Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

9551.

Prove that x^(2)-y^(2)=c(x^(2)+y^(2))^(2) is the general solution of differential equation (x^(3)-3xy^(2))dx=(y^(3)-3x^(2)y)dy, where c is a parameter.

Answer»
9552.

The sum of all numbers formed taking all the digits {1, 2,3, 4} is

Answer»

151338
155518
153318
153138

Answer :C
9553.

The unit vector in the direction of the sum of the vectors (1, 1, 1),(2, -1,-1) and (0, 2, 6) ………..

Answer»

`-(1)/(7)(3,2,6)`
`(1)/(49)(3,2,6)`
`(1)/(7)(3,-2,6)`
`(1)/(7)(3,2,6)`

ANSWER :D
9554.

Check whether the relation R defined by R = {(a,b) : a le b^3} is reflexive , symmetric or transitive.

Answer»


SOLUTION :N/A
9555.

Show that the normals to the planes oversettor.(overset^i-overset^j+overset^k)=3and oversettor.(3overset^i+2overset^j-overset^k)=0 are perpendicular to each other.

Answer»

Solution :Normals to the GIVEN planes are `oversettoN_(1)=i-j+k` and `oversettoN_2=3i+2j-koversettoN_1.oversettoN_2=1xx3+(-1)(2)+1xx(-1)=0 thereforeoversettoN_1botoversettoN_2i.e.` the normals are PERPENDICULAR to each other.
9556.

f: [2,oo) rarr y, f(x) = x^(2)-4x +5 is a one and Onto function . If y in[a,oo)then the value of a is .........

Answer»

2
1
`-OO`
`-1`

SOLUTION :N/A
9557.

License plates on cars in a certain state consist of 3 letters taken from the 26 letters. A through Z, followed by 3 digits taken from the 10 digits, 0 through 9. Which of the following expressions gives the number of distinct license plates that are possible given that repetition of both letters and digits is allowed?

Answer»

`10^(3) CDOT 26^(3)`
`(10 + 26)^(3)`
`2(26!)^(3) (10!)^(3)`
`(3 + 3)^(26+10)`

ANSWER :A
9558.

Angle substended by common tangents of two ellipse 4( x-4) ^(2) +25y^(2)=100 and 4( x+1) ^(2) +y^(2)=4 at origin is

Answer»

`(PI )/(3) `
` ( pi )/(4) `
` ( pi )/(6)`
` ( pi )/(2)`

Answer :D
9559.

A company sells its product at Rs 10 per unit. Fixed costs are Rs 35000 and variable costs are estimated to run 30% of total revenue. Determine the (i) total cost function (ii) the quantity the company must sell to cover the fixed cost.

Answer»


Answer :`C(x) = 35000 + 3X; 3500`
9560.

The number of words that can be made with the letters of the word CALCULATE such that suceach word starts and ends a consonant, is

Answer»

`(5xx7!)/(2)`
`(3xx7!)/(2)`
`2xx7!`
12600

Answer :A::D
9561.

If z is a complex number, then the locus of z such that : {:("List I","List II"),((A)|z|=1,"(1) Is a straight line "),((B)|z+2i|+|z-2i|=4,"(2) Is a ellipse "),((C) Re (z^2)=4,"(3) Is a hyperbola"),((D)zbarz=4,"(4)IS a pair of st. lines"),(,"(5) Is a circle"):} The correct match is

Answer»

`Ararr2,Brarr3,Crarr1,Drarr4`
`Ararr5,Brarr-3,Crarr1,Drarr4`
`Ararr5,Brarr1,Crarr3,Drarr5`
`Ararr1,Brarr2,Crarr3,Drarr4`

ANSWER :C
9562.

lim_(z to 0)[{ max( sin^(-1) x+ cos^(-1) x)^(2),min (x^(2) + 4x + 7))} . (sin^(-1)z)/z]is equal to ( where [.] denotes greatest integer function )

Answer»


ANSWER :3
9563.

The mod -amplitude form of 1+itan theta is

Answer»

`- SEC THETA CIS (PI + theta)`
`-sec theta cis (pi - theta)`
`sec theta cis (pi + theta)`
`sec theta cis (pi - theta)`

ANSWER :A
9564.

