Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Verify the property x × (y + z) = x × y + x × z of rational numbers by taking x = -2/3, y = -4/6, z = -7/9.

Answer»

In the question is given to verify the property x × (y + z) = x × y + x × z

The arrangement of the given rational number is as per the rule of distributive property of multiplication over addition.

Then, (-2/3) × ((-4/6) + (-7/9)) = ((-2/3) × (-4/6)) + ((-2/3) × (-7/9))

LHS = (-2/3) × ((-4/6) + (-7/9))

= (-2/3) × ((-12 – 14)/18)

= – (2/3) × (-26/18)

= – (1/3) × (-26/9)

= 26/27

RHS = ((-2/3) × (-4/6)) + ((-2/3) × (-7/9))

= ((-1/3) × (-4/3)) + ((-2/3) × (-7/9))

= (4/9) + (14/27)

= (12 + 14)/27

= 26/27

By comparing LHS and RHS

LHS = RHS

∴ 26/27 = 26/27

Hence x × (y + z) = x × y + x × z

102.

State whether the statement are true (T) or false (F).Between any two rational numbers there are exactly ten rational numbers.

Answer»

False.

Between any two rational numbers there are infinite rational numbers.

103.

Evaluate: (14/15) – (13/20)

Answer»

(14/15) – (13/20)

We have:

= (14/15) – (13/20)

= (14/15) + (additive inverse of 13/20)

= (14/15) + (-13/20)

LCM of 15 and 20 is 60

Express each of the given rational numbers with the above LCM as the common denominator.

Now,

= [(14×4)/ (15×4)] = (56/60)

= [(-13×3)/ (20×3)] = (-39/60)

Then,

= (56/60) + (-39/60)

= (56-39)/60

= (17/60)

104.

The sum of -3/2  and 1/2 is (a) –1 (b) –2 (c) 4 (d) 3

Answer»

Correct answer is (a) –1

105.

The value of  -4/3 –(-1/3)   i s

Answer»

Correct answer is (d) -1

106.

Which of the following rational numbers is in standard form? (a) 20/30 (b) 10/4 (c) 1/2 (d) 1/–3

Answer»

Correct answer is (c) 1/2

107.

[-2(1/9)]-6 =?(a)[-8(1/9)] (b)[8(1/9)] (c)[4(1/9)] (d)[-4(1/9)]

Answer»

(a)[-8(1/9)]

Because,

= [-2(1/9)]-6 = (-19/9) – (6)

= (-19-54)/9

= (-73/9)

= [-8(1/9)]

108.

Multiplicative inverse of (-2/3) is(a)(2/3) (b)(-3/2) (c)(3/2) (d) None of these

Answer»

Multiplicative inverse of (-2/3) is (b) (-3/2)

109.

Reciprocal of -6 is(a) 6 (b) (1/6) (c) (-1/6) (d) none of these

Answer»

Reciprocal of -6 is (c) (-1/6)

110.

What should be added to \(\frac{7}{12}\) to get \(\frac{-4}{15}\,?\)A. \(\frac{17}{20}\)B. \(\frac{-17}{20}\)C. \(\frac{7}{20}\)D. \(\frac{-7}{20}\)

Answer»

Let the number added be x.

Then,

\(\frac{7}{12}+\text{x}=\frac{-4}{15}\)

\(\Rightarrow\) \(\text{x}=\frac{-4}{15}-\frac{7}{12}\)

\(=\frac{-4\times4-7\times5}{60}\)

\(=\frac{-16-35}{8}\)

\(=\frac{-51}{60}=\frac{-51\div3}{60\div3}=\frac{-17}{20}\)

111.

Which is larger out of (2/-3) and (-4/5)?(a)(2/-3) (b)(-4/5) (c) Cannot be compared

Answer»

(a)(2/-3)

Because,

First we write (2/-3) in standard form

= (2×-1)/ (-3×-1)

= (-2/3)

Then,

LCM of 3 and 5 is 15

= (-2 × 5)/ (3×5) = (-10/15)

= (-4×3) / (5×3) = (-12/15)

Clearly,

= (-10) > (-12)

Hence,

(-2/3)> (-4/5)

∴ (2/-3) > (-4/5)

112.

