Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

37051.

Use euclid division algorithm to find hcf of 10224 and 9648

Answer» 144 ?
Easy yarr
37052.

(x-2)(x+1)=(x-1)(x+3)

Answer» (x-2)(x+1)=(x-1)(x+3)x (x + 1) - 2( x+ 1) = x (x + 3) - 1 ( x + 3)x2 + x - 2x - 2 = x2 + 3x - 1x - 3x2 - x - 2 = x2 + 2 x - 3- x - 2x = -3 + 2- 3x = -1x = 1/3
37053.

6x+3y=20

Answer» {tex}2x + y = 6{/tex}{tex}\\Rightarrow y =-2x + 6{/tex}\tx{tex}2{/tex}{tex}4{/tex}y{tex}2{/tex}{tex}-2{/tex}\t{tex}6x + 3y = 20{/tex}{tex}\\Rightarrow y = \\frac {20-6x} { 3 }{/tex}\tx{tex}0{/tex}{tex}\\frac{10}{3}{/tex}y{tex}\\frac{20}{3}{/tex}{tex}0{/tex}\tThe graph of the system of equations is parallel lines\xa0{tex}\\therefore{/tex} the system has no solution and hence is inconsistent.
37054.

If cosec+cos=x Find the value of cosec-cos

Answer»
37055.

describe zero of the polynomial

Answer» The zero of the polynomial is defined as any real value of x, for which the value of the polynomial becomes zero.
37056.

factorize x²-7x-10

Answer» (x-5) (x-2)
37057.

If(9/7)^3×(49/81)^2x-6=(7/9)^9

Answer»
37058.

Ap=8,3,-2.........find Sn

Answer» Here {tex}a = 8,\\ d = 3 - 8 = -5.{/tex}So, Sn\xa0= {tex}\\frac{n}{2}{/tex}[2a + (n\xa0- 1)d]{tex}\\Rightarrow{/tex}\xa0{tex}S_{n}\xa0= \\frac n2(16 - 5n + 15) = \\frac n2(31 - 5n){/tex}
37059.

The 17th of an ap exceed it 10th by 7 .find the common difference.

Answer» Let the first term and the common difference of the AP be a and d respectively.Given that, a17 = a10+7\xa0{tex} \\Rightarrow {/tex}\xa0a + (17 - 1) d = a + (10 - 1)d + 7\xa0{tex}\\because {/tex}an = a +(n - 1)d{tex} \\Rightarrow {/tex}\xa0a + 16d = a + 9d + 7{tex} \\Rightarrow {/tex}\xa016d - 9d = 7{tex} \\Rightarrow {/tex}\xa07d = 7{tex} \\Rightarrow d = \\frac{7}{7} = 1{/tex}Hence, the common difference is 1.
37060.

Solve for X and y if 2 x is equal to 5y + 4 and 3 X - 2y + 6 is equal to zero

Answer» 2x = 5y + 42x - 5y = 4..... (i)3x - 2y + 6 = 03x - 2y = -6 ......... (ii)Multiply (i) by 3 and (ii) by 26x - 15y = 12....... (iii)6x - 4y = - 12 .......(iv)Subtract (iv) from (iii)- 11y = 24y = -24/11Put y = -24/11 in (ii) we get3x - 2(-24/11) = -63x + 48/11 = -63x = - 6 - 48/113x = -144/11x = - 38/11
37061.

give equation of a line which is parallel to 2x-3.4y-9=0

Answer»
37062.

Koi asise channel hai jo 10th ko padatha ho you tube par

Answer» Edumantra
PuStack and bhai ki padhai
37063.

What are the syllables of maths 2019 2020

Answer» Check the syllabus here :\xa0https://mycbseguide.com/cbse-syllabus.html
37064.

3+2√5

Answer» 3+2√5
37065.

