

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
101. |
Verify the property x × (y + z) = x × y + x × z of rational numbers by taking x = -2/3, y = -4/6, z = -7/9. |
Answer» In the question is given to verify the property x × (y + z) = x × y + x × z The arrangement of the given rational number is as per the rule of distributive property of multiplication over addition. Then, (-2/3) × ((-4/6) + (-7/9)) = ((-2/3) × (-4/6)) + ((-2/3) × (-7/9)) LHS = (-2/3) × ((-4/6) + (-7/9)) = (-2/3) × ((-12 – 14)/18) = – (2/3) × (-26/18) = – (1/3) × (-26/9) = 26/27 RHS = ((-2/3) × (-4/6)) + ((-2/3) × (-7/9)) = ((-1/3) × (-4/3)) + ((-2/3) × (-7/9)) = (4/9) + (14/27) = (12 + 14)/27 = 26/27 By comparing LHS and RHS LHS = RHS ∴ 26/27 = 26/27 Hence x × (y + z) = x × y + x × z |
|
102. |
State whether the statement are true (T) or false (F).Between any two rational numbers there are exactly ten rational numbers. |
Answer» False. Between any two rational numbers there are infinite rational numbers. |
|
103. |
Evaluate: (14/15) – (13/20) |
Answer» (14/15) – (13/20) We have: = (14/15) – (13/20) = (14/15) + (additive inverse of 13/20) = (14/15) + (-13/20) LCM of 15 and 20 is 60 Express each of the given rational numbers with the above LCM as the common denominator. Now, = [(14×4)/ (15×4)] = (56/60) = [(-13×3)/ (20×3)] = (-39/60) Then, = (56/60) + (-39/60) = (56-39)/60 = (17/60) |
|
104. |
The sum of -3/2 and 1/2 is (a) –1 (b) –2 (c) 4 (d) 3 |
Answer» Correct answer is (a) –1 |
|
105. |
The value of -4/3 –(-1/3) i s |
Answer» Correct answer is (d) -1 |
|
106. |
Which of the following rational numbers is in standard form? (a) 20/30 (b) 10/4 (c) 1/2 (d) 1/–3 |
Answer» Correct answer is (c) 1/2 |
|
107. |
[-2(1/9)]-6 =?(a)[-8(1/9)] (b)[8(1/9)] (c)[4(1/9)] (d)[-4(1/9)] |
Answer» (a)[-8(1/9)] Because, = [-2(1/9)]-6 = (-19/9) – (6) = (-19-54)/9 = (-73/9) = [-8(1/9)] |
|
108. |
Multiplicative inverse of (-2/3) is(a)(2/3) (b)(-3/2) (c)(3/2) (d) None of these |
Answer» Multiplicative inverse of (-2/3) is (b) (-3/2) |
|
109. |
Reciprocal of -6 is(a) 6 (b) (1/6) (c) (-1/6) (d) none of these |
Answer» Reciprocal of -6 is (c) (-1/6) |
|
110. |
What should be added to \(\frac{7}{12}\) to get \(\frac{-4}{15}\,?\)A. \(\frac{17}{20}\)B. \(\frac{-17}{20}\)C. \(\frac{7}{20}\)D. \(\frac{-7}{20}\) |
Answer» Let the number added be x. Then, \(\frac{7}{12}+\text{x}=\frac{-4}{15}\) \(\Rightarrow\) \(\text{x}=\frac{-4}{15}-\frac{7}{12}\) \(=\frac{-4\times4-7\times5}{60}\) \(=\frac{-16-35}{8}\) \(=\frac{-51}{60}=\frac{-51\div3}{60\div3}=\frac{-17}{20}\) |
|
111. |
Which is larger out of (2/-3) and (-4/5)?(a)(2/-3) (b)(-4/5) (c) Cannot be compared |