\((\frac{2}{3}+\frac{-4}{5}+\frac{7}{15}+\frac{-11}{20})=\,?\)A. \(\frac{-1}{5}\)B. \(\frac{-4}{15}\)C. \(\frac{-13}{60}\)D. \(\frac{-7}{30}\)

Answer»

\(\frac{2}{3}+\frac{-4}{5}+\frac{7}{15}+\frac{-11}{20}\)

LCM of 3, 5, 15, 20

\(=\frac{2\times20+(-4)\times12+7\times4+(-11)\times3}{60}\)

\(=\frac{40-48+28-33}{60}\)

\(=\frac{68-81}{60}\)

\(=\frac{-31}{60}\)

113.

Which is smaller out of (5/-6) and (-7/12)?(a)(5/-6) (b)(-7/12) (c) Cannot be compared

Answer»

(a)(5/-6)

Because,

First we write (5/-6) in standard form

= (5×-1)/ (-6×-1)

= (-5/6)

Then,

LCM of 6 and 12 is 12

= (-5 × 2)/ (6×2) = (-10/12)

= (-7×1) / (12×1) = (-7/12)

Clearly,

= (-10) < (-7)

Hence,

(-5/6)< (-7/12)

∴ (5/-6) < (-7/12)

114.

The sum of two numbers is \(\frac{-4}{7}\) to get \(\frac{5}{6}\,?\)A. \(\frac{5}{2}\)B. \(\frac{3}{2}\)C. \(\frac{5}{4}\)D. \(\frac{-5}{2}\)

Answer»

Let the number added be x.

Then,

\(\frac{5}{6}+\text{x}=\frac{-4}{7}\)

\(\Rightarrow\) \(\text{x}=\frac{-4}{7}-\frac{5}{6}\)

\(=\frac{-4\times6-5\times7}{42}\)

\(=\frac{-24-35}{42}\)

\(=\frac{-59}{42}\)

115.

What should be added to (\(\frac{2}{3}\)+\(\frac{3}{5}\)) to get \(\frac{-2}{15}\)?

Answer»

Let the number be x

It is given that,

x + (\(\frac{2}{3}+\frac{3}{5}\)) = \(\frac{-2}{15}\)

\(\frac{15x+10+9}{15}\) = \(\frac{-2}{15}\)

15x = -2-19

x = \(\frac{-21}{15}\)

x = \(\frac{-7}{5}\)

116.

What should be subtracted from (\(\frac{3}{4}\)-\(\frac{2}{3}\)) to get \(\frac{-1}{6}\) ?

Answer»

Let the number be x

It is given that,

(\(\frac{3}{4}\)-\(\frac{2}{3}\)) - x = \(\frac{-1}{6}\)

- x + [ \(\frac{3\times 3}{4\times 3}\) - \(\frac{2\times 4}{4\times 3}\)] =  \(\frac{-1}{6}\)

- x +  [\(\frac{9}{12}\)-\(\frac{8}{12}\)]  =  \(\frac{-1}{6}\)

\(\frac{-12x+9-8}{12}\) = \(\frac{-1}{6}\)

-12x-1 = -2-12x = -2-1-12x = -3

x = \(\frac{-3}{-12}\)

x = \(\frac{1}{4}\)

117.

What should be subtracted from (-3/4) to get (5/6)?(a)(19/12) (b)(-19/12) (c)(1/12) (d)(-1/12)

Answer»

(b)(-19/12)

Because,

Let the missing number be X,

(-3/4) – (X) = (5/6)

By sending (-X) from the left hand side to the right side it becomes (X) and (5/6) from right hand side to left hand side it becomes (-5/6)

= (X) = (-3/4) – (5/6)

LCM of 4 and 6 is 12

(-3 × 3)/ (4×3) = (-9/12)

(-5×2) / (6×2) = (-10/12)

(X) = (-9-10)/12

(X) = (-19/12)

118.

What should be added to \(\frac{-5}{7}\) to get \(\frac{-2}{3}\) ?A. \(\frac{-29}{21}\)B. \(\frac{29}{21}\)C. \(\frac{1}{21}\)D. \(\frac{-1}{21}\)

Answer»

Let the number added be x.

Then,

\(\frac{-5}{7}+\text{x}=\frac{-2}{3}\)

\(\Rightarrow\) \(\text{x}=\frac{-2}{3}-\frac{-5}{7}\)

\(=\frac{-2\times7-(-5)\times3}{21}\)

\(=\frac{-14+15}{21}\)

\(=\frac{1}{21}\)

119.