(1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+....=

Answer»

`2log_(e )^(2)`
`2log_(e )^(2)+1`
`log_(e )^(2)`
`log_(e )((4)/(e ))`

Answer :D
9565.

If alpha, beta, gamma are the cube roots of a negative number p, thenfor any three real numbers x,y,z the value of (x alpha+y beta+ z gamma)/(x beta +y gamma+z alpha) is

Answer»

`(1-isqrt(3))/(2)`
`(-1- isqrt(3))/(2)`
`(x+y+z)i`
`p i`

Answer :B
9566.

Value of S=2012+(1)/(3)(2011+(1)/(3)(2010+(1)/(3)(2009+(1)/(3)(2+(1)/(3)(1))....) is

Answer»

3018
3017.5
`3017.5 -(1)/(4) ((1)/(3))^(2011)`
`3018 -(1)/(4) ((1)/(3))^(2011)`

Answer :C
9567.

Choose the correct answer.The value of overset^^i.(overset^^jxxoverset^^k)+overset^^j.(overset^^ixxoverset^^k)+overset^^k.(overset^^ixxoverset^^j) is :a)0b)-1c)1d)3

Answer»

0
`-1`
1
3

Answer :C
9568.

If vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=-hat(i)+2hat(j)-3hat(k) are orthogonal, then value of lambda is

Answer»

0
1
`(3)/(2)`
`(5)/(2)`

ANSWER :D
9569.

Verify mean value theorem for each of the functions: f(x) = (1)/(4x-1),x in [1, 4]

Answer»


ANSWER :`(1 + 3 SQRT5)/(4) in (1, 4)`
9570.

Find(dy)/(dx), if x = c t, y= ( c )/( t)

Answer»


ANSWER :` (DY)/(DX) =- (1)/(t^(2)) `
9571.

Ifsin A - sqrt(6)cos A= sqrt(7)cos A, thencos A+ sqrt(6)sin Aisequal

Answer»

` sqrt(6) sin A `
` sqrt(7) sin A `
` sqrt(6)cos A `
` sqrt(7)cos A `

ANSWER :B
9572.

int(dx)/(sinx+sqrt(3)+cosx)=....

Answer»

`log tan((X)/(2)+(pi)/(2))+c`
`(1)/(2) log tan((x)/(2)+(pi)/(6))+c`
`log COT ((x)/(2)+(pi)/(6))+c`
`(1)/(2)log cot ((x)/(2)+(pi)/(6))+c`

Answer :B
9573.

Find the value of lambda so that the three vectors are co-planar. hati+2hatj+3hatk, 4hati+hatj+lambdahatk and lambdahati-4hatj+hatk

Answer»

Solution :Let `veca = hati+2hatj+3hatk`
`vecb = 4hati+hatj+lambdahatk`
`VECC = lambdahati-4hatj+hatk`
If the GIVEN vectors are coplanar, then `vecaxxvecb.vecc = 0`

`2lambda^2+11lambda-10lambda-55 = 0`
`IMPLIES lambda(2lambda+11)-5(2lambda+11) = 0`
`implies(lambda-5)(2lambda+11) = 0`
`implies(lambda-5)(2lambda+11) = 0`
`implies lambda = 5` or -11/2
9574.

Approximate value of sqrt(0.081) = ….....

Answer»

`0.2866`
`0.2850`
`0.2867`
`0.2845`

ANSWER :D
9575.

Show that the equation of the line passsing through the points of intersection of the circles 3x^2+3y^2-2x+12y-9=0 and x^2+y^2+6x+2y-15=0 is 10x-3y-18=0

Answer»


ANSWER :`3(x^2+y^2)-18x-12y+27=0`
9576.

(i) Show that in the set of positive integer, the relation ' is greater than ' is transitive but it is not reflexive or smmetric. (ii) Let R be a relation on the set of natural numbers N defined as ""_(a)R_(b) impliesa divides B where a,b inN. IsR symmetric ?

Answer»


ANSWER :(II) No.
9577.

Number of solution in [0, pi//2] of the equation cos 3xcdot tan 5x = sin 7x is

Answer»

7
6
5
none of these

Answer :B
9578.

The values of k for which the system of equations x+ky-3z=0……..1 3x+ky-2z=0 ……….2 2x+3y-4z=0……………3 has non trivial solution is (are)

Answer»

`21/10`
`31/10`
`-5`
`4`

ANSWER :A
9579.

