

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
Find a quadratic polynomial, the sum and product of whose zeroes are -8/3 and 4/3, respectively. Also find its zeroes. |
Answer» Sum of the zeroes = – 8/3 Product of the zeroes = 4/3 P(x) = x2 – (sum of the zeroes) + (product of the zeroes) Then, P(x)= x2 – 8x/3 + 4/3 P(x)= 3x2 – 8x + 4 Using splitting the middle term method, 3x2 – 8x + 4 = 0 3x2 – (6x + 2x) + 4 = 0 3x2 – 6x – 2x + 4 = 0 3x(x – 2) – 2(x – 2) = 0 (x – 2)(3x – 2) = 0 ⇒ x = 2, 2/3 |
|
2. |
Find a quadratic polynomial, the sum and product of whose zeroes are -3/2√5 and -1/2, respectively. Also find its zeroes. |
Answer» Sum of the zeroes = -3/2√5x Product of the zeroes = – ½ P(x) = x2 – (sum of the zeroes) + (product of the zeroes) Then, P(x)= x2 -3/2√5x – ½ P(x)= 2√5x2 – 3x – √5 Using splitting the middle term method, 2√5x2 – 3x – √5 = 0 2√5x2 – (5x – 2x) – √5 = 0 2√5x2 – 5x + 2x – √5 = 0 √5x (2x – √5) – (2x – √5) = 0 (2x – √5)(√5 – 1) = 0 ⇒ x = – 1/√5, √5/2 |
|
3. |
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively. |
Answer» Let the cubic polynomial be ax3 + bx3 + cx + d, and its zeroes be α, β and γ. Then, α + β + γ = 2 = \(\frac{-(-2)}{1}=\frac{-b}{a}\) αβ + βγ + γα = -7 = \(\frac{-7}{1}=\frac{c}{a}\) αβγ = – 14 = \(\frac{-14}{1}=\frac{c}{a}\) a = 1, then b = -2, c = -7 and d = 14. So, one cubic polynomial which satisfies the given conditions will be x3 – 2x2 – 7x + 14. |
|
4. |
If the zeroes of the cubic polynomial x3 - 6x2 + 3x + 10 are of the form a, a + b and a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial. |
Answer» Let P(x) = x3 - 6x2 + 3x + 10 And (a), (a + b) and (a + 2b) are the zeroes of P(x). We know, Sum of the zeroes = - (coefficient of x2) ÷ coefficient of x3 α + β + γ = - b/a a + (a + b) + (a + 2b) = - (- 6) 3a + 3b = 6 a + b = 2 ⇒ a = 2 - b (1) Product of all the zeroes = - (constant term) ÷ coefficient of x3 αβγ = - 10 a(a + b)(a + 2b) = - 10 (2 - b) (2) (2 + b) = - 10 (2 - b) (2 + b) = - 5 4 - b2 = - 5 ⇒ b = +-3 When b = 3, a = 2 - 3 = - 1 (from (1)) ⇒ a = - 1 When b = - 3,a = 2 - (- 3) = 5 (from(1)) ⇒ a = 5 Case 1: when a = - 1 and b = 3 The zeroes of the polynomial are: a = - 1 a + b = - 1 + 3 = 2 a + 2b = - 1 + 2(3) = 5 ⇒ - 1, 2 and 5 are the zeroes Case 2: when a = 5,b = - 3 The zeroes of the polynomial are: a = 5 a + b = 5 - 3 = 2 a + 2b = 5 - 2(3) = - 1 ⇒ - 1, 2 and 5 are the zeroes By both the cases the zeroes of the polynomial are - 1, 2, 5 |
|
5. |
