/3`.
iii) We know that the principal-value branch of `tan^(-1)` is `(-pi/2,pi/2)`.
`therefore tan^(-1){tan(5pi)/6} ne (5pi)/6`.
Now, `tan^(-1)(tan(5pi)/6}=tan^(-1){tan(pi-pi/6)}=tan^(-1){tan(-pi/6)} [therefore tan(pi-theta)=tan(-theta)]`.
`=-pi/6 [therefore -pi/6 in (-pi/2, pi/2)]`
`therefore tan^(-1){tan(5pi)/6}=-pi/6`.
25.

निम्नलिखित के मान ज्ञात कीजिए : `tan^(-1)(tan""(3pi)/(6))`

Answer» Correct Answer - `pi/6`
Range of `tan^(-1)` is `(-pi/2,pi/2)`
`therefore tan^(-1)(tan(7pi)/6)=tan^(-1){tan(pi+pi/6)}`
`=tan^(-1){tanpi/6{=pi/6`.
26.

Prove that `tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)`

Answer» We have,
LHS `=tan^(-1)(cosx)/(1+sinx)`
`=tan^(-1){(sin(pi/2-x))/(1+cos(pi/2-x))}`
`=tan^(-1){(2sin(pi/4-x/2)cos(pi/4-x/2))/(2cos^(2)(pi/4-x/2))}`
`=tan^(-1){tan(pi/4-x/2)}=(pi/4-x/2)`=RHS.
`therefore tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)`.
27.

Prove that `tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi`.

Answer» We have,
LHS `=tan^(-1)((cosx-sinx)/(cosx+sinx))`
`=tan^(-1)((1-tanx)/(1+tanx))` [dividing num. and denom. By `cos x`]
`=tan^(-1){tan(pi/4-x)}=(pi/4-x)` RHS.
`therefore tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x)`.
28.

निम्नलिखित समीकरणों को सरल कीजिए : `2 tan^(-1)(cosx)=tan^(-1)(2 "cosec"x)`

Answer» We have,
`2tan^(-1)(cosx)=tan^(-1)(2"cosec"x)`
`rArr tan^(-1)(2cosx)/(1-cos^(2)x)=tan^(-1)(2"cosec"x)`
`rArr tan[tan^(-1)(2cosx)/(sin^(2)x)]=2"cosec"x`.
`rArr (2cosx)/(sin^(2)x)=2"cosec"x rArr cosx=sinx`
`rArr tanx=1 rArr x=pi/4`.
29.

`tan^(-1)""(cosx)/(1-sinx),-(-3pi)/(2) lt x lt (pi)/(2)` , को सरलता रूप में व्यक्त कीजिए ।

Answer» We have,
LHS `=tan^(-1)(cosx)/(1-sinx)`
`=tan^(-1){(sin(pi/2-x))/(1-cos(pi/2-x))}`
`=tan^(-1){(2sin(pi/4-x/2)cos(pi/4-x/2))/(2sin^(2)(pi/4-x/2)}`
`tan^(-1){cot(pi/4-x/2)}=tan^(-1)[tan{pi/4-x/2)}]`
`=tan^(-1){tan(pi/4+x/2)}`
`=(pi/4+x/2)`=RHS.
Hence, `tan^(-1)(cosx)/(1-sinx)=(pi/4+2/x)`.
30.

`tan^(-1)""[(a cos x -b sinx)/(b cosx+a sinx)]` को सरल कीजिए, यदि `""(a)/(b)tanx le-1`

Answer» We have,
LHS `=tan^(-1)(acosx-bsinx)/(bcosx-asinx)=tan^(-1){((acosx-bsinx)/(bcosx))/((bcosx-asinx)/(bcosx))` [on dividing num. and denom. By `bcosx`].
`=tan^(-1){(a/b-tanx)/(1+a/btanx)}=tan^(-1)(p-q)/(1+pq)`, where `a/b=p` and `tanx=q`
`=tan^(-1)p-tan^(-1)q=tan^(-1)a/b-tan^(-1)(tanx)`
`=(tan^(-1)a/b-x)`= RHS.
Hence, `tan^(-1)((acosx-bsinx)/(bcosx-asinx))=(tan^(-1)a/b-x)`.
31.

Prove that `tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a`.

