Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Find a quadratic polynomial, the sum and product of whose zeroes are -8/3 and 4/3, respectively. Also find its zeroes.

Answer»

Sum of the zeroes = – 8/3

Product of the zeroes = 4/3

P(x) = x2 – (sum of the zeroes) + (product of the zeroes)

Then, P(x)= x2 – 8x/3 + 4/3

P(x)= 3x2 – 8x + 4

Using splitting the middle term method,

3x2 – 8x + 4 = 0

3x2 – (6x + 2x) + 4 = 0

3x2 – 6x – 2x + 4 = 0

3x(x – 2) – 2(x – 2) = 0

(x – 2)(3x – 2) = 0

⇒ x = 2, 2/3

2.

Find a quadratic polynomial, the sum and product of whose zeroes are -3/2√5 and -1/2, respectively. Also find its zeroes.

Answer»

Sum of the zeroes = -3/2√5x

Product of the zeroes = – ½

P(x) = x2 – (sum of the zeroes) + (product of the zeroes)

Then, P(x)= x2  -3/2√5x – ½

P(x)= 2√5x2 – 3x – √5

Using splitting the middle term method,

2√5x2 – 3x – √5 = 0

2√5x2 – (5x – 2x) – √5 = 0

2√5x2 – 5x + 2x – √5 = 0

√5x (2x – √5) – (2x – √5) = 0

(2x – √5)(√5 – 1) = 0

⇒ x = – 1/√5, √5/2

3.

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Answer»

Let the cubic polynomial be 

ax3 + bx3 + cx + d, and its zeroes be α, β and γ. 

Then, 

α + β + γ = 2 = \(\frac{-(-2)}{1}=\frac{-b}{a}\) 

αβ + βγ + γα = -7 = \(\frac{-7}{1}=\frac{c}{a}\)

αβγ = – 14 = \(\frac{-14}{1}=\frac{c}{a}\) 

a = 1, then b = -2, c = -7 and d = 14. 

So, one cubic polynomial which satisfies the given conditions will be x3 – 2x2 – 7x + 14.

4.

If the zeroes of the cubic polynomial x3 - 6x2 + 3x + 10 are of the form a, a + b and a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.

Answer»

Let P(x) = x3 - 6x2 + 3x + 10

And (a), (a + b) and (a + 2b) are the zeroes of P(x).

We know, 

Sum of the zeroes = - (coefficient of x2) ÷ coefficient of x3

α + β + γ = - b/a

a + (a + b) + (a + 2b) = - (- 6)

3a + 3b = 6

a + b = 2

⇒ a = 2 - b      (1)

Product of all the zeroes = - (constant term) ÷ coefficient of x3

αβγ = - 10

a(a + b)(a + 2b) = - 10

(2 - b) (2) (2 + b) = - 10

(2 - b) (2 + b) = - 5

4 - b2 = - 5
⇒ b2 = 9

⇒ b = +-3

When b = 3, a = 2 - 3 = - 1 (from (1))

⇒ a = - 1

When b = - 3,a = 2 - (- 3) = 5 (from(1))

⇒ a = 5

Case 1: when a = - 1 and b = 3

The zeroes of the polynomial are:

a = - 1 a + b = - 1 + 3 = 2 a + 2b = - 1 + 2(3) = 5

⇒ - 1, 2 and 5 are the zeroes

Case 2: when a = 5,b = - 3

The zeroes of the polynomial are:

a = 5 a + b = 5 - 3 = 2 a + 2b = 5 - 2(3) = - 1

⇒ - 1, 2 and 5 are the zeroes

By both the cases the zeroes of the polynomial are - 1, 2, 5

5.

Given that zeroes of cubic polynomial `x^(3)-6x^(2)+3x +10` are of the form a,a+b,a+2b for some real numbers a and b, find the values of a and b as well as zeroes of the given polynomial.