Given that zeroes of cubic polynomial `x^(3)-6x^(2)+3x +10` are of the form a,a+b,a+2b for some real numbers a and b, find the values of a and b as well as zeroes of the given polynomial. |
Answer» Let `f(x) = x^(3) - 6x^(2) +3x +10` Given that, `a(a+b)` and `(a+2b)` are the zeroes of `f(x)`. The, Sum of the zeroes `=- (("Coefficient of" x^(2)))/(("Coefficient of" x^(3)))` `rArr a + (a+b) + (a+2b) =- ((-6))/(1)` `rArr 3a +3b = 6` `rArr a +b = 2` ...(i) Sum of product of two zeroes at a time `= (("Coefficient of x")/("Coefficient of" x^(3)))` `rArr a(a+b) +(a+b) (a+2b)+a(a+2b) = (3)/(1)` `rArr a (a+b) +(a+b) {(a+b)+b} +a{(a+b)+b} = 3` `rArr 2a +2 (2+b) +a (2+b) = 3` [using Eq.(i)] `rArr 2a +2 (2+2-a) + a (2+2-a) = 3` [using Eq(i)] `rArr 2a +8 - 2a +4a - a^(2) = 3` `rArr -a^(2) +8 = 3 - 4a` `rArr a^(2)-4a - 5 = 0` Using factorisation method, `a^(2) -5a +a - 5 = 0` `rArr a(a-5) +1(a-5) = 0` `rArr (a-5) (a+1) = 0` `rArr a =- 1,5` when `a =- 1`, then `b = 3` when `a = 5`, then `b =- 3` [using Eq.(i)] `:.` Required zeroes of `f(x)` are When `a=- 1` and `b = 3` then, `a (a+b), (a+2) =- 1, (-1+3), (-1+6)` or `-1,2,5` When `a = 5` and `b =- 3` then `a, (a+b), (a+2b) = 5, (5-3), (5-6)` or `5,2,-1`. Hence, the required valus of a and b are `a =- 1` and `b = 3` or `a = 5, b =- 3` and the zeroes are `- 1,2` and 5. |
|
6. |
If x + 2a is a factor of a5 -4a2x3 +2x + 2a +3, then find the value of a. |
Answer» Let p(x) =a5 -4a2x3 +2x + 2a +3 Since, x + 2a is a factor of p(x), then put p(-2a) = 0 (-2a)5 – 4a2 (-2a)3 + 2(-2a) + 2a + 3 = 0 => -32a5 + 32a5 -4a + 2a+ 3 = 0 => -2a + 3=0 2a =3 a = 3/2. Hence, the value of a is 3/2. |
|
7. |
The value of `k`, if `x^2+2x+k` is a factor of `2x^4+x^3-14x^2+5x+6` is |
Answer» Given that, `x^(2)+2x +k` is a factor of `2x^(4)+x^(3)-14x^(2)+5x +6`, then we apply division algorihm, `{:(" "ul(" "2x^(2)-3x+(-8-2k))),( {:x^(2)+2x+k) " "2x^(4)+x^(3)-14x^(2)+5x+6),(" "ul(underset(-)(2x^(4))underset(+)-4x^(3)underset(-)(+)2kx^(2)" ")),(" "-3x^(3)-(2k+14)x^(2)+5x+6),(" "ul(underset(+)(-3x^(3))underset(+)(-)6x^(2)underset(+)(-)3kx" ") ),(" "(6-2k-14)x^(2)+(3k+5)x+6),(" "ul(underset(-)((-8-2k))x^(2)underset(-)(+)2(-8-2k)xunderset(-)(+)k(-8-2k))),(" "(3k+5+16+4k)x+(6+8k+2k^(2))):}` Since, `(x^(2)+2x+k)` is a factor of `2x^(4)+x^(3)-14x^(2) +5x +6` So, when we apply division algorithm remainder should be zero. `:. (7k +21)x +(2k^(2)+8k+6) =0.x +0` `rArr 7k +21 = 0` and `2k^(2)+8k + 6 = 0` `rArr k =- 3` or `k^(2) +4k +3 = 0` `rArr k^(2) +3k +k +3 = 0` " "[by splitting middle term] `rArr k(k+3) +1 (k+3) = 0` `rArr (k+1) (k+3) = 0` `rArr k =- 1` or `-3` Here, if we take `k =- 3`, then remainder will be zero. Thus, the required value of k is -3 Now, Dividend = Divisor `xx` Quotient + Remainder `rArr 2x^(4) + x^(3) - 14x^(2)+5x +16 =(x^(2)+2x-3)(2x^(2)-3x-2)` Using factorisation method, `={x^(2)+3x -x -3) (2x^(2) -4x +x -2)` [by splitting middle term] `= {x(x+3)-1(x+3)} {2x(x-2)+1(x-2)}` `=(x-1)(x+3) (x-2) (2x+1)` Hence, the zeroes of `x^(2) +2x - 3` are 1,-3 and the zeroes of `2x^(4)+x^(3)-14x^(2)+5x+6` are `1,-3,2,(-1)/(2)`. |
|
8. |
If `(x+a)`is a factor of `2x^2+2a x+5x+10`, find `a`. |
Answer» Correct Answer - a = 2 Let `f(x) = 2x^(2) + 2ax + 5x + 10`. Then , f(-a) = 0. ` :. 2a^(2) - 2a^(2) - 5a+10=0 rArr 5a = 10 rArr a = 2.` |
|
9. |
Factorise the following : `(i) 4x^(2)+20x+25 " " (ii) 9y^(2)-66yz+121z^(2) " " (iii) (2x+(1)/(3))^(2)-(x-(1)/(2))^(2)` |
Answer» (I ) `4x^(2)+20x+25=(2x)^(2)+2xx2xxx5+(5)^(2)` `=(2x+5)^(2)` [using identity ,`a^(2)+2ab+b^(2)=(a+b)^(2)]` (ii) `9y^(2)-66yz+121z^(2)=(3y)^(2)-2xx3yxx11z+(11z)^(2)` `=(3y-11z)^(2)` [using identity ,`a^(2)-2ab+B^(2)=(a-b)^(2)`] (iii) `(2x+(1)/(3))^(2)-(x-(1)/(2))^(2)=[(2x+(1)/(3))-(x-(1)/(2))][(2x+(1)/(3))+(x-(1)/(2))]` [using identity ,` a^(2)-b^(2)=(a-b)(a+b)]` `(2x-x+(1)/(3)=(1)/(2))(2x+x+(1)/(3)-(1)/(2))` `(x+(2+3)/(6))(3x+(2-3)/(6))` `=(x+(5)/(6))(3x-(1)/(6))` |
|
10. |
Factorise:9y2 – 66yz + 121z2 |
Answer» 9y2 − 66yz + 121z2 Using (a − b)2 = a2 + b2 − 2ab = (3y)2 + (11z)2 − 2 × 3y × 11 = (3y − 11z)2 |
|
11. |
If (x2 – 1) is a factor of ax4 + bx3 + cx2 + dx + e, then :(a) a + c + e = 0 (b) ace = 1 (c) b + d = 0 (d) Both (a) and (c) |
Answer» (d) Both (a) and (c) Let f(x) = ax4 + bx4 + cx2 + dx + e be the given polynomial. Then, (x2 – 1) is a factor of f(x). ⇒ (x – 1) (x + 1) is a factor of f(x) ⇒ (x – 1) and (x + 1) are factors of f(x) ⇒ f(1) = 0 and f(–1) = 0 ⇒ a + b + c + d + e = 0 and a – b + c – d + e = 0. Adding and subtracting the two equations, we get 2(a + c + e) = 0 and 2(b + d) = 0 ⇒ a + c + e = 0 and b + d = 0. |
|
12. |
If (x2 – 1) is a factor of ax4 + bx3 + cx2 + dx + e, show that a + c + e = b + d = 0. |
Answer» Let f(x) = ax4 + bx3 + cx2 + dx + e As (x – 1) is a factor of f(x) we have x2 – 1 = (x + 1) (x – 1) hence f(1) = 0 and f(-1) = 0 f(1) = a + b + c + d + e = 0 ……………. (1) and f(-1) = a- b + c- d + e = 0 ⇒ a + c + e = b + d Substitute this value in equation (1) a + c + e + b + d=0 b + d + b + d=0 2 (b + d) = 0 ⇒ b + d = 0 ∴ a + c + e = b + d = 0 |
|
13. |