Find the value of k for which the quadratic equation kx(x-2)+6=0 has two equal roots

Answer» We have, kx(x - 2) + 6 = 0{tex}\\Rightarrow k x^{2}-2 k x+6=0{/tex}........(1)We know that quadratic equation {tex}ax^2+bx+c=0{/tex},a≠0, has equal roots if its discriminant D is 0.D = 0\xa0{tex}\\Rightarrow{/tex}{tex}b^2-4ac=0{/tex}{tex}\\Rightarrow{/tex}4k2 - 4(k)6 = 0 [from given quad. equ.(1); a=k≠0, b= -2k, c= 6]{tex}\\Rightarrow{/tex}4k2 - 24k = 0\xa0{tex}\\Rightarrow{/tex}4k(k - 6) = 0 {tex}\\Rightarrow{/tex}k - 6 = 0 [ since, k≠0]{tex}\\Rightarrow{/tex}k = 6\xa0Hence the value of K is 6.
37066.

find the number of integers between 50 and 400 which are divisible by 7

Answer»
37067.

find 3 numbers in an AP such that their sum is 30 and their product is 960

Answer»
37068.

find the 31st term of an AP whose 11th term is 38 and 16th term is 73

Answer» Here a11 =38 and a16 =73Using formula a n =a +(n−1)d, to find nth term of arithmetic progression,38=a +(11−1) (d) And 73=a +(16−1)(d)⇒ 38=a +10d And 73=a +15dThese are equations consisting of two variables.We have, 38=a +10d ⇒ a =38−10dLet us put value of a in equation (73=a +15d),73=38−10d +15d ⇒ 35=5dTherefore, Common difference =d =7Putting value of d in equation 38=a +10d ,38=a +70 ⇒ a =−32Therefore, common difference = d = 7 and First term = a = -32Using formula a n =a +(n−1)d , to find nth term of arithmetic progression,a31=-32+(31−1)(7) =−32+210=178Therefore, 31st term of AP is 178.
37069.

If the zero of the polynomial p(x) (k+4)x2+13x+3k is resipropal of the then the value of k

Answer» Let thw zeroes are a and 1/aProduct = c/aa*1/a = 3k/k+41=3k/k+43k=k+42k=4K=2
37070.

3^40-3^39/3^41-3^40 . Solve it if u can.

Answer» Taking common 3^39 from numeratorAnd 3^40 from denominator And the ans is 1/3
37071.

Multiply 15=a+2d by 25=2a+9d

Answer»
37072.

If d is the hcf of ( 1155 and 506) then find x,y satisfing d= 1155x + 506y

Answer» We need to find the H.C.F. of 506 and 1155 and express it as a linear combination of 506 and 1155.By applying Euclid’s division lemma1155 = 506 {tex}\\times{/tex}\xa02 + 143.506 = 143 {tex}\\times{/tex}\xa03 + 77.143 = 77 {tex}\\times{/tex}\xa01 + 66.77 = 66 {tex}\\times{/tex}\xa01 + 11.66 = 11 {tex}\\times{/tex}\xa06 + 0.Therefore, H.C.F. = 11.Now, 11 = 77 - 66 {tex}\\times{/tex}\xa01 = 77 - [143 - 77 {tex}\\times{/tex}\xa01] {tex}\\times{/tex}\xa01 {∵ 143 = 77 {tex}\\times{/tex}\xa01 + 66}= 77 - 143 {tex}\\times{/tex}\xa01 + 77 {tex}\\times{/tex}\xa01= 77 {tex}\\times{/tex}\xa02 - 143 {tex}\\times{/tex}\xa01= [506 - 143 {tex}\\times{/tex}\xa03] {tex}\\times{/tex}\xa02 - 143 {tex}\\times{/tex}\xa01 {∵\xa0506 = 143 {tex}\\times{/tex}\xa03 + 77 }= 506 {tex}\\times{/tex}\xa02 - 143 {tex}\\times{/tex}\xa06 - 143 {tex}\\times{/tex}\xa01= 506 {tex}\\times{/tex}\xa02 - 143 {tex}\\times{/tex}\xa07= 506 {tex}\\times{/tex}\xa02 - [1155 - 506 {tex}\\times{/tex}\xa02] {tex}\\times{/tex}\xa07 {∵1155 = 506 {tex}\\times{/tex}\xa02 + 143\xa0}= 506 {tex}\\times{/tex}\xa02 - 1155 {tex}\\times{/tex}\xa07 + 506 {tex}\\times{/tex}\xa014= 506 {tex}\\times{/tex}\xa016 - 1155 {tex}\\times{/tex}\xa07Hence obtained.
37073.