Answer» Let `f(x) = x^(3) - 6x^(2) +3x +10`
Given that, `a(a+b)` and `(a+2b)` are the zeroes of `f(x)`. The,
Sum of the zeroes `=- (("Coefficient of" x^(2)))/(("Coefficient of" x^(3)))`
`rArr a + (a+b) + (a+2b) =- ((-6))/(1)`
`rArr 3a +3b = 6`
`rArr a +b = 2` ...(i)
Sum of product of two zeroes at a time `= (("Coefficient of x")/("Coefficient of" x^(3)))`
`rArr a(a+b) +(a+b) (a+2b)+a(a+2b) = (3)/(1)`
`rArr a (a+b) +(a+b) {(a+b)+b} +a{(a+b)+b} = 3`
`rArr 2a +2 (2+b) +a (2+b) = 3` [using Eq.(i)]
`rArr 2a +2 (2+2-a) + a (2+2-a) = 3` [using Eq(i)]
`rArr 2a +8 - 2a +4a - a^(2) = 3`
`rArr -a^(2) +8 = 3 - 4a`
`rArr a^(2)-4a - 5 = 0`
Using factorisation method,
`a^(2) -5a +a - 5 = 0`
`rArr a(a-5) +1(a-5) = 0`
`rArr (a-5) (a+1) = 0`
`rArr a =- 1,5`
when `a =- 1`, then `b = 3`
when `a = 5`, then `b =- 3` [using Eq.(i)]
`:.` Required zeroes of `f(x)` are
When `a=- 1` and `b = 3`
then, `a (a+b), (a+2) =- 1, (-1+3), (-1+6)` or `-1,2,5`
When `a = 5` and `b =- 3` then
`a, (a+b), (a+2b) = 5, (5-3), (5-6)` or `5,2,-1`.
Hence, the required valus of a and b are `a =- 1` and `b = 3` or `a = 5, b =- 3` and the zeroes are `- 1,2` and 5.
6.

If x + 2a is a factor of a5 -4a2x3 +2x + 2a +3, then find the value of a.

Answer»

Let p(x) =a5 -4a2x3 +2x + 2a +3

Since, x + 2a is a factor of p(x), then put p(-2a) = 0

(-2a)– 4a2 (-2a)3 + 2(-2a) + 2a + 3 = 0 

=> -32a5 + 32a5 -4a + 2a+ 3 = 0

=> -2a + 3=0

2a =3

a = 3/2.

Hence, the value of a is 3/2.

7.

The value of `k`, if `x^2+2x+k` is a factor of `2x^4+x^3-14x^2+5x+6` is

Answer» Given that, `x^(2)+2x +k` is a factor of `2x^(4)+x^(3)-14x^(2)+5x +6`, then we apply division algorihm,
`{:(" "ul(" "2x^(2)-3x+(-8-2k))),( {:x^(2)+2x+k) " "2x^(4)+x^(3)-14x^(2)+5x+6),(" "ul(underset(-)(2x^(4))underset(+)-4x^(3)underset(-)(+)2kx^(2)" ")),(" "-3x^(3)-(2k+14)x^(2)+5x+6),(" "ul(underset(+)(-3x^(3))underset(+)(-)6x^(2)underset(+)(-)3kx" ") ),(" "(6-2k-14)x^(2)+(3k+5)x+6),(" "ul(underset(-)((-8-2k))x^(2)underset(-)(+)2(-8-2k)xunderset(-)(+)k(-8-2k))),(" "(3k+5+16+4k)x+(6+8k+2k^(2))):}`
Since, `(x^(2)+2x+k)` is a factor of `2x^(4)+x^(3)-14x^(2) +5x +6`
So, when we apply division algorithm remainder should be zero.
`:. (7k +21)x +(2k^(2)+8k+6) =0.x +0`
`rArr 7k +21 = 0` and `2k^(2)+8k + 6 = 0`
`rArr k =- 3` or `k^(2) +4k +3 = 0`
`rArr k^(2) +3k +k +3 = 0` " "[by splitting middle term]
`rArr k(k+3) +1 (k+3) = 0`
`rArr (k+1) (k+3) = 0`
`rArr k =- 1` or `-3`
Here, if we take `k =- 3`, then remainder will be zero.
Thus, the required value of k is -3
Now, Dividend = Divisor `xx` Quotient + Remainder
`rArr 2x^(4) + x^(3) - 14x^(2)+5x +16 =(x^(2)+2x-3)(2x^(2)-3x-2)`
Using factorisation method,
`={x^(2)+3x -x -3) (2x^(2) -4x +x -2)` [by splitting middle term]
`= {x(x+3)-1(x+3)} {2x(x-2)+1(x-2)}`
`=(x-1)(x+3) (x-2) (2x+1)`
Hence, the zeroes of `x^(2) +2x - 3` are 1,-3 and the zeroes of `2x^(4)+x^(3)-14x^(2)+5x+6` are `1,-3,2,(-1)/(2)`.
8.