If f(x) = x2 + 5x + p and g(x) = x2 + 3x + q have a common factor then (p – q)2 = ……………A) 2(3p – 5q) B) 5p – 3q C) 3p – 5q D) 2(5p – 3q) |
Answer» Correct option is (A) 2(3p – 5q) Let \((x-\alpha)\) be common factor of f(x) and g(x). \(\therefore\) \(x=\alpha\) be common zero of f(x) and g(x). \(\therefore\) \(\alpha^2+5\alpha+p=0\) and \(\alpha^2+3\alpha+q=0\) \(\Rightarrow\) \((\alpha^2+5\alpha+p)\) \(-(\alpha^2+3\alpha+q)=0\) \(\Rightarrow\) \(2\alpha+p-q=0\) \(\Rightarrow\) \(\alpha=\frac{q-p}2\) is a common root of \(\alpha^2+5\alpha+p=0\) \(\therefore\) \((\frac{q-p}2)^2+5(\frac{q-p}2)+p=0\) \(\Rightarrow\) \((q-p)^2+10(q-p)+4p=0\) \(\Rightarrow\) \((q-p)^2+10q-6p=0\) \(\Rightarrow\) \((q-p)^2=6p-10q\) = 2 (3p – 5q) Correct option is A) 2(3p – 5q) |
|
14. |
If ax2 + bx + c and bx2 + ax + c have a common factor x + 1 then show that c = 0 and a = b. |
Answer» Let f(x) = ax2 + bx + c and g(x) = bx2 + ax + c given that (x + 1) is a common factor for both f(x) and g(x). ∴ f(-1) = g(- 1) ⇒a(- 1)2 + b(- 1) + c = b(- 1)2 + a (- 1) + c ⇒ a – b + c = b – a + c ⇒ a + a = b + b ⇒ 2a = 2b ⇒ a = b Also f(- 1) = a – b + c = 0 ⇒ b – b + c = 0 ⇒ c = 0 |
|
15. |
If x2 – x – 6 and x2 + 3x – 18 have a common factor x – a then find the value of a |
Answer» Let f(x) = x2 – x – 6 and g(x) = x2 + 3x – 18 Given that (x – a) is a factor of both f(x) and g(x). f(a) = g(a) = 0 ⇒ a2 – a – 6 = a2 + 3a – 18 ⇒ – 4a = – 18 + 6 ⇒ – 4a = – 12 ∴ a = 3 |
|
16. |
Find the value of k, if `(x-3)` is a factor of `k^3x^3-x^2+3x-1`. |
Answer» Here, `f(x) = k^3x^3-x^2+3x-1` As, `(x-3)` is a factor of `k^3x^3-x^2+3x-1`, `:. f(3)` will be `0`. `:. k^3(3)^3-(3)^2+3(3) - 1 = 0` `=>27k^3 = 1` `=> k = (1/27)^(1/3) = 1/3` `=> k = 1/3`, is the required value of `k`. |
|
17. |
A man whose bowling average is 12.4 takes 5 wickets for 26 runs and thereby decreases his average by 0.4.Find the number of wickets taken byhim before his last match. |
Answer» Let number of wickets before last match=x `((12>4*x+26)/(x+5))=(12.4-0.4)` `12.4x+26=12(x+5)` `0.4x=60-26=34` `x=85`. |
|
18. |
Using suitable identity, evaluate the following(i) 1033(ii) 101 x 102(iii) 9992 |
Answer» (i) 1033 = (100 + 3)3 = (100)3 + (3)3 + 3 x 100 x 3 x (100 + 3) = 1000000 + 27 + 900 (103) = 1000027 + 92700 = 1092727 (ii) 101 x 102 = (100 + 1) (100 + 2) = (100) + 100(1 + 2) + 1 x 2 = 10000 + 300 + 2 = 10302 (iii) (999)2 = (1000 - 1)2 = (1000)2 + (1)2 - 2 x 1000 x 1 = 1000000 + 1 - 2000 = 998001 |
|
19. |
`((x +y)^(3) + (x-y)^(3))/(2) -y (3x^(2) + y^(2)) =`______A. `x^(3) - y^(3)`B. `(x -y)^(3)`C. `2x^(3) - 3x^(2)y`D. `x^(3) - 6xy^(2)` |