What number should be added to \(\frac{-3}{5}\) to get \(\frac{2}{3}?\)

Answer»

Let the number added be x 

Then,

\(\frac{-3}{5}+\text{x}=\frac{2}{3}\)

\(\Rightarrow\) \(\text{x} =\frac{2}{3}-\frac{-3}{5}\)

\(\Rightarrow\) \(\text{x}=\frac{2\times5-(-3)\times3}{15}\)

\(\Rightarrow\) \(\text{x}=\frac{10+9}{15}\)

\(\Rightarrow\) \(\text{x}=\frac{19}{15}\)

120.

Find the multiplicative inverse of(i) \(\frac{-3}{4}\)(ii) \(\frac{11}{4}.\)

Answer»

Multiplicative inverse of a rational number \(\frac{a}{b}\) = \(\frac{b}{a}\)

Therefore,

(i) Negative inverse of \(\frac{-3}{4}\) = \(\frac{4}{-3}\) 

\(\frac{4}{-3}=\frac{4\times-1}{-3\times-1}=\frac{-4}{3}\)

(ii) Negative inverse of \(\frac{11}{4}\) = \(\frac{4}{11}\)

121.

Evaluate each of the following:i)  \(\frac{2}{3}-\frac{3}{5}\)ii) \(\frac{-4}{7}-\frac{2}{-3}\)iii)  \(\frac{4}{7}-\frac{-5}{-7}\)iv) \(-2-\frac{5}{9}\)v) \(\frac{-3}{-8}-\frac{-2}{7}\)vi) \(\frac{5}{63}-\frac{-8}{21}\)vii) \(\frac{7}{24}-\frac{19}{36}\)

Answer»

i) 2/3 – 3/5

\(=\frac{(2\times5-3\times3)}{15}\\=\frac{1}{15}\)

ii) (-4/7) – (2/-3)

= (2/-3) = (-2/3)  (convert the denominator to positive number by multiplying by -1)
= -4/7 – (-2/3)

\(=\frac{(-4\times3-(-2\times7))}{21}\\=\frac{(-12+14)}{21}\\=\frac{2}{21}\)  

iii)  4/7 - -5/-7

 convert the denominator to positive number by multiplying by -1
= (-5/-7) = (5/7)
= 4/7 – 5/7

\(=\frac{(4-5)}{7}\\=\frac{-1}{7}\)

iv)  (-2) – (5/9)

\(=\frac{-2}{1}-\frac{5}{9}\\=\frac{(-2\times9-5\times1)}{9}\\=\frac{(-18-5)}{9}\\=\frac{-23}{9}\)

v) (-3/-8) - (-2/7)
 convert the denominator to positive number by multiplying by -1
(-3/-8) = 3/8
= 3/8 – (-2/7)
\(=\frac{(3\times7-(-2\times8))}{56}\\=\frac{(21+16)}{56}\\=\frac{37}{56}\)

vi) 5/63 - (-8/21)
\(=\frac{(5\times1-(-8\times3))}{63}\\=\frac{(5+24)}{63}\\=\frac{29}{63}\)

vii) 7/24 – 19/36

\(=\frac{(7\times3-19\times2)}{72}\\=\frac{(21-38)}{72}\\=\frac{-17}{72}\)

122.

The sum of the two numbers is \(\frac{5}{9}\). If one of the numbers is \(\frac{1}{3}\), find the other.

Answer»

Given that,

Sum of two numbers = 5/9
One of the number = 1/3
By using the formula,
Other number = sum of number – given number

= 5/9 – 1/3

\(=\frac{(5\times1-1\times3)}{9}\\=\frac{(5-3)}{9}\\=\frac{2}{9}\)

\(\therefore\) the other number is \(\frac{2}{9}\)

123.

\(3\frac{1}{5} - \frac{1}{5} + 1 = ................\)3(1/5) - 1/5 + 1 = ..................A) 7B) 3 C) 4 D) 5

Answer»

Correct option is (C) 4

\(3\frac{1}{5}-\frac{1}{5}+1\) \(=\frac{3\times5+1}{5}-\frac{1}{5}+1\) \(=\frac{15+1-1}{5}+1\) \(=\frac{15}{5}+1\) = 3+1 = 4.

Correct option is  C) 4

124.

How much can be added to -2 to get 7/9 ? A) 25/9B) 5/9C) 1/4D) 1/9

Answer»

Correct option is (A) 25/9

Let number to be added is x.