If `(x+a)`is a factor of `2x^2+2a x+5x+10`, find `a`.

Answer» Correct Answer - a = 2
Let `f(x) = 2x^(2) + 2ax + 5x + 10`. Then , f(-a) = 0.
` :. 2a^(2) - 2a^(2) - 5a+10=0 rArr 5a = 10 rArr a = 2.`
9.

Factorise the following : `(i) 4x^(2)+20x+25 " " (ii) 9y^(2)-66yz+121z^(2) " " (iii) (2x+(1)/(3))^(2)-(x-(1)/(2))^(2)`

Answer» (I ) `4x^(2)+20x+25=(2x)^(2)+2xx2xxx5+(5)^(2)`
`=(2x+5)^(2)` [using identity ,`a^(2)+2ab+b^(2)=(a+b)^(2)]`
(ii) `9y^(2)-66yz+121z^(2)=(3y)^(2)-2xx3yxx11z+(11z)^(2)`
`=(3y-11z)^(2)` [using identity ,`a^(2)-2ab+B^(2)=(a-b)^(2)`]
(iii) `(2x+(1)/(3))^(2)-(x-(1)/(2))^(2)=[(2x+(1)/(3))-(x-(1)/(2))][(2x+(1)/(3))+(x-(1)/(2))]`
[using identity ,` a^(2)-b^(2)=(a-b)(a+b)]`
`(2x-x+(1)/(3)=(1)/(2))(2x+x+(1)/(3)-(1)/(2))`
`(x+(2+3)/(6))(3x+(2-3)/(6))`
`=(x+(5)/(6))(3x-(1)/(6))`
10.

Factorise:9y2 – 66yz + 121z2

Answer»

9y− 66yz + 121z2

Using (a − b)= a2 + b2 − 2ab

= (3y)+ (11z)2 − 2 × 3y × 11

= (3y − 11z)2

11.

If (x2 – 1) is a factor of ax4 + bx3 + cx2 + dx + e, then :(a) a + c + e = 0 (b) ace = 1 (c) b + d = 0 (d) Both (a) and (c)

Answer»

(d) Both (a) and (c)

Let f(x) = ax4 + bx4 + cx2 + dx + e be the given polynomial. 

Then, (x2 – 1) is a factor of f(x). 

⇒ (x – 1) (x + 1) is a factor of f(x) 

⇒ (x – 1) and (x + 1) are factors of f(x) 

⇒ f(1) = 0 and f(–1) = 0 

⇒ a + b + c + d + e = 0 and a – b + c – d + e = 0. 

Adding and subtracting the two equations, we get 

2(a + c + e) = 0 and 2(b + d) = 0 

⇒ a + c + e = 0 and b + d = 0.

12.

If (x2 – 1) is a factor of ax4 + bx3 + cx2 + dx + e, show that a + c + e = b + d = 0.

Answer»

Let f(x) = ax4 + bx3 + cx2 + dx + e 

As (x – 1) is a factor of f(x) we have 

x2 – 1 = (x + 1) (x – 1) hence f(1) = 0 and f(-1) = 0 

f(1) = a + b + c + d + e = 0 ……………. (1) 

and f(-1) = a- b + c- d + e = 0 

⇒ a + c + e = b + d 

Substitute this value in equation (1) 

a + c + e + b + d=0 

b + d + b + d=0 

2 (b + d) = 0 

⇒ b + d = 0 

∴ a + c + e = b + d = 0

13.