Answer» Correct Answer - B `((x +y)^(3) + (x -y)^(2))/(2) - (y^(3) + 3x^(2) y)` `= (x^(3) + y^(3) + 3x^(2) y + 3xy^(2) + x^(3) -y^(3) - 3x^(2) y + 3xy^(2))/(2) - y^(3) -3x^(2) y` `= (2x^(3) + 6xy^(2))/(2) -y^(3) -3x^(2)y` `= x^(3) -3x^(2) y + 3xy^(3) -y^(3)` `= (x -y)^(3)` |
|
20. |
(c) Factorize `x^(2) -5x -14` |
Answer» Constant term is `-14 = (-7) (2)` Coefficient of x is `-5 = -7 +2` `rArr x^(2) -5x -14` `= x^(2) -7x + 2x -14` `= x(x -7) + 2(x -7)` `= (x + 2) (x -7)` |
|
21. |
The square root of `y^(2) + (1)/(y^(2)) + 2` isA. `y + (1)/(y)`B. `y - (1)/(y)`C. `y^(2) + (1)/(y^(2))`D. `y^(2) - (1)/(y^(2))` |
Answer» Correct Answer - A Use `a^(2) + b^(2) + 2ab = (a +b)^(2)` identity |
|
22. |
The LCM of `x^(2) - 16 and 2x^(2) - 9x + 4` isA. `(2x +1) (x +4) (x -4)`B. `(x^(2) + 16) (2x +1)`C. `2(1 -2x) (x +4) (x-4)`D. `(2x -1) (x +4) (x -4)` |
Answer» Correct Answer - D Factorize the given polynomials |
|
23. |
Divide `18x^(4) -15x^(3) + 24x^(2) + 9x " by " 3x` |
Answer» `(18x^(4) - 15x^(3) + 24x^(2) + 9x)/(3x)` `= (18x^(4))/(3x) - (15x^(3))/(3x) + (24x^(2))/(3x) + (9x)/(3x)` `= 6x^(3) - 5x^(2) + 8x + 3` `:.` The required result is `6x^(3) - 5x^(2) + 8x + 3` |
|
24. |
Add `7x^(2) -8x + 5, 3x^(2) -8x +5 and -6x^(2) + 15x - 5` |
Answer» `{:(7x^(2) - 8x + 5),(3x^(2) - 8x + 5),(ul(-6x^(2) + 15x - 5)),(ul(" "4x^(2) - x + 5)):}` `:.` The required sum is `4x^(2) - x+ 5` |
|
25. |
(b) Find the value of m, if `x +2` is a factor of `x^(3) -4x^(2) + 3x - 5m` |
Answer» Let `q(x) = x^(3) - 4x^(2) + 3x - 5m` Given `x +2` is a factor of q(x) `:. q (-2) = 0` `rArr (-2)^(3) - 4(-2)^(2) + 3 (-2) - 5m = 0` `- 8 - 16 - 6 - 5m =0` `-5m = 30` `m = -6` |
|
26. |
`(sum_(x,y,z) x)^(2) - (sum_(x,y,z) x^(2))` = ________A. `underset(x,y,z)sum x`B. `2(underset(x,y,z)sum xy)`C. `underset(x,y,z)(pi) xy`D. `2(underset(x,y,z)sum x + y)` |
Answer» Correct Answer - B `(underset(x,y,z)sum x)^(2) - (underset(x,y,z)sum x^(2))` `= (x +y +z)^(2) - (x^(2) + y^(2) +z^(2))` `= x^(2) + y^(2) +z^(2) + 2xy + 2yz + 2zx - x^(2) -y^(2) -z^(2)` `= 2xy + 2yz + 2zx` `= 2 (underset(x,y,z)sum xy)` |
|
27. |
Factorize : `a^(3) + b^(3) + 3ab -1`A. `(a + b-1) (a^(2) + b^(2) + a + b +1 -ab)`B. `(a +b -1) (a^(2) + b^(2) + a + b -1 + ab)`C. `(a +b -1) (a^(2) + b^(2) -a - b+ 1 + ab)`D. None of these |
Answer» Correct Answer - A `a^(3) +b^(3) + 3ab -1` `= a^(3) +b^(3) + (-1)^(3) -3 . A. b(-1)` `= (a +b -1) (a^(2) +b^(2) +1 - ab + b +a)` |
|
28. |