Which of the following expressions are meaningul :

Answer»

`vecu . (VEC C xx VECW )`
`(vecu xx vecv).vecw.`
`(vec v xx vecw).vecu`
`vecu xx (vecv.vecw).`

Answer :A
9580.

Solve dy = x^(3) dy + 3x^(2) ydy- sec ( sec x + tan x ) dx

Answer»


ANSWER :`y ( X^(3) - 1) = ( TAN x + sec x ) + C `
9581.

If the equatoin ax^(2)-y^(2)+bx+cy+d=0 represents a pair of lines whose slopes are m and m^(2), then value (s) of a is /are

Answer»

`a=-8`
`a=8`
`a=27`
`a=-27`

Solution :`m and m^(2)` are the roots of equation
`((y)/(X))^(2)-6((y)/(x))+a=0`
`:. m+m^(2)=6andm^(3)=a`
or`m^(3)+m^(6)+3m^(3)(m+m)=216`
`a+a^(2)+3A*6=216`
`a^(2)+19a-216=0or a=8,a=-27`
9582.

If y(x) is the ..............

Answer»


SOLUTION :`(DY)/(dx)=-2X(y-1)`
`(dy)/(dx)+2xy =2x`
I.F. `=e^(int 2xdx)=e^(x^(2))`
solution `IMPLIES y.e^(x^(2))= int 2xe^(x^(2)) dx +c`
`y.e^(x^(2))=e^(x^(2))+c` ...(1)
GIVEN `y(0)=1`
`implies 1.1=1+c implies ""c=0`
`:. y. e^(x^(2))=e^(x^(2))` (from (1))
`y=1`
`:. lim_(x rarr oo) y(x)= lim_(x rarr oo) (1)=1`
9583.

A symmetrical form of the line of intersection of the planesx= ay +b and z= cy +dis

Answer»

` (x-B)/(a) =(y-1)/( 1)=( z-d)/(C )`
` (x-b-a)/( a)=(y-1)/(1)=(z-d-c)/(c ) `
` (x-a)/(b)= ( y-0)/(1)=(z-c)/(d)`
` (x-b-a)/(b) =(y-1)/(0)=(z-d-c)/(d)`

ANSWER :B
9584.

Solve the differential equation (x)dy = ( 1 + y^(2))dx.

Answer»
9585.

If A=[[1,2],[-2,3]]B=[[3,2],[1,4]],C=[[2,2],[1,3]]Calculate BC.

Answer»

SOLUTION :`BC=[[3,2],[1,4]][[2,2],[1,3]]`
`=[[3.2+2.1""3.2+2.3],[1.2+4.1" "1.2+4.3]]=[[8,12],[6,14]]`
9586.

If veca = 3hati+hatj-2hatk, vecb = 2hati-3hatj+4hatk then verify that vecaxxvecb is perpendicular to both veca and vecb.

Answer»

Solution :
Now `(vecaxxvecb).VECA`
= `(10hati-8hatj-11hatk).)3hati+hatj+2hatk)`
=30-8-22 = 0
Again `(vecaxxvecb).VECB`
= `(10hati-8hatj-11hatk).(2hati-3hatj+4hatk)`
= 20+24-44 = 0
HENCE `vecaxxvecb` is PERPENDICULAR to both `veca` and `vecb`.(PROVED).
9587.

Evaluate : inte^(2x)*(-sinx+2cosx)dx.

Answer»

Solution :We have
`I=inte^(2X)*{cosx-sinx}DX=2inte^(2x)cosxdx-inte^(2x)sinxdx`
`=2*{:[cosx*(e^(2x))/(2)-int(-sinx)*(e^(2x))/(2)dx]:}-inte^(2x)sinxdx`[integrating `e^(2x)` cos x by PARTS]
`=e^(2x)cosx+inte^(2x)sinxdx-inte^(2x)sinxdx+C`
`=e^(2x)cosx+C`.
9588.

If a, b, c are three vectors such that |a|=1,|b|=2,|c|=3and2a*b=b*c=c*a=2, Then, [a" "b" "c]^(2)=

Answer»

15
14
12
8

Answer :A
9589.