Answer» Putting `x=atantheta`, we get
`tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=tan^(-1)((3a^(3)tantheta-a^(3)tan^(3)theta)/(a^(3)-3a^(3)tan^(2)theta))`
`tan^(-1)(3tantheta-tan^(3)theta)/(1-3tan^(2)theta)=tan^(-1)(tan 3theta)`
`=3theta=3tan^(-1)x/a`.
Hence, `tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)x/a`.
32.

`cot^(-1)(-1)`

Answer» Correct Answer - `(3pi)/4`
Range of `cot^(-1)` is `(0,pi)`
`therefore cot^(-1)(-1)=theta rArr cot theta=-1=-cotpi/4 = cot(pi-pi/4)=cot(3pi)/4 rArr theta=(3pi)/4`.
33.

The principal value of `tan^-1(-sqrt3)` is

Answer» Correct Answer - `-pi/3`
Range of `tan^(-1)` is `(-pi/2,pi/2)`.
`therefore tan^(-1)(-sqrt(3))=theta rArr tantheta=-sqrt(3)=tan(-pi/3) rArr theta=-pi/3`.
34.

`sec^(-1)(-2)`

Answer» Correct Answer - `(2pi)/3`
Range of `sec^(-1)` is `[0,pi]-{pi/2}`
`sec^(-1)(-2)=theta rArr sec theta=-2 =-secpi/3=sec(pi-pi/3)=sec((2pi)/3))`.
`rArr theta=(2pi)/3`.
35.

`tan^(-1)(-1)`

Answer» Correct Answer - `-pi/4`
Range of `tan^(-1)` is `(-pi/2,pi/2)`
`therefore tan^(-1)(-1)=theta rArr tan theta=-1=-tanpi/4=tan(-pi/4)`
`rArr theta=-pi/4`.
36.

`cos^(-1)(-1/2)`

Answer» Correct Answer - `(2pi)/3`
Range of `cos^(-1)` is `[0,pi]`
`therefore cos^(-1)(-1/2)=theta rArr cos theta=-1/2=-cospi/3=cos(pi-pi/3)=cos(2pi)/3`
`rArr theta=(2pi)/3`.
37.

The value of `sin(sin^(-1)(1/2)+cos^(-1)(1/2))=?`

Answer» Correct Answer - B
`sin^(-1)1/2+cos^(-1)1/2=pi/2 rArr sin(sin^(-1)1/2+1/2+cos^(-1)1/2)=sinpi/2=1`.
38.

Prove that `(9pi)/(8)-(9)/(4)sin^(-1)""(1)/(3)=(9)/(4)sin^(-1)""(2sqrt(2))/(3)`

Answer» We have,
LHS `=(9pi)/8-9/4sin^(-1)1/3`
`9/4(pi/2-sin^(-1)1/3)`.
`=9/4cos^(-1)1/3=9/4sin^(-1)sqrt(1-1/9)`
`9/4sin^(-1)(2sqrt(2))/(3)`=RHS
Hence, LHS=RHS
39.

The value of `sec^(-1)(sec(8pi)/5)` isA. `(2pi)/5`B. `(3pi)/5`C. `(8pi)/5`D. none of these

Answer» Correct Answer - A
Let `sec^(-1)(sec(8pi)/5)=sec(2pi-(2pi)/5)=sec(2pi)/5 rArr x=(2pi)/5`.
40.

The principal value of `cos^(-1)(-1/2)` isA. `-pi/3`B. `(2pi)/3`C. (4pi)/3`D. `pi/3`

Answer» Correct Answer - B
Let `cos^(-1)(-1/2)=x`, where `x in [0,pi]`.
Then, `cosx=-1/2=-cospi/3 = cos(pi-pi/3)=cos(2pi)/3 rArr x=(2pi)/3`.
41.

Prove that: `cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=0`.

Answer» We have,
LHS `=tan^(-1)(a-b)/(1+ab)+tan^(-1)(b-c)/(1+bc)+tan^(-1)(c-a)/(1+ca)`
`=(tan^(-1)a-tan^(-1)b)+(tan^(-1)b-tan^(-1)c)+(tan^(-1)c-tan^(-1)a)`
=0=RHS
`therefore` LHS=RHS.
42.