The product of the polynomials `2x^(3) -3x^(2) + 6 and x^(2) -x` is ___A. `2x^(6) -5x^(4) + 3x^(3) + 6x^(2) -6x`B. `2x^(5) -x^(4) + 3x^(3) -6x^(2) + 6x`C. `2x^(5) - 5x^(4) + 3x^(3) + 6x^(2) - 6x`D. None of these |
Answer» Correct Answer - C Use the concept of multiplication of polynomials |
|
29. |
`(sum_(x, y,z) (x +1)^(2)) - (sum_(x, y,z) (x))^(2) - 3 = ` _______A. `2[underset(x,y,z)sum x - underset(x,y,z)sum xy]`B. `3[underset(x,y,z)sum x^(2) - underset(x,y,z)sumx]`C. `2[underset(x,y,z)sum xy - underset(x,y,z)sum x^(2)]`D. `3[underset(x,y,z)sum x^(2) - underset(x,y,z)sum x]` |
Answer» Correct Answer - A `underset(x,y,z)sum (x+1)^(2) - (underset(x,y,z)sum x)^(2) -3` `= (x +1)^(2) + (y+1)^(2) + (z +1)^(2) - (x+y+z)^(2) -3` `= x^(2) + 2x + 1 + y^(2) + 2y + 1 + z^(2) + 2z + 1 -x^(2) -y^(2) - z^(2) -2xy - 2yz - 2zx - 3` `= 2x + 2y + 2z - 2xy - 2yz - 2zx` `2 underset(x,y,z)sum x -2 underset(x,y,z)sum xy = 2 (underset(x,y,z)sum x - underset(x,y,z)sum xy)` |
|
30. |
The LCM and HCF of two monomials is `60x^(4) y^(5) a^(6) b^(6) and 5x^(2) y^(3)` respectively. If one of the two monomials is `15x^(4) y^(3) a^(6)`, then the other monomial isA. `12x^(2) y^(3) a^(6) b^(6)`B. `20 x^(4) y^(5) b^(6)`C. `20x^(2) y^(5) b^(6)`D. `15 x^(2) y^(5) b^(6)` |
Answer» Correct Answer - C Use the formula `(LCM) (HCF) = f(x) .g(x)` |
|
31. |
If `A = 6x^(4) + 5x^(3) - 14x^(2) + 2x + 2 and B = 3x^(2) - 2x - 1`, then the remainder when `A + B` isA. xB. 2xC. 3xD. 4x |
Answer» Correct Answer - A (i) Divide A by B (ii) Divide the polynomial A by B and then write the remainder |
|
32. |
(a) Is `x -2` a factor of `x^(3) + x^(2) - 4x -4` ? |
Answer» Let `q(x) = x^(3) + x^(2) -4x -4` `q(2) = 8 + 4 -8 - 4 = 0` `:. x -2` is a factor of q(x) |
|
33. |
What is the first degree expression to be added to`16x^6 + 8x^4 - 2x^3+ x^2 + 2x + 1` in order to make it a perfect square?A. `(5)/(2) x + (15)/(16)`B. `-(5)/(2) x - (15)/(16)`C. `- (5)/(2)x + (15)/(16)`D. `+ (2)/(2) x - (15)/(16)` |
Answer» Correct Answer - B Recall the division method to find the square root of monomial |
|
34. |
Factorize `sum_(a, b c) a^(2) (b^(4) -c^(4))`A. `(a -b)^(2) (b -c)^(2) (c -a)^(2)`B. `(a -b) (a +b) (b -c) (b +c) (c -a) (c +a)`C. `(a + b)^(2) (b +c)^(2) (c + a)^(2)`D. None of these |
Answer» Correct Answer - B (i) Factorize the cyclic expression. (ii) Put `b -c`, the expression become zer, i.e., `b -c` is a factor of the expression. (iii) Similarly `(a -b) and (c -a)` are also the factors of the expression. (iv) Since the degree of the expression is 4, the fourth is `k(a +b +)` |