Answer» (a)(2/-3) Because, First we write (2/-3) in standard form = (2×-1)/ (-3×-1) = (-2/3) Then, LCM of 3 and 5 is 15 = (-2 × 5)/ (3×5) = (-10/15) = (-4×3) / (5×3) = (-12/15) Clearly, = (-10) > (-12) Hence, (-2/3)> (-4/5) ∴ (2/-3) > (-4/5) |
|
112. |
\((\frac{2}{3}+\frac{-4}{5}+\frac{7}{15}+\frac{-11}{20})=\,?\)A. \(\frac{-1}{5}\)B. \(\frac{-4}{15}\)C. \(\frac{-13}{60}\)D. \(\frac{-7}{30}\) |
Answer» \(\frac{2}{3}+\frac{-4}{5}+\frac{7}{15}+\frac{-11}{20}\) LCM of 3, 5, 15, 20 \(=\frac{2\times20+(-4)\times12+7\times4+(-11)\times3}{60}\) \(=\frac{40-48+28-33}{60}\) \(=\frac{68-81}{60}\) \(=\frac{-31}{60}\) |
|
113. |
Which is smaller out of (5/-6) and (-7/12)?(a)(5/-6) (b)(-7/12) (c) Cannot be compared |
Answer» (a)(5/-6) Because, First we write (5/-6) in standard form = (5×-1)/ (-6×-1) = (-5/6) Then, LCM of 6 and 12 is 12 = (-5 × 2)/ (6×2) = (-10/12) = (-7×1) / (12×1) = (-7/12) Clearly, = (-10) < (-7) Hence, (-5/6)< (-7/12) ∴ (5/-6) < (-7/12) |
|
114. |
The sum of two numbers is \(\frac{-4}{7}\) to get \(\frac{5}{6}\,?\)A. \(\frac{5}{2}\)B. \(\frac{3}{2}\)C. \(\frac{5}{4}\)D. \(\frac{-5}{2}\) |
Answer» Let the number added be x. Then, \(\frac{5}{6}+\text{x}=\frac{-4}{7}\) \(\Rightarrow\) \(\text{x}=\frac{-4}{7}-\frac{5}{6}\) \(=\frac{-4\times6-5\times7}{42}\) \(=\frac{-24-35}{42}\) \(=\frac{-59}{42}\) |
|
115. |
What should be added to (\(\frac{2}{3}\)+\(\frac{3}{5}\)) to get \(\frac{-2}{15}\)? |
Answer» Let the number be x It is given that, x + (\(\frac{2}{3}+\frac{3}{5}\)) = \(\frac{-2}{15}\) \(\frac{15x+10+9}{15}\) = \(\frac{-2}{15}\) 15x = -2-19 x = \(\frac{-21}{15}\) x = \(\frac{-7}{5}\) |
|
116. |
What should be subtracted from (\(\frac{3}{4}\)-\(\frac{2}{3}\)) to get \(\frac{-1}{6}\) ? |
Answer» Let the number be x It is given that, (\(\frac{3}{4}\)-\(\frac{2}{3}\)) - x = \(\frac{-1}{6}\) - x + [ \(\frac{3\times 3}{4\times 3}\) - \(\frac{2\times 4}{4\times 3}\)] = \(\frac{-1}{6}\) - x + [\(\frac{9}{12}\)-\(\frac{8}{12}\)] = \(\frac{-1}{6}\) \(\frac{-12x+9-8}{12}\) = \(\frac{-1}{6}\) -12x-1 = -2-12x = -2-1-12x = -3 x = \(\frac{-3}{-12}\) x = \(\frac{1}{4}\) |
|
117. |
What should be subtracted from (-3/4) to get (5/6)?(a)(19/12) (b)(-19/12) (c)(1/12) (d)(-1/12) |
Answer» (b)(-19/12) Because, Let the missing number be X, (-3/4) – (X) = (5/6) By sending (-X) from the left hand side to the right side it becomes (X) and (5/6) from right hand side to left hand side it becomes (-5/6) = (X) = (-3/4) – (5/6) LCM of 4 and 6 is 12 (-3 × 3)/ (4×3) = (-9/12) (-5×2) / (6×2) = (-10/12) (X) = (-9-10)/12 (X) = (-19/12) |
|
118. |
What should be added to \(\frac{-5}{7}\) to get \(\frac{-2}{3}\) ?A. \(\frac{-29}{21}\)B. \(\frac{29}{21}\)C. \(\frac{1}{21}\)D. \(\frac{-1}{21}\) |