If f(x) = x2 + 5x + p and g(x) = x2 + 3x + q have a common factor then (p – q)2 = ……………A) 2(3p – 5q) B) 5p – 3q C) 3p – 5q D) 2(5p – 3q)

Answer»

Correct option is (A) 2(3p – 5q)

Let \((x-\alpha)\) be common factor of f(x) and g(x).

\(\therefore\) \(x=\alpha\) be common zero of f(x) and g(x).

\(\therefore\) \(\alpha^2+5\alpha+p=0\) and \(\alpha^2+3\alpha+q=0\)

\(\Rightarrow\) \((\alpha^2+5\alpha+p)\) \(-(\alpha^2+3\alpha+q)=0\)

\(\Rightarrow\) \(2\alpha+p-q=0\)

\(\Rightarrow\) \(\alpha=\frac{q-p}2\) is a common root of \(\alpha^2+5\alpha+p=0\)

\(\therefore\) \((\frac{q-p}2)^2+5(\frac{q-p}2)+p=0\)

\(\Rightarrow\) \((q-p)^2+10(q-p)+4p=0\)

\(\Rightarrow\) \((q-p)^2+10q-6p=0\)

\(\Rightarrow\) \((q-p)^2=6p-10q\) = 2 (3p – 5q)

Correct option is A) 2(3p – 5q)

14.

If ax2 + bx + c and bx2 + ax + c have a common factor x + 1 then show that c = 0 and a = b.

Answer»

Let f(x) = ax2 + bx + c and g(x) = bx2 + ax + c 

given that (x + 1) is a common factor for both f(x) and g(x). 

∴ f(-1) = g(- 1) 

⇒a(- 1)2 + b(- 1) + c 

= b(- 1)2 + a (- 1) + c 

⇒ a – b + c = b – a + c 

⇒ a + a = b + b 

⇒ 2a = 2b 

⇒ a = b 

Also f(- 1) = a – b + c = 0 

⇒ b – b + c = 0 

⇒ c = 0

15.

If x2 – x – 6 and x2 + 3x – 18 have a common factor x – a then find the value of a

Answer»

Let f(x) = x2 – x – 6 and

g(x) = x2 + 3x – 18

Given that (x – a) is a factor of both f(x) and g(x). 

f(a) = g(a) = 0 

⇒ a2 – a – 6 = a2 + 3a – 18 

⇒ – 4a = – 18 + 6 

⇒ – 4a = – 12 

∴ a = 3

16.

Find the value of k, if `(x-3)` is a factor of `k^3x^3-x^2+3x-1`.

Answer» Here, `f(x) = k^3x^3-x^2+3x-1`

As, `(x-3)` is a factor of `k^3x^3-x^2+3x-1`,
`:. f(3)` will be `0`.
`:. k^3(3)^3-(3)^2+3(3) - 1 = 0`
`=>27k^3 = 1`
`=> k = (1/27)^(1/3) = 1/3`
`=> k = 1/3`, is the required value of `k`.
17.

A man whose bowling average is 12.4 takes 5 wickets for 26 runs and thereby decreases his average by 0.4.Find the number of wickets taken byhim before his last match.

Answer» Let number of wickets before last match=x
`((12>4*x+26)/(x+5))=(12.4-0.4)`
`12.4x+26=12(x+5)`
`0.4x=60-26=34`
`x=85`.
18.

Using suitable identity, evaluate the following(i) 1033(ii) 101 x 102(iii) 9992

Answer»

(i) 1033

= (100 + 3)3

= (100)3 + (3)3 + 3 x 100 x 3 x (100 + 3)

= 1000000 + 27 + 900 (103)

= 1000027 + 92700

= 1092727

(ii) 101 x 102

= (100 + 1) (100 + 2)

= (100) + 100(1 + 2) + 1 x 2

= 10000 + 300 + 2

= 10302

(iii) (999)2

= (1000 - 1)2

= (1000)2 + (1)2 - 2 x 1000 x 1

= 1000000 + 1 - 2000

= 998001 

19.