|
35. |
`Sigma x (y^(3) -z^(3)) =` ___A. `(x - y) (y -z) (z -x) (x + y +z)`B. `(x -y) (y -z) (x-z) (x -y -z)`C. `(x + y) (y +z) (z +x) (x + y +z)`D. `(x +y) (y +z) (z +z) (z - y -z)` |
Answer» Correct Answer - A Use factorization concept |
|
36. |
For what value of k the HCF of `x^(2) + x + (5k -1) and x^(2) - 6x + (3k + 11) "is " (x -2)` ?A. 2B. 2C. `-2`D. `-1` |
Answer» Correct Answer - D (i) Use factor theorem (ii) If `x -a` is HCF of f(x), then f(a) = 0 (iii) Substitute `x = 2` in f(x) or g(x) and obtained the value of k |
|
37. |
The HCF of the polynomials `12a^(3) b^(4) c^(2), 18a^(4) b^(3) c^(3) and 24a^(6) b^(2) c^(4)` is ____A. `12a^(3) b^(2) c^(2)`B. `6a^(6) b^(4) c^(4)`C. `6a^(3) b^(2) c^(2)`D. `48 a^(6) b^(4) c^(4)` |
Answer» Correct Answer - C Find the common factors with the least exponents |
|
38. |
The polynomial `x^(5) - a^(2)x^(3) - x^(2) y^(3) + a^(2) y^(3)` on factorization givesA. `(x -y) (x -a) (x +a) (x^(2) + y^(2) + xy)`B. `(x +a) (x -y) (x -a) (x^(2) -y^(2) + xy)`C. `(x + a) (x + y) (x -a) (x^(2) + y^(2) + xy)`D. None of these |
Answer» Correct Answer - A (i) Take common terms and factorize (ii) Form the first two terms take `x^(3)` common and from last two terms take `y^(3)` common (iii) Again take `x^(2) -a^(2)` common in the product (iv) Now write the factors of `a^(2) -b^(2) and a^(3) + b^(3)` |
|
39. |
Find the remainder when `x^(2) -8x +6` is divided by `2x -1` |
Answer» Let `q(x) = x^(2) -8x +6` `:.` Remainder `= q ((1)/(2))` i.e., `q((1)/(2)) = ((1)/(2))^(2) -8 ((1)/(2)) + 6` `= (1)/(4) - 4 + 6 = (1)/(4) +2` `:. q((1)/(2)) = (9)/(4)` |
|
40. |
The remainder when `x^(45)` is divided by `x^(2) -1` isA. 2xB. `-x`C. 0D. x |
Answer» Correct Answer - D (i) Use division algorithm (ii) `f(x) = g(x) Q(x) + [ax +b] " where " Q(x)` is quotient and `(ax +b)` is the remainder. Put `x = 1 and x =-1`, then find the values of a and b |
|
41. |
Which of the following is a homogeneous expression?A. `4x^(2) -5xy + 5x^(2) y + 10y^(2)`B. `5x + 10y + 100`C. `14x^(3) + 15x^(2)y + 16y^(2)x + 24 y^(3)`D. `x^(2) + y^(2) + x + y + 1` |
Answer» Correct Answer - C Degree of every term should be same |
|
42. |
The remainder when `f(x) = 4x^(3) -3x^(2) + 2x -1` is divided by `2x +1` is ____A. 1B. `(-3)/(4)`C. `(-13)/(4)`D. `(-7)/(4)` |
Answer» Correct Answer - C Use remainder theorem |
|
43. |
The HCF of the polynomials `x^(4) + 6x^(2) + 25 and x^(3) - 3x^(2) + 7x - 5` isA. `x^(2) - 2x - 5`B. `x^(2) - 2x + 5`C. `x - 1`D. `3x + 2` |