What is perfect square of 1/2a2

Answer»
37074.

Find hcf of 420 and 130

Answer» 420=130×3+30130=30×3+1030=10×3+0HCF. 10
30 is right answer
Step:1 Since 420 > 130 we apply the division lemma to 420 and 130 to get ,420 = 130 x 3 + 30Step:2 Since 30 ≠ 0 , we apply the division lemma to 130 and 30 to get130 = 30 x 4 + 10Step:3 Since 10 ≠ 0 , we apply the division lemma to 30 and 10 to get30 = 10 x 3 + 0The remainder has now become zero, so our procedure stops. Since the divisor at this Step is 10, the HCF of 420 and 130 is 10.
420=2.2.5.3.7130=2.5.13HCF=5.Means multiply
37075.

Sin^2+cos^2 =1 Prove that

Answer» I proved. It question very easily
37076.

What are composite numbers? With example.

Answer» An integer which have more than 2 factors
An integer can be generated by multiplying the two smallest positive integers and it contains at least one divisor other than one and itself is called a composite number. Each positive integers is either prime, composite or the unit 1. Composite numbers are the numbers that are neither prime nor unit .Example : 4( factors are 1, 2 and 4)
37077.

Find the largest 4 digit number which is exactly divisible by 12, 15,and 24,

Answer» Thnx bhai
15 = 3×524 = 2×2×2×312 = 2×2×3Lcm = 120The greatest 4 digit no. Is 9999Dividing lcm by 9999 we get remainder as 399999-39=9960The answer is 9960
Find the largest 4 digit number which is exactly divisible by 12, 15,and 24,
37078.

Koi asise channel hai jo 10th class ko padatha ho maths you tube par

Answer» Han ho sakta hai .Search karo milega
37079.

A3

Answer»
37080.

Koi yaha par gayatri institute ka h kya.????????!!

Answer» Or center konsa h?
10th mein abhi hi aaye 11 mein Jane h
मैं हूं ,,,,,,????
37081.

Split the middle term x^2-5x+8 and 4x^2-8x-6

Answer»
37082.

given a=5 d=3 an=50 find n and Sn

Answer» n=16_-_-_-_-_-_ Sn=248???
37083.

(X-2r)^3

Answer»
37084.

Who is laks****@***** ...jo b h wo sirf thanks kr rha h ...

Answer» Don\'t know
Pata ni
37085.

Sb gye ke ....

Answer» Not
37086.

Best of luck for your result guys ???

Answer» Thnx
Tq
Thq yr.... But result jaldi ajay ab or kitna wait krwayega.....
Thanks yrr
37087.

If the HCF of 210 and 55 is expressible in the form 210×5+55y then find y..

Answer» 210=55×3+45...........(1)55=45×1+10..............(2)45=10×4+5................(3)10=5×2+0So here HCF (210,55)=5From equation (3), 5 can be written as5=45—10×4..........(4)Now from (2) 10=55—45×1,now this value substitute in equation (4) in place of 10Then we get,5=45—(55—45×1)×4After simplifying we will get5=45×5—55×4.......(5)Now,from (1) 45=210—55×3, this value substitute in equation (5)5=(210—55×3)×5—55×4, after simplifying we will get5=210×(5)+55×(-19)....Now this one compare with given equation that 5=210×5+55×xThen X=–19 is the answer
37088.