Answer» Let the number added be x. Then, \(\frac{-5}{7}+\text{x}=\frac{-2}{3}\) \(\Rightarrow\) \(\text{x}=\frac{-2}{3}-\frac{-5}{7}\) \(=\frac{-2\times7-(-5)\times3}{21}\) \(=\frac{-14+15}{21}\) \(=\frac{1}{21}\) |
|
119. |
What number should be added to \(\frac{-3}{5}\) to get \(\frac{2}{3}?\) |
Answer» Let the number added be x Then, \(\frac{-3}{5}+\text{x}=\frac{2}{3}\) \(\Rightarrow\) \(\text{x} =\frac{2}{3}-\frac{-3}{5}\) \(\Rightarrow\) \(\text{x}=\frac{2\times5-(-3)\times3}{15}\) \(\Rightarrow\) \(\text{x}=\frac{10+9}{15}\) \(\Rightarrow\) \(\text{x}=\frac{19}{15}\) |
|
120. |
Find the multiplicative inverse of(i) \(\frac{-3}{4}\)(ii) \(\frac{11}{4}.\) |
Answer» Multiplicative inverse of a rational number \(\frac{a}{b}\) = \(\frac{b}{a}\) Therefore, (i) Negative inverse of \(\frac{-3}{4}\) = \(\frac{4}{-3}\) \(\frac{4}{-3}=\frac{4\times-1}{-3\times-1}=\frac{-4}{3}\) (ii) Negative inverse of \(\frac{11}{4}\) = \(\frac{4}{11}\) |
|
121. |
Evaluate each of the following:i) \(\frac{2}{3}-\frac{3}{5}\)ii) \(\frac{-4}{7}-\frac{2}{-3}\)iii) \(\frac{4}{7}-\frac{-5}{-7}\)iv) \(-2-\frac{5}{9}\)v) \(\frac{-3}{-8}-\frac{-2}{7}\)vi) \(\frac{5}{63}-\frac{-8}{21}\)vii) \(\frac{7}{24}-\frac{19}{36}\) |
Answer» i) 2/3 – 3/5 \(=\frac{(2\times5-3\times3)}{15}\\=\frac{1}{15}\) ii) (-4/7) – (2/-3) = (2/-3) = (-2/3) (convert the denominator to positive number by multiplying by -1) \(=\frac{(-4\times3-(-2\times7))}{21}\\=\frac{(-12+14)}{21}\\=\frac{2}{21}\) iii) 4/7 - -5/-7 convert the denominator to positive number by multiplying by -1 \(=\frac{(4-5)}{7}\\=\frac{-1}{7}\) iv) (-2) – (5/9) \(=\frac{-2}{1}-\frac{5}{9}\\=\frac{(-2\times9-5\times1)}{9}\\=\frac{(-18-5)}{9}\\=\frac{-23}{9}\) v) (-3/-8) - (-2/7) vi) 5/63 - (-8/21) vii) 7/24 – 19/36 \(=\frac{(7\times3-19\times2)}{72}\\=\frac{(21-38)}{72}\\=\frac{-17}{72}\) |
|
122. |
The sum of the two numbers is \(\frac{5}{9}\). If one of the numbers is \(\frac{1}{3}\), find the other. |
Answer» Given that, Sum of two numbers = 5/9 = 5/9 – 1/3 \(=\frac{(5\times1-1\times3)}{9}\\=\frac{(5-3)}{9}\\=\frac{2}{9}\) \(\therefore\) the other number is \(\frac{2}{9}\) |
|
123. |
\(3\frac{1}{5} - \frac{1}{5} + 1 = ................\)3(1/5) - 1/5 + 1 = ..................A) 7B) 3 C) 4 D) 5 |
Answer» Correct option is (C) 4 \(3\frac{1}{5}-\frac{1}{5}+1\) \(=\frac{3\times5+1}{5}-\frac{1}{5}+1\) \(=\frac{15+1-1}{5}+1\) \(=\frac{15}{5}+1\) = 3+1 = 4. Correct option is C) 4 |
|
124. |
How much can be added to -2 to get 7/9 ? A) 25/9B) 5/9C) 1/4D) 1/9 |
Answer» Correct option is (A) 25/9 Let number to be added is x. \(\therefore\) x + (-2) = \(\frac{7}{9}\) \(\Rightarrow\) x = \(\frac{7}{9}\) -(-2) = \(\frac{7}{9}\) + 2 = \(\frac{7+9\times2}{9}\) \(\Rightarrow\) x = \(\frac{7+18}{9}\) = \(\frac{25}{9}\). Correct option is A) 25/9 |