`((x +y)^(3) + (x-y)^(3))/(2) -y (3x^(2) + y^(2)) =`______A. `x^(3) - y^(3)`B. `(x -y)^(3)`C. `2x^(3) - 3x^(2)y`D. `x^(3) - 6xy^(2)`

Answer» Correct Answer - B
`((x +y)^(3) + (x -y)^(2))/(2) - (y^(3) + 3x^(2) y)`
`= (x^(3) + y^(3) + 3x^(2) y + 3xy^(2) + x^(3) -y^(3) - 3x^(2) y + 3xy^(2))/(2) - y^(3) -3x^(2) y`
`= (2x^(3) + 6xy^(2))/(2) -y^(3) -3x^(2)y`
`= x^(3) -3x^(2) y + 3xy^(3) -y^(3)`
`= (x -y)^(3)`
20.

(c) Factorize `x^(2) -5x -14`

Answer» Constant term is `-14 = (-7) (2)`
Coefficient of x is `-5 = -7 +2`
`rArr x^(2) -5x -14`
`= x^(2) -7x + 2x -14`
`= x(x -7) + 2(x -7)`
`= (x + 2) (x -7)`
21.

The square root of `y^(2) + (1)/(y^(2)) + 2` isA. `y + (1)/(y)`B. `y - (1)/(y)`C. `y^(2) + (1)/(y^(2))`D. `y^(2) - (1)/(y^(2))`

Answer» Correct Answer - A
Use `a^(2) + b^(2) + 2ab = (a +b)^(2)` identity
22.

The LCM of `x^(2) - 16 and 2x^(2) - 9x + 4` isA. `(2x +1) (x +4) (x -4)`B. `(x^(2) + 16) (2x +1)`C. `2(1 -2x) (x +4) (x-4)`D. `(2x -1) (x +4) (x -4)`

Answer» Correct Answer - D
Factorize the given polynomials
23.

Divide `18x^(4) -15x^(3) + 24x^(2) + 9x " by " 3x`

Answer» `(18x^(4) - 15x^(3) + 24x^(2) + 9x)/(3x)`
`= (18x^(4))/(3x) - (15x^(3))/(3x) + (24x^(2))/(3x) + (9x)/(3x)`
`= 6x^(3) - 5x^(2) + 8x + 3`
`:.` The required result is `6x^(3) - 5x^(2) + 8x + 3`
24.

Add `7x^(2) -8x + 5, 3x^(2) -8x +5 and -6x^(2) + 15x - 5`

Answer» `{:(7x^(2) - 8x + 5),(3x^(2) - 8x + 5),(ul(-6x^(2) + 15x - 5)),(ul(" "4x^(2) - x + 5)):}`
`:.` The required sum is `4x^(2) - x+ 5`
25.

(b) Find the value of m, if `x +2` is a factor of `x^(3) -4x^(2) + 3x - 5m`

Answer» Let `q(x) = x^(3) - 4x^(2) + 3x - 5m`
Given `x +2` is a factor of q(x)
`:. q (-2) = 0`
`rArr (-2)^(3) - 4(-2)^(2) + 3 (-2) - 5m = 0`
`- 8 - 16 - 6 - 5m =0`
`-5m = 30`
`m = -6`
26.

`(sum_(x,y,z) x)^(2) - (sum_(x,y,z) x^(2))` = ________A. `underset(x,y,z)sum x`B. `2(underset(x,y,z)sum xy)`C. `underset(x,y,z)(pi) xy`D. `2(underset(x,y,z)sum x + y)`

Answer» Correct Answer - B
`(underset(x,y,z)sum x)^(2) - (underset(x,y,z)sum x^(2))`
`= (x +y +z)^(2) - (x^(2) + y^(2) +z^(2))`
`= x^(2) + y^(2) +z^(2) + 2xy + 2yz + 2zx - x^(2) -y^(2) -z^(2)`
`= 2xy + 2yz + 2zx`
`= 2 (underset(x,y,z)sum xy)`
27.