If the lines ax + 2y + 1 = 0, bx + 3y + 1 = 0, cx + 4y + 1 = 0 are concurrent, then a, b, c are in

Answer»

AP
GP
HP
AGP

Answer :A
9590.

For the given statement identify the necessary and sufficent conditions r : If x is real number such that xgt0 " then " x+1/xge2

Answer»

<P>

SOLUTION :Let p and q DENOTE the statement
p : x is real number such that `XGT0`
q : `x+1/xgt2`
The implication if p, then q indicates that p is sufficent conditionfor q . That is real number `xgt0` is sufficent for `x+1/xge 2`
So, the sufficent condition is x is a real number sech that `xgt0`
Similarly , if p , then q also indicates that q is necessary for p. That is when x is a real number such that `xgt0,x+1/x` must be greater than or equal to 2 . So necessary condition is `x+x1/xge2`
9591.

20 persons are arranged along a round circle. If 4 persons are selected at random, find the probability that (a) all the selected 4 are not consecutive (b) no two of the selected 4 are consecutive (c) a specified person must always be selected and no two of the selected 4 are consecutive. (d) exactly two persons of the selected 4 are consecutive.

Answer»


ANSWER :(a) `1 - (20)/(.^(20)C_(4))`
(b) `(2275)/(.^(20)C_(4))`
(c) `(.^(15)C_(3))/(.^(20)C_(4))`
(d) `(2100)/(.^(20)C_(4))`
9592.

Let f be a periodic continuous function with period T gt 0. If I= int_(0)^(T) f(x) dx Then the value of I_(1) = int_(4)^(4+4T) f(3x) dx is

Answer»

`I`
`2I`
`3I`
`4I`

ANSWER :D
9593.

Find the values of p and q, so that f(x) = {(x^(2) + 3x + p,x le 1),(qx + 2,x gt 1):} is differentiable at x=1.

Answer»


ANSWER :p=3 and q=5
9594.

The number of ways in which 20 letters a_(11),a_(2),a_(3),.............,a_(10),b_(1),b_(2),b_(3),.........,b_(10)be arranged in a line so that suffixes of the letters 'a' and also those of 'b' are respectively in ascending orders of magnitude is………

Answer»

`(20!)/(10!)`
`(20!)/((10!)^(2))`
`2^(20)`
`20!-10!.10!`

SOLUTION :`underset(0)overset(pi//4)(INT)tanxdx-[(1)/(2)XX(1)/(2).1]`
9595.

Write the derivative of sin^(-1)(cosx) with respect to x.

Answer»


ANSWER :`dy/dx=-1`
9596.

Area of region enclosed by the region y^2 le 3x , x^2+y^2 le 4 and y ge 0 is :

Answer»

`(4pi-sqrt3)/6`
`(4pi-sqrt3)/4`
`(4pi+sqrt3)/6`
NONE of these

SOLUTION :
`int_0^1 sqrt3sqrtxdxt int_1^2 sqrt(4-x^2)dx`
`sqrt3(x^(3/2)/(3/2))^(1) +[ (xsqrt(4-x^2))/2 + 4/2 "sin"^(-1) x/2]_1^2`
`(2SQRT3)/3 + 2 "sin"^(-1) 1-(1/2 sqrt3+ 2sin^(-1) 1/2)`
`(2sqrt3)/3 + pi - sqrt3/2 -pi/3`
`sqrt3(2/3-1/2 ) + (2pi)/3 rArr sqrt3/6 + (2pi)/3 =(4pi+sqrt3)/6`
9597.

In the (x,y) coordinate plane, what is the diameter of the circle having its center at (-6,1) and (0,9) as one of the endpoints of a radius ?

Answer»

10
14
20
28

Answer :C
9598.

Evaluate the following determinates |{:(x,y),(-y,x):}|

Answer»


ANSWER :`x^2+y^2`
9599.

f(x) = min { x+1 , sqrt((1-x))}the areaof theregionbounded by thecurvef(x)and X - axisis….Sq. unit

Answer»

`1/6`
`5/6`
`7/6`
`11/6`

ANSWER :C
9600.

Find the area enclosed between the circles x^(2) + y^(2) = 4 and (x - 2)^(2) + y^(2) = 4.

Answer»


ANSWER :`(8pi)/(3)-2SQRT3`