|
125. |
4 – \(2\frac{2}{3}\,+ 3\frac{1}{5}\) = ................A) -2/15B) -28/15C) 8/15D) 1/2 |
Answer» Correct option is (B) -28/15 \(4-(2\frac{2}{3}+3\frac{1}{5})\) \(=4-(\frac{2\times3+2}{3}+\frac{3\times5+1}{5})\) \(=4-(\frac{8}{3}+\frac{16}{5})\) \(=4-\frac{8\times5+16\times3}{15}\) \(=4-\frac{40+48}{15}\) \(=\frac{15\times4-88}{15}\) \(=\frac{60-88}{15}=\frac{-28}{15}.\) Correct option is B) -28/15 |
|
126. |
If we multiply \(7\frac{5}{9}\) by \(\frac{3}{2}\) we get ………………..A) 1\(\frac{1}{3}\)B) 11\(\frac{1}{3}\) C) 7\(\frac{1}{2}\)D) 1\(\frac{1}{2}\) |
Answer» Correct option is (B) \(11\frac{1}{3}\) \(7\frac{5}{9}\) \(\times\) \(\frac{3}{2}\) = \(\frac{7\times9+5}{9}\) \(\times\) \(\frac{3}{2}\) = \(\frac{63+5}{9}\) \(\times\) \(\frac{3}{2}\) \(=\frac{68}{3\times2}\) \(=\frac{34}3=\frac{33+1}3=11+\frac13\) \(=11\frac13.\) Correct option is B) 11\(\frac{1}{3}\) |
|
127. |
\((\frac{-5}{4})^{-1} =\,?\)A. \(\frac{4}{5}\) B. \(\frac{-4}{5}\) C. \(\frac{5}{4}\) D. \(\frac{3}{5}\) |
Answer» \((\frac{-5}{4})^{-1}=\frac{4}{-5}\) \(\frac{4}{-5}=\frac{4\times-1}{-5\times-1}=\frac{-4}{5}\) |
|
128. |
What should be added to \(\frac{-2}{3}\) to get \(\frac{3}{4}\,?\) A. \(\frac{-11}{12}\) B. \(\frac{-13}{12}\) C. \(\frac{-5}{4}\) D. \(\frac{17}{12}\) |
Answer» Let the number added be x Then, \(\frac{-2}{3}+\text{x}=\frac{3}{4}\) \(\Rightarrow\) \(\text{x}=\frac{3}{4}-\frac{-2}{3}\) \(\Rightarrow\) \(\text{x}=\frac{3\times3-(-2)\times4}{12}\) \(\Rightarrow\) \(\text{x}=\frac{9+8}{12}\) \(\Rightarrow\) \(\text{x}=\frac{17}{12}\) |
|
129. |
The sum of the two numbers is \(\frac{-1}{3}\). If one of the numbers is \(\frac{-12}{3}\), find the other. |
Answer» Given that, Sum of two numbers = -1/3 = (-1/3) – (-12/3) \(=\frac{(-1+12)}{3}\\=\frac{11}{3}\) \(\therefore\) the other number is \(\frac{11}{3}\) |
|
130. |
2a + (-2a) = ………………. A) – 4a B) – 4a2 C) – a D) 0 |
Answer» Correct option is D) 0 |
|
131. |
Verify the property: \(x\times y=y\times x\) by taking:i) \(x=\frac{-1}{3},y=\frac{2}{7}\)ii) \(x=2,y=\frac{7}{-8}\)iii) \(x=0,y=\frac{-15}{8}\) |
Answer» i) By using the property x × y = y × x \(\frac{-1}{3}\times\frac{2}{7}=\frac{2}{7}\times\frac{-1}{3}\\=\frac{(-1\times2)}{(3\times7)}=\frac{(2\times-1)}{(7\times3)}\\=\frac{-2}{21}=\frac{-2}{21}\) \(\therefore\) the property is satisfied. ii) By using the property x × y = y × x \(=2\times\frac{7}{-8}=\frac{7}{-8}\times2\\=\frac{(2\times7)}{-8}=\frac{(7\times2)}{-8}\\=\frac{14}{-8}=\frac{14}{-8}\) \(\therefore\) the property is satisfied. iii) By using the property x × y = y × x \(0\times\frac{-15}{8}=\frac{-15}{8}\times0\\=0=0\) \(\therefore\) the property is satisfied. |