Prove that:`tan^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`

Answer» We have,
LHS `=cos^(-1)4/5+cos^(-1)12/13`
`=cos^(-1){(4/5 xx 12/13)-sqrt(1-(4/5)^(2)).sqrt(1-(12/13)^(2))}`
`=cos^(-1){48/65-sqrt(1-(16/25)).sqrt(1-144/169)}`
`=cos^(-1){48/65-sqrt(9/25).sqrt(25/169)}`
`=cos^(-1){48/65-3/5 xx 5/13}=cos^(-1)(48/65-15/65)`
`=cos^(-1){12/17-sqrt(64/289).sqrt(9/25)}=cos^(-1){12/17 -8/17 xx 3/5)`
`=cos^(-1){12/17-24/85}=cos^(-1)(36/85)=`RHS
Hence, `sin^(-1)8/17+sin^(-1)3/5=cos^(-1)36/85`.
43.

`cos(tan^(-1)(3/4)) =`A. `3/5`B. `4/5`C. `4/9`D. none of these

Answer» Correct Answer - B
Let `tan^(-1)3/4=x`, where `x in (-pi/2, pi/2)`.
`therefore tanx=3/4` and since `x in (-pi/2, pi/2)`, we have `cosx gt 0`.
`therefore cosx=1/(secx)=1/sqrt(1+tan^(2)x)=1/sqrt(1+9/16)=4/5`.
`therefore cos(tan^(-1)3/4)=cosx=4/5`.
44.

Range of `cos^(-1)x` isA. `[0,pi]`B. `[0,pi/2]`C. `[-pi/2,pi/2]`D. none of these

Answer» Correct Answer - A
45.

Range of `sin^(-1)x` isA. `[0,pi/2]`B. `[0,pi]`C. `[-pi/2,pi/2]`D. none of these

Answer» Correct Answer - C
46.

Prove that `2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3`.

Answer» We have,
LHS =`2tan^(-1)1/4+2tan^(-1)2/9`
`=tan^(-1)((2 xx 1/4)/(1-(1/4)^(2)) + tan^(-1)((2 xx 2/9)/(1-(2/9)^(2))`
`=tan^(-1)((1/2)/(15/16))+tan^(-1)((4/9)/(77/81))`
`=tan^(-1)(1/2 xx 16/15)+tan^(-1)(4/9xx 81/77)`
`=tan^(-1)8/15+tan^(-1)36/77`
`=tan^(-1)(1156)/867)=tan^(-1)4/3`=RHS
`therefore` LHS=RHS.
47.

If `tan^(-1) 3 +tan^(-1)x=tan^(-1)87` then x =A. `1/3`B. `1/5`C. 3D. 5

Answer» Correct Answer - B
`tan^(-1)x+tan^(-1)3=tan^(-1)8 rArr tan^(-1)(3+x)/(1-3x)=pi+tan^(-1)(-1)`
`=pi-tan(1)=(pi-pi/4)=(3pi)/4`.
48.

`(tan^(-1)2+tan^(-1)3)=?`A. `-pi/4`B. `pi/4`C. `(3pi)/4`D. `pi`

Answer» Correct Answer - C
`(x=2,y=3) rArr xy gt 1`.
`therefore tan^(-1)2+tan^(-1)3=pi+tan^(-1)(2+3)/(1-2 xx 3)=pi+tan^(-1)(-1)`
`=pi-tan(1)=(pi-pi/4)=(3pi)/4`.
49.

Find the principal value of: `cos^(-1)((sqrt(3))/2)`A. `pi/6`B. `(5pi)/6`C. `(7pi)/6`D. none of these

Answer» Correct Answer - A
Let `cos^(-1)(sqrt(3)/2)=x,` where `x in [0,pi]`
Then, `cosx=sqrt(3)/2=cospi/6 rArr x=pi/6`
50.

If `tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=pi/4`, find the value of `x`.

Answer» The given equation may be written as
`tan^(-1)(x-2)/(x-4)=pi/4-tan^(-1)(x+2)/(x-4)=tan^(-1)1-tan^(-1)((x+2)/(x+4))[therefore pi/4=tan^(-1)(1/(x+2))`.
`therefore (x-2)/(x-4) =1/(x+3) rArr (x-2)(x+3)=(x-4)`
`rArr x^(2)+x-6=x-4 rArr x^(2)=2 rArr x=+-sqrt(2)`.
Hence, `x=+-sqrt(2)`.