\(\therefore\) x + (-2) = \(\frac{7}{9}\)

\(\Rightarrow\) x = \(\frac{7}{9}\) -(-2) = \(\frac{7}{9}\) + 2 = \(\frac{7+9\times2}{9}\)

\(\Rightarrow\) x = \(\frac{7+18}{9}\) = \(\frac{25}{9}\).

Correct option is  A) 25/9

125.

4 – \(2\frac{2}{3}\,+ 3\frac{1}{5}\) = ................A) -2/15B) -28/15C) 8/15D) 1/2

Answer»

Correct option is (B) -28/15

\(4-(2\frac{2}{3}+3\frac{1}{5})\) \(=4-(\frac{2\times3+2}{3}+\frac{3\times5+1}{5})\)

\(=4-(\frac{8}{3}+\frac{16}{5})\)

\(=4-\frac{8\times5+16\times3}{15}\)

\(=4-\frac{40+48}{15}\)

\(=\frac{15\times4-88}{15}\)

\(=\frac{60-88}{15}=\frac{-28}{15}.\)

Correct option is  B) -28/15 

126.

If we multiply \(7\frac{5}{9}\) by \(\frac{3}{2}\) we get ………………..A) 1\(\frac{1}{3}\)B) 11\(\frac{1}{3}\) C) 7\(\frac{1}{2}\)D) 1\(\frac{1}{2}\)

Answer»

Correct option is (B) \(11\frac{1}{3}\)

\(7\frac{5}{9}\) \(\times\) \(\frac{3}{2}\) = \(\frac{7\times9+5}{9}\) \(\times\) \(\frac{3}{2}\) = \(\frac{63+5}{9}\) \(\times\) \(\frac{3}{2}\) \(=\frac{68}{3\times2}\) \(=\frac{34}3=\frac{33+1}3=11+\frac13\) \(=11\frac13.\)

Correct option is  B) 11\(\frac{1}{3}\) 

127.

\((\frac{-5}{4})^{-1} =\,?\)A. \(\frac{4}{5}\) B. \(\frac{-4}{5}\) C. \(\frac{5}{4}\) D. \(\frac{3}{5}\)

Answer»

\((\frac{-5}{4})^{-1}=\frac{4}{-5}\)

\(\frac{4}{-5}=\frac{4\times-1}{-5\times-1}=\frac{-4}{5}\)

128.

What should be added to \(\frac{-2}{3}\) to get \(\frac{3}{4}\,?\) A. \(\frac{-11}{12}\) B. \(\frac{-13}{12}\) C. \(\frac{-5}{4}\) D. \(\frac{17}{12}\)

Answer»

Let the number added be x

Then,

\(\frac{-2}{3}+\text{x}=\frac{3}{4}\)

\(\Rightarrow\) \(\text{x}=\frac{3}{4}-\frac{-2}{3}\) 

\(\Rightarrow\) \(\text{x}=\frac{3\times3-(-2)\times4}{12}\) 

\(\Rightarrow\) \(\text{x}=\frac{9+8}{12}\) 

\(\Rightarrow\) \(\text{x}=\frac{17}{12}\)

129.

 The sum of the two numbers is \(\frac{-1}{3}\). If one of the numbers is \(\frac{-12}{3}\), find the other.

Answer»

Given that,

Sum of two numbers = -1/3
One of the number = -12/3
By using the formula,
Other number = sum of number – given number

= (-1/3) – (-12/3)

\(=\frac{(-1+12)}{3}\\=\frac{11}{3}\)

\(\therefore\) the other number is \(\frac{11}{3}\)

130.

2a + (-2a) = ………………. A) – 4a B) – 4a2 C) – a D) 0

Answer»

Correct option is  D) 0

131.

Verify the property: \(x\times y=y\times x\) by taking:i) \(x=\frac{-1}{3},y=\frac{2}{7}\)ii) \(x=2,y=\frac{7}{-8}\)iii) \(x=0,y=\frac{-15}{8}\)

Answer»

i)  By using the property

x × y = y × x

\(\frac{-1}{3}\times\frac{2}{7}=\frac{2}{7}\times\frac{-1}{3}\\=\frac{(-1\times2)}{(3\times7)}=\frac{(2\times-1)}{(7\times3)}\\=\frac{-2}{21}=\frac{-2}{21}\)

\(\therefore\) the property is satisfied.

ii) By using the property

    x × y = y × x

\(=2\times\frac{7}{-8}=\frac{7}{-8}\times2\\=\frac{(2\times7)}{-8}=\frac{(7\times2)}{-8}\\=\frac{14}{-8}=\frac{14}{-8}\)

\(\therefore\) the property is satisfied.

iii) By using the property

   x × y = y × x

\(0\times\frac{-15}{8}=\frac{-15}{8}\times0\\=0=0\)

\(\therefore\)  the property is satisfied.