|
132. |
\(4.\overline{7}\) = ..................A) \(\frac{43}{9}\)B) \(\frac{9}{4}\)C) \(\frac{12}{31}\)D) \(\frac{47}{10}\) |
Answer» Correct option is A) \(\frac{43}{9}\) Correct option is (A) 43/9 Let x = \(4.\bar{7}\) \(\Rightarrow\) x = 4.777... ______(1) Multiply equation (1) by 10, we obtain 10x = 47.777... ______(2) Subtract equation (1) from (2), we get 10x - x = 47.777.... - 4.777.... \(\Rightarrow\) 9x = 43 \(\Rightarrow\) x = \(\frac{43}{9}\). |
|
133. |
X2 x \(\frac{1}{x^2}\)= ...........(x ≠ 0) = …………………A) x2 B) x C) x4 D) 1 |
Answer» Correct option is D) 1 |
|
134. |
4/5 the of 1 hour = ………………..minutes.A) 48 B) 84 C) 42 D) 13 |
Answer» Correct option is (A) 48 \(\frac{4}{5}\) of 1 hour = \(\frac{4}{5}\) \(\times\) 1 hour = \(\frac{4}{5}\) \(\times\) 60 minutes = 4 \(\times\) 12 minutes = 48 minutes. Correct option is A) 48 |
|
135. |
\(\frac{a}{y-z}=\frac{b}{z-x}=\frac{c}{x-y }\) = then ax + by + cz = ………………a/y-z = b/z-x = c/x-y A) -a B) – b C) 0 D) -1 |
Answer» Correct option is (C) 0 \(\frac{a}{y-z}=\frac{b}{z-x}=\frac{c}{x-y}\) \(=\frac{ax+by+cz}{x(y-z)+y(z-x)+z(x-y)}\) \(=\frac{ax+by+cz}{xy-xz+yz-xy+xz-yz}\) \(=\frac{ax+by+cz}0\) \(\Rightarrow\) ax+by+cz = 0. Correct option is C) 0 |
|
136. |
\(\frac{25}{16}\) = .............................A) 1.6521 B) 2.532 C) 1.5625 D) 10.56 |
Answer» Correct option is (C) 1.5625 \(\frac{25}{16}=\frac{5^2}{2^4}=\frac{5^2\times5^4}{2^4\times5^4}=\frac{5^6}{10^4}\) \(=\frac{15625}{10000}\) = 1.5625 Correct option is C) 1.5625 |
|
137. |
\(-2 -\frac{1}{2}+\frac{1}{2}-7 = .................\)A) – 9 B) 9 C) 7D) 16 |
Answer» Correct option is (A) –9 \(-2-\frac{1}{2}+\frac{1}{2}-7\) = -2 - 7 = -9. Correct option is A) – 9 |
|
138. |
The natural number 5 can be written as ………………… A) \(\frac{10}{2}\)C) \(\frac{50}{10}\)B) \(\frac{15}{3}\)D) All the above |
Answer» D) All the above Correct option is (D) All of the above \(\frac{10}{2}\) = 5 \(\frac{15}{3}\) = 5 5 = \(5\times\frac{10}{10}=\frac{50}{10}.\) |
|
139. |
The sum of the two numbers is \(\frac{-4}{3}\). If one of the numbers is -5, find the other. |
Answer» Given that, Sum of two numbers = -4/3 =(-4/3)–(-5/1) \(=\frac{(-4\times1-(-5\times3))}{3}\\=\frac{(-4+15)}{3}\\=\frac{11}{3}\) \(\therefore\) the other number is \(\frac{11}{3}\) |
|
140. |
(2 – 3) – 2 = ……………….. A) 3 B) – 3 C) – 4 D) 6 |
Answer» Correct option is B) – 3 |
|
141. |
The measurements of a rectangular park are 41\(\frac{2}{3}\) m and 18\(\frac{3}{5}\) m then the area = ……………… m2 . A) 114 B) 192 C) 775 D) 275 |