Factorize : `a^(3) + b^(3) + 3ab -1`A. `(a + b-1) (a^(2) + b^(2) + a + b +1 -ab)`B. `(a +b -1) (a^(2) + b^(2) + a + b -1 + ab)`C. `(a +b -1) (a^(2) + b^(2) -a - b+ 1 + ab)`D. None of these

Answer» Correct Answer - A
`a^(3) +b^(3) + 3ab -1`
`= a^(3) +b^(3) + (-1)^(3) -3 . A. b(-1)`
`= (a +b -1) (a^(2) +b^(2) +1 - ab + b +a)`
28.

The product of the polynomials `2x^(3) -3x^(2) + 6 and x^(2) -x` is ___A. `2x^(6) -5x^(4) + 3x^(3) + 6x^(2) -6x`B. `2x^(5) -x^(4) + 3x^(3) -6x^(2) + 6x`C. `2x^(5) - 5x^(4) + 3x^(3) + 6x^(2) - 6x`D. None of these

Answer» Correct Answer - C
Use the concept of multiplication of polynomials
29.

`(sum_(x, y,z) (x +1)^(2)) - (sum_(x, y,z) (x))^(2) - 3 = ` _______A. `2[underset(x,y,z)sum x - underset(x,y,z)sum xy]`B. `3[underset(x,y,z)sum x^(2) - underset(x,y,z)sumx]`C. `2[underset(x,y,z)sum xy - underset(x,y,z)sum x^(2)]`D. `3[underset(x,y,z)sum x^(2) - underset(x,y,z)sum x]`

Answer» Correct Answer - A
`underset(x,y,z)sum (x+1)^(2) - (underset(x,y,z)sum x)^(2) -3`
`= (x +1)^(2) + (y+1)^(2) + (z +1)^(2) - (x+y+z)^(2) -3`
`= x^(2) + 2x + 1 + y^(2) + 2y + 1 + z^(2) + 2z + 1 -x^(2) -y^(2) - z^(2) -2xy - 2yz - 2zx - 3`
`= 2x + 2y + 2z - 2xy - 2yz - 2zx`
`2 underset(x,y,z)sum x -2 underset(x,y,z)sum xy = 2 (underset(x,y,z)sum x - underset(x,y,z)sum xy)`
30.

The LCM and HCF of two monomials is `60x^(4) y^(5) a^(6) b^(6) and 5x^(2) y^(3)` respectively. If one of the two monomials is `15x^(4) y^(3) a^(6)`, then the other monomial isA. `12x^(2) y^(3) a^(6) b^(6)`B. `20 x^(4) y^(5) b^(6)`C. `20x^(2) y^(5) b^(6)`D. `15 x^(2) y^(5) b^(6)`

Answer» Correct Answer - C
Use the formula `(LCM) (HCF) = f(x) .g(x)`
31.

If `A = 6x^(4) + 5x^(3) - 14x^(2) + 2x + 2 and B = 3x^(2) - 2x - 1`, then the remainder when `A + B` isA. xB. 2xC. 3xD. 4x

Answer» Correct Answer - A
(i) Divide A by B
(ii) Divide the polynomial A by B and then write the remainder
32.

(a) Is `x -2` a factor of `x^(3) + x^(2) - 4x -4` ?

Answer» Let `q(x) = x^(3) + x^(2) -4x -4`
`q(2) = 8 + 4 -8 - 4 = 0`
`:. x -2` is a factor of q(x)
33.

What is the first degree expression to be added to`16x^6 + 8x^4 - 2x^3+ x^2 + 2x + 1` in order to make it a perfect square?A. `(5)/(2) x + (15)/(16)`B. `-(5)/(2) x - (15)/(16)`C. `- (5)/(2)x + (15)/(16)`D. `+ (2)/(2) x - (15)/(16)`

Answer» Correct Answer - B
Recall the division method to find the square root of monomial
34.