132.

\(4.\overline{7}\) = ..................A) \(\frac{43}{9}\)B) \(\frac{9}{4}\)C) \(\frac{12}{31}\)D) \(\frac{47}{10}\)

Answer»

Correct option is   A) \(\frac{43}{9}\)

Correct option is (A)  43/9

Let x = \(4.\bar{7}\) 

\(\Rightarrow\) x = 4.777...     ______(1)

Multiply equation (1) by 10, we obtain

10x = 47.777...    ______(2)

Subtract equation (1) from (2), we get

10x - x = 47.777.... - 4.777....

\(\Rightarrow\) 9x = 43

\(\Rightarrow\) x = \(\frac{43}{9}\).

133.

X2 x \(\frac{1}{x^2}\)= ...........(x ≠ 0) = …………………A) x2 B) x C) x4 D) 1

Answer»

Correct option is  D) 1

134.

4/5 the of 1 hour = ………………..minutes.A) 48 B) 84 C) 42 D) 13

Answer»

Correct option is (A) 48

\(\frac{4}{5}\) of 1 hour = \(\frac{4}{5}\) \(\times\) 1 hour

\(\frac{4}{5}\) \(\times\) 60 minutes

= 4 \(\times\) 12 minutes

= 48 minutes.

Correct option is A) 48

135.

\(\frac{a}{y-z}=\frac{b}{z-x}=\frac{c}{x-y }\) = then ax + by + cz = ………………a/y-z = b/z-x = c/x-y A) -a B) – b C) 0 D) -1

Answer»

Correct option is (C) 0

\(\frac{a}{y-z}=\frac{b}{z-x}=\frac{c}{x-y}\) \(=\frac{ax+by+cz}{x(y-z)+y(z-x)+z(x-y)}\)

\(=\frac{ax+by+cz}{xy-xz+yz-xy+xz-yz}\) \(=\frac{ax+by+cz}0\)

\(\Rightarrow\) ax+by+cz = 0.

Correct option is  C) 0

136.

\(\frac{25}{16}\) = .............................A) 1.6521 B) 2.532 C) 1.5625 D) 10.56

Answer»

Correct option is (C) 1.5625

\(\frac{25}{16}=\frac{5^2}{2^4}=\frac{5^2\times5^4}{2^4\times5^4}=\frac{5^6}{10^4}\) \(=\frac{15625}{10000}\) = 1.5625

Correct option is  C) 1.5625

137.

\(-2 -\frac{1}{2}+\frac{1}{2}-7 = .................\)A) – 9 B) 9 C) 7D) 16

Answer»

Correct option is (A) –9

\(-2-\frac{1}{2}+\frac{1}{2}-7\) = -2 - 7 = -9.

Correct option is  A) – 9

138.

The natural number 5 can be written as ………………… A) \(\frac{10}{2}\)C) \(\frac{50}{10}\)B) \(\frac{15}{3}\)D) All the above

Answer»

D) All the above

Correct option is (D) All of the above

\(\frac{10}{2}\) = 5

\(\frac{15}{3}\) = 5

5 = \(5\times\frac{10}{10}=\frac{50}{10}.\)

139.

 The sum of the two numbers is \(\frac{-4}{3}\). If one of the numbers is -5, find the other.

Answer»

Given that,

Sum of two numbers = -4/3
One of the number = -5/1
By using the formula,
Other number = sum of number – given number

=(-4/3)–(-5/1)

\(=\frac{(-4\times1-(-5\times3))}{3}\\=\frac{(-4+15)}{3}\\=\frac{11}{3}\)

\(\therefore\) the other number is \(\frac{11}{3}\)

140.

(2 – 3) – 2 = ……………….. A) 3 B) – 3 C) – 4 D) 6

Answer»

Correct option is  B) – 3

141.