Answer» Correct option is (C) 775 Area = \(41\frac{2}{3}\) \(\times\) \(18\frac{3}{5}\) \(=\frac{41\times3+2}3\times\frac{18\times5+3}5\) \(=\frac{123+2}3\times\frac{90+3}5\) \(=\frac{125}3\times\frac{93}5\) \(=25\times31\) \(=775\,m^2.\) Correct option is C) 775 |
|
142. |
\(\frac{5}{9}-\frac{7}{12}+\frac{1}{2} = .............\)5/9 - 7/12 + 1/2 = ...............A) \(\frac{7}{36}\)B) \(\frac{17}{36}\)C) \(\frac{1}{2}\)D) \(\frac{9}{7}\) |
Answer» Correct option is (B) 17/36 \(\frac{5}{9}-\frac{7}{12}+\frac{1}{2}\) \(=\frac{5\times4-7\times3+1\times18}{36}\) \(=\frac{20-21+18}{36}=\frac{18-1}{36}\) \(=\frac{17}{36}.\) Correct option is B) \(\frac{17}{36}\) |
|
143. |
Verify – (-x) = x for(i) x = 3/5(ii) x = -7/9(iii) x = 13/-15 |
Answer» (i) x = 3/5 – x = -3/5 – (-x) = – (-3/5) x = 3/5 (ii) x = -7/9 – x = – (-7/9) -x = 7/9 – (-x) = – (7/9) x = – 7/9 (iii) x = 13/-15 – x = – (-13/15) -x = 13/15 – (-x) = – (13/15) x = -13/15 |
|
144. |
The sum of the two rational numbers is -8. If one of the numbers is \(\frac{-15}{7}\), find the other. |
Answer» Given that, Sum of two rational numbers = -8/1 \(x+\frac{-15}{7}=-8\\\frac{(7x-15)}{7}=-8\\=7x-15=-8\times7\\=7x-15=-56\\=7x=-56+15\\=x=\frac{-41}{7}\) \(\therefore\) the other number is \(\frac{-41}{7}\) |
|
145. |
What number should be added to \(\frac{-5}{11}\) so as to get \(\frac{26}{33}\) ? |
Answer» Let the number as x to be added to -5/11 to get 26/33 \(\frac{-5}{11}+x=\frac{26}{33}\\x=\frac{26}{33}+\frac{5}{11}\\x=\frac{(26\times1+5\times3)}{33}\\=\frac{41}{33}\) \(\therefore\) The required number is \(\frac{41}{33}\) |
|
146. |
\((\frac{1}{2}-\frac{3}{4})-(\frac{-5}{4})= .....................\)(1/2 -3/4) - (-5/4) = ...................A) 0 B) 1 C) – 1 D) 4 |
Answer» Correct option is B) 1 |
|
147. |
(b – c) a = ……………………. A) ab – c B) ac – ba C) ba – ca D) b – ac |
Answer» Correct option is C) ba – ca |
|
148. |
What should be added to \(\frac{-7}{8}\) so as to get \(\frac{5}{9}\)? |
Answer» Let the number x to be added to -7/8 to get 5/9 \(\frac{-7}{8}+x=\frac{5}{9}\\\frac{(-7+8x)}{8}=\frac{5}{9}\\(-7+8x)\times9=5\times8\\-63+72x=40\\72x=40+73\\x=\frac{103}{72}\) \(\therefore\) the required number is \(\frac{103}{72}\) |
|
149. |
What number should be subtracted from \(\frac{-5}{3}\) to get \(\frac{5}{6}\)? |
Answer» Let the number be x to subtracted from -5/3 to get 5/6 \(\frac{-5}{3}-x=\frac{5}{6}\\x=\frac{-5}{3}-\frac{5}{6}\\x=\frac{(-5\times2-5\times1)}{6}\\=\frac{(10-5)}{6}\\=\frac{-15}{6}\\=\frac{-5}{2}\) \(\therefore\) the required number is \(\frac{-5}{2}\) |
|
150. |
Write the following in increasing order: 21, -8, -26, 85, 33, -333, -210, 0, 2011 |
Answer» -333 < -210 < -26 < -8 < 0 < 21 < 33 < 85 < 2011. -333, -210, -26, -8, 0, 21, 33, 85, 2011 |
|