Factorize `sum_(a, b c) a^(2) (b^(4) -c^(4))`A. `(a -b)^(2) (b -c)^(2) (c -a)^(2)`B. `(a -b) (a +b) (b -c) (b +c) (c -a) (c +a)`C. `(a + b)^(2) (b +c)^(2) (c + a)^(2)`D. None of these

Answer» Correct Answer - B
(i) Factorize the cyclic expression.
(ii) Put `b -c`, the expression become zer, i.e., `b -c` is a factor of the expression.
(iii) Similarly `(a -b) and (c -a)` are also the factors of the expression.
(iv) Since the degree of the expression is 4, the fourth is `k(a +b +)`
35.

`Sigma x (y^(3) -z^(3)) =` ___A. `(x - y) (y -z) (z -x) (x + y +z)`B. `(x -y) (y -z) (x-z) (x -y -z)`C. `(x + y) (y +z) (z +x) (x + y +z)`D. `(x +y) (y +z) (z +z) (z - y -z)`

Answer» Correct Answer - A
Use factorization concept
36.

For what value of k the HCF of `x^(2) + x + (5k -1) and x^(2) - 6x + (3k + 11) "is " (x -2)` ?A. 2B. 2C. `-2`D. `-1`

Answer» Correct Answer - D
(i) Use factor theorem
(ii) If `x -a` is HCF of f(x), then f(a) = 0
(iii) Substitute `x = 2` in f(x) or g(x) and obtained the value of k
37.

The HCF of the polynomials `12a^(3) b^(4) c^(2), 18a^(4) b^(3) c^(3) and 24a^(6) b^(2) c^(4)` is ____A. `12a^(3) b^(2) c^(2)`B. `6a^(6) b^(4) c^(4)`C. `6a^(3) b^(2) c^(2)`D. `48 a^(6) b^(4) c^(4)`

Answer» Correct Answer - C
Find the common factors with the least exponents
38.

The polynomial `x^(5) - a^(2)x^(3) - x^(2) y^(3) + a^(2) y^(3)` on factorization givesA. `(x -y) (x -a) (x +a) (x^(2) + y^(2) + xy)`B. `(x +a) (x -y) (x -a) (x^(2) -y^(2) + xy)`C. `(x + a) (x + y) (x -a) (x^(2) + y^(2) + xy)`D. None of these

Answer» Correct Answer - A
(i) Take common terms and factorize
(ii) Form the first two terms take `x^(3)` common and from last two terms take `y^(3)` common
(iii) Again take `x^(2) -a^(2)` common in the product
(iv) Now write the factors of `a^(2) -b^(2) and a^(3) + b^(3)`
39.

Find the remainder when `x^(2) -8x +6` is divided by `2x -1`

Answer» Let `q(x) = x^(2) -8x +6`
`:.` Remainder `= q ((1)/(2))`
i.e., `q((1)/(2)) = ((1)/(2))^(2) -8 ((1)/(2)) + 6`
`= (1)/(4) - 4 + 6 = (1)/(4) +2`
`:. q((1)/(2)) = (9)/(4)`
40.

The remainder when `x^(45)` is divided by `x^(2) -1` isA. 2xB. `-x`C. 0D. x

Answer» Correct Answer - D
(i) Use division algorithm
(ii) `f(x) = g(x) Q(x) + [ax +b] " where " Q(x)` is quotient and `(ax +b)` is the remainder.
Put `x = 1 and x =-1`, then find the values of a and b
41.

Which of the following is a homogeneous expression?A. `4x^(2) -5xy + 5x^(2) y + 10y^(2)`B. `5x + 10y + 100`C. `14x^(3) + 15x^(2)y + 16y^(2)x + 24 y^(3)`D. `x^(2) + y^(2) + x + y + 1`

Answer» Correct Answer - C
Degree of every term should be same
42.