The measurements of a rectangular park are 41\(\frac{2}{3}\) m and 18\(\frac{3}{5}\) m then the area = ……………… m2 . A) 114 B) 192 C) 775 D) 275

Answer»

Correct option is (C) 775

Area = \(41\frac{2}{3}\) \(\times\) \(18\frac{3}{5}\) \(=\frac{41\times3+2}3\times\frac{18\times5+3}5\) \(=\frac{123+2}3\times\frac{90+3}5\) \(=\frac{125}3\times\frac{93}5\) \(=25\times31\) \(=775\,m^2.\)

Correct option is  C) 775

142.

\(\frac{5}{9}-\frac{7}{12}+\frac{1}{2} = .............\)5/9 - 7/12 + 1/2 = ...............A) \(\frac{7}{36}\)B) \(\frac{17}{36}\)C) \(\frac{1}{2}\)D) \(\frac{9}{7}\)

Answer»

Correct option is (B) 17/36

\(\frac{5}{9}-\frac{7}{12}+\frac{1}{2}\) \(=\frac{5\times4-7\times3+1\times18}{36}\) \(=\frac{20-21+18}{36}=\frac{18-1}{36}\) \(=\frac{17}{36}.\)

Correct option is  B) \(\frac{17}{36}\)

143.

Verify – (-x) = x for(i) x = 3/5(ii) x = -7/9(iii) x = 13/-15

Answer»

(i) x = 3/5

– x = -3/5

– (-x) = – (-3/5)

x = 3/5

(ii) x = -7/9

– x = – (-7/9)

-x = 7/9

– (-x) = – (7/9)

x = – 7/9

(iii) x = 13/-15

– x = – (-13/15)

-x = 13/15

– (-x) = – (13/15)

x = -13/15

144.

The sum of the two rational numbers is -8. If one of the numbers is \(\frac{-15}{7}\), find the other.

Answer»

Given that,

Sum of two rational numbers = -8/1
One of the number = -15/7
Let the other number as x

\(x+\frac{-15}{7}=-8\\\frac{(7x-15)}{7}=-8\\=7x-15=-8\times7\\=7x-15=-56\\=7x=-56+15\\=x=\frac{-41}{7}\)

\(\therefore\) the other number is \(\frac{-41}{7}\)

145.

What number should be added to \(\frac{-5}{11}\) so as to get \(\frac{26}{33}\) ?

Answer»

Let the number as x to be added to -5/11 to get 26/33
So,

\(\frac{-5}{11}+x=\frac{26}{33}\\x=\frac{26}{33}+\frac{5}{11}\\x=\frac{(26\times1+5\times3)}{33}\\=\frac{41}{33}\)

\(\therefore\) The required number is \(\frac{41}{33}\)

146.

\((\frac{1}{2}-\frac{3}{4})-(\frac{-5}{4})= .....................\)(1/2 -3/4) - (-5/4) = ...................A) 0 B) 1 C) – 1 D) 4

Answer»

Correct option is  B) 1

147.

(b – c) a = ……………………. A) ab – c B) ac – ba C) ba – ca D) b – ac

Answer»

Correct option is  C) ba – ca

148.

 What should be added to \(\frac{-7}{8}\) so as to get \(\frac{5}{9}\)?

Answer»

 Let the number x to be added to -7/8 to get 5/9

\(\frac{-7}{8}+x=\frac{5}{9}\\\frac{(-7+8x)}{8}=\frac{5}{9}\\(-7+8x)\times9=5\times8\\-63+72x=40\\72x=40+73\\x=\frac{103}{72}\)

\(\therefore\) the required number is \(\frac{103}{72}\)  

149.

What number should be subtracted from \(\frac{-5}{3}\) to get \(\frac{5}{6}\)?

Answer»

Let the number be x to subtracted from -5/3 to get 5/6
So,

\(\frac{-5}{3}-x=\frac{5}{6}\\x=\frac{-5}{3}-\frac{5}{6}\\x=\frac{(-5\times2-5\times1)}{6}\\=\frac{(10-5)}{6}\\=\frac{-15}{6}\\=\frac{-5}{2}\)

\(\therefore\) the required number is \(\frac{-5}{2}\)

150.

Write the following in increasing order: 21, -8, -26, 85, 33, -333, -210, 0, 2011

Answer»

-333 < -210 < -26 < -8 < 0 < 21 < 33 < 85 < 2011. 

-333, -210, -26, -8, 0, 21, 33, 85, 2011