55x +67y =31167x +55y =299

Answer» For this type of questions. We simple first + the both terms and then substract the both equation. So we get 2 short equations. After that solve the both equation by eliminating method or substitution method. This is only work when coffecient of x is equal to coffecient of y in 2nd equation and coffecient y in 1st equation is equal to coffecient of x in 2nd equation. Hope you like the answer.
37089.

6x+5y=7x+3y+1=2(x+6y-1)

Answer» The given equations are{tex}6x + 5y = 7x + 3y + 1 = 2(x + 6y -1){/tex}Therefore,we have{tex}6x + 5y = 2(x + 6y -1){/tex}{tex}6x + 5y = 2x + 12y - 2{/tex}{tex}6x - 2x + 5y -12y = -2{/tex}{tex}4x - 7y = -2 {/tex}......(i)Also,\xa0{tex}7x + 3y + 1 = 2(x + 6y - 1){/tex}{tex}7x + 3y + 1= 2x + 12y -2{/tex}{tex}7x - 2x + 3y -12y = -2 -1{/tex}{tex}5x - 9y = -3 {/tex}.........(ii)Multiplying (i) by 9\xa0and (ii) by 7, we get{tex}36x -\xa063y = -18{/tex} ......(iii){tex}35x -\xa063y = -21{/tex} .....(iv)Subtracting (iii) and (iv),we get{tex}x = 3{/tex}Substituting x = 3\xa0in (i),we get{tex}\\Rightarrow4 \\times 3 - 7 y = - 2\\\\ \\Rightarrow - 7 y = - 2 - 12{/tex}{tex}\\Rightarrow-7y = -14{/tex}{tex}\\Rightarrow{/tex}y = 2{tex}\\therefore{/tex}\xa0Solution is x = 3, y = 2
37090.

For how many integers n is √9 - ( n + 2 )^2.

Answer» 9 -(n+2)^2=[3^2-(n+2)^2)=using identity a^2-b^2=(a+b)(a-b)=(3-n+2)(3+n-2)=n=-5,1
37091.

Hii..m bapas aa gyi ...

Answer» Ok amu bestie...
Mast
Hii but bye bestie.... din mai baat krege....
Hi..aastha bestie kaisi ho
Hlo
37092.

Hii..gm....sb kaise ho..

Answer» Hi ...amu bestie nd aastha bestie
Tension me
Hlo... gm bestie.....??
37093.

When result come

Answer» Arre aj nhi aega
Think so after 12 00 clock
37094.

If one zero of polynomial (k-1)x^2+kx+1 is -3 , find the value of k.

Answer» X=-3 p(x)=(k-1)x^2+kx+1=0Putting the value of x in the p(x)P(x)=(k-1)(-3)^2+k(-3)+1=0 =(k-1)(9) - 3k +1=0 =9k-9-3k+1=0 =6k-8=0 =6k=8 =k=8/6 =k=4/3Hence, value of k is 4/3
37095.

Aastha bestie ..kl to rcb jeet gyi .....

Answer» Hmmmm
????
37096.

Doraemon.....❤️❤️

Answer» Ki saayad hota to result badal dete ??
Doraemon ki yaad aa rhi h kya ??
37097.

2+2=5 prove it

Answer» Tu pagal hai
You plz give me answer to my question
Given 2+ 2 To prove 2+ 2 = 5Proof : - 2 + 2 = 4 (Common sense)Adding 1 to both sides2 + 2 + 1= 4 + 15 = 5LHS = RHS Hence proved???
37098.

X + Y is equal to 14

Answer» x + y\xa0= 14 ....(1)x - y = 4 ....(2)x\xa0= 4 + y from equation (2)Putting this in equation (1), we get4+y +y =14⇒ 2y =10⇒ y = 5Putting value of y in equation (1), we getx + 5 = 14⇒ x = 14 - 5 = 9Therefore, x =9 and y =5
37099.

P(x)=x3_x2_x+1

Answer»
37100.

what is the last digit of the number u get by multiplying the first 2002 odd prime numbers together

Answer»