The remainder when `f(x) = 4x^(3) -3x^(2) + 2x -1` is divided by `2x +1` is ____A. 1B. `(-3)/(4)`C. `(-13)/(4)`D. `(-7)/(4)`

Answer» Correct Answer - C
Use remainder theorem
43.

The HCF of the polynomials `x^(4) + 6x^(2) + 25 and x^(3) - 3x^(2) + 7x - 5` isA. `x^(2) - 2x - 5`B. `x^(2) - 2x + 5`C. `x - 1`D. `3x + 2`

Answer» Correct Answer - B
(i) Factorize the polynomials
(ii) Find the HCF of the first two polynomials
(iii) Now find the HCF of the third polynomial and HCF of the first two polynomials
44.

The expression `21x^(2) + 11x -2` equals toA. `(x -2) (7x +1)`B. `(7x +1) (3x -2)`C. `(7x -1) (3x -2)`D. `(7x -1) (3x +2)`

Answer» Correct Answer - D
Factorize the given expression
45.

The remainder when `x^(3) -3x^(2) + 5x -1` is divided by `x +1` is ___A. `-8`B. `-12`C. `-10`D. `-9`

Answer» Correct Answer - C
Use remainder therorem
46.

f the LCM and HCF of two polynomials are `90 m^(5) a^(6) b^(3) x^(2) and m^(3) a^(5)` respectively and also one of the monomial is `18 m^(5) a^(6) x^(2)`, then the other monomial isA. `5 m^(3) a^(5) b^(3)`B. `15 m^(5) a^(3) b^(2)`C. `5m^(5) a^(3) b^(5)`D. `15 m^(3) a^(5) b^(4)`

Answer» Correct Answer - A
Use the formula, `HCF xx LCM =` product of polynomials
47.

For the equal polynomials p(x) and q(x) A) LCM and HCF are not equal B) Cannot be determined C) LCM and HCF are equal D) Can be determined

Answer»

Correct option is C) LCM and HCF are equal

48.

Find quadratic polynomial whose zeroes are 3 + √7 and 3 - √7.

Answer»

Let the zeroes of the quadratic polynomial be

α = 3 + √7, β = 3 – √7

Then, α + β = 3 + √7 + 3 – √7 = 6

αβ = (3 + √(7)) × (3 – √7) = 9 – 7 = 2

Sum of zeroes = α + β = 6

Product of zeroes = αβ = 2

Then, the quadratic polynomial

= x2 – (sum of zeroes)x + product of zeroes

= x2 – (6)x + 2

= x2 – 6x + 2

49.

Consider the expressions given below and find if the expressions are symmetric or not (a) `ax + ay + b` (b) `ax^(2) + bxy + ay^(2)`

Answer» (a) Let `f(x, y) = ax + ay + b`
`f(y, x) = ay + ax + b` ltbr `= ax + ay + b`
`rArr f(y,x) = f(x,y)`
`:. ax + ay + b` is symmetric
(b) `f(x,y) = ax^(2) + bxy + ay^(2)`
`f(y, x) = ay^(2) + byx + ax^(2)`
`= ax^(2) + bxy + ay^(2)`
`:. f(y, x) = f(x, y)`
Hence, `ax^(2) + bxy + ay^(2)` is symmetric
50.

Divide 16 into two part such that twice the square of larger part is more, then 164 from the square of the smaller part.

Answer»

Let larger part be x

Smaller part = 16 – x

According to question,

2x2 = (16 – x)2 + 164

⇒ 2x2 – (16 – x)2 – 164 = 0

⇒ 2x2 – [256 – 32x + x2] – 164 = 0

⇒ 2x2 – 256 + 32x – x2 – 164 = 0

⇒ x2 + 32x – 420 = 0

⇒ x2 + 42x – 10x – 420 = 0

⇒ x(x + 42) – 10(x + 42) = 0

⇒ (x + 42) (x – 10) = 0

⇒ x = -42 or x = 10

⇒ x = 10 [x = -42 not possible]

Larger number (x) = 10

Smaller number (16- x) = 16 – 10 = 6

Hence two numbers are 10, 6