Answer» Correct Answer - B (i) Factorize the polynomials (ii) Find the HCF of the first two polynomials (iii) Now find the HCF of the third polynomial and HCF of the first two polynomials |
|
44. |
The expression `21x^(2) + 11x -2` equals toA. `(x -2) (7x +1)`B. `(7x +1) (3x -2)`C. `(7x -1) (3x -2)`D. `(7x -1) (3x +2)` |
Answer» Correct Answer - D Factorize the given expression |
|
45. |
The remainder when `x^(3) -3x^(2) + 5x -1` is divided by `x +1` is ___A. `-8`B. `-12`C. `-10`D. `-9` |
Answer» Correct Answer - C Use remainder therorem |
|
46. |
f the LCM and HCF of two polynomials are `90 m^(5) a^(6) b^(3) x^(2) and m^(3) a^(5)` respectively and also one of the monomial is `18 m^(5) a^(6) x^(2)`, then the other monomial isA. `5 m^(3) a^(5) b^(3)`B. `15 m^(5) a^(3) b^(2)`C. `5m^(5) a^(3) b^(5)`D. `15 m^(3) a^(5) b^(4)` |
Answer» Correct Answer - A Use the formula, `HCF xx LCM =` product of polynomials |
|
47. |
For the equal polynomials p(x) and q(x) A) LCM and HCF are not equal B) Cannot be determined C) LCM and HCF are equal D) Can be determined |
Answer» Correct option is C) LCM and HCF are equal |
|
48. |
Find quadratic polynomial whose zeroes are 3 + √7 and 3 - √7. |
Answer» Let the zeroes of the quadratic polynomial be α = 3 + √7, β = 3 – √7 Then, α + β = 3 + √7 + 3 – √7 = 6 αβ = (3 + √(7)) × (3 – √7) = 9 – 7 = 2 Sum of zeroes = α + β = 6 Product of zeroes = αβ = 2 Then, the quadratic polynomial = x2 – (sum of zeroes)x + product of zeroes = x2 – (6)x + 2 = x2 – 6x + 2 |
|
49. |
Consider the expressions given below and find if the expressions are symmetric or not (a) `ax + ay + b` (b) `ax^(2) + bxy + ay^(2)` |
Answer» (a) Let `f(x, y) = ax + ay + b` `f(y, x) = ay + ax + b` ltbr `= ax + ay + b` `rArr f(y,x) = f(x,y)` `:. ax + ay + b` is symmetric (b) `f(x,y) = ax^(2) + bxy + ay^(2)` `f(y, x) = ay^(2) + byx + ax^(2)` `= ax^(2) + bxy + ay^(2)` `:. f(y, x) = f(x, y)` Hence, `ax^(2) + bxy + ay^(2)` is symmetric |
|
50. |
Divide 16 into two part such that twice the square of larger part is more, then 164 from the square of the smaller part. |
Answer» Let larger part be x Smaller part = 16 – x According to question, 2x2 = (16 – x)2 + 164 ⇒ 2x2 – (16 – x)2 – 164 = 0 ⇒ 2x2 – [256 – 32x + x2] – 164 = 0 ⇒ 2x2 – 256 + 32x – x2 – 164 = 0 ⇒ x2 + 32x – 420 = 0 ⇒ x2 + 42x – 10x – 420 = 0 ⇒ x(x + 42) – 10(x + 42) = 0 ⇒ (x + 42) (x – 10) = 0 ⇒ x = -42 or x = 10 ⇒ x = 10 [x = -42 not possible] Larger number (x) = 10 Smaller number (16- x) = 16 – 10 = 6 Hence two numbers are 10, 6 |
|