Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

State whether the statements are True or False. It is possible to have a triangle in which two angles are acute.

Answer»

It is possible to have a triangle in which two angles are acute.

True

2.

State whether the statements are True or False. It is possible to have a triangle in which two of the angles are right angles.

Answer»

It is possible to have a triangle in which two of the angles are right angles.

False

3.

State whether the statements are True or False.It is possible to have a triangle in which each angle is greater than 60°.

Answer»

 It is possible to have a triangle in which each angle is greater than 60°.

False

4.

State whether the statements are True or False. It is possible to have a triangle in which each angle is less than 60°.

Answer»

It is possible to have a triangle in which each angle is less than 60°.

False

5.

State whether the statements are True or False. It is possible to have a triangle in which each angle is equal to 60°.

Answer»

It is possible to have a triangle in which each angle is equal to 60°.

True

6.

In the figure y° = …………….. A) 45°B) 55°C) 90°D) 35°

Answer»

Correct option is C) 90°

7.

In a triangle, one angle is of 90°. Then(i) The other two angles are of 45° each(ii) In remaining two angles, one angle is 90° and other is 45°(iii) Remaining two angles are complementaryIn the given option(s) which is true?(a) (i) only (b) (ii) only (c) (iii) only (d) (i) and (ii)

Answer»

Correct answer is (c) (iii) only

8.

If two acute angles of a right triangle are equal, then each is equal toA. 30°B. 45°C. 60°D. 90°

Answer»

Given that the triangle is acute.

So,

∠1, ∠2 and ∠3 be the angles of the triangle.

∠1 = 90°(Given)

∠2 = ∠3

We know that,

∠1 + ∠2 + ∠3 = 18°

90° + ∠2 + ∠2 = 180°

2∠2 = 180° – 90°

∠2 = 45°

Therefore,

∠2 = ∠3 = 45°

Thus, each acute angle is equal to 45°

9.

Choose the correct one. If two angles of a triangle are 60° each, then the triangle is(a) Isosceles but not equilateral (b) Scalene(c) Equilateral (d) Right-angled

Answer»

Correct answer is (c) Equilateral

10.

In an isosceles triangle, one angle is 70°. The other two angles are of(i) 55° and 55° (ii) 70° and 40° (iii) any measureIn the given option(s) which of the above statement(s) are true?(a) (i) only (b) (ii) only (c) (iii) only (d) (i) and(ii)

Answer»

(d) (i) and (ii)

From the question it is given that,

One angle of isosceles triangle is 70o.

We know that, in an isosceles triangle 2 angles are equal corresponding with 2 equal sides,

If 70o is 3rd angle of triangle,

70o + x + x = 180o

2x + 70o = 180o

2x = 180o – 70o

x = (110o/2)

x = 55o

So, both angles are 55o

Consider the 70o as base angle of isosceles triangle

Then, 70o + 70o + x = 180o

x = 180o – 140o

x = 40o

So, one angle is 40o and another is 70o

11.

Choose the correct one. If in an isosceles triangle, each of the base angles is 40°, then thetriangle is(a) Right-angled triangle (b) Acute angled triangle(c) Obtuse angled triangle (d) Isosceles right-angled triangle

Answer»

Correct answer is (c) Obtuse angled triangle 

12.

In an isosceles triangle, one angle is 70°. The other two angles are of (i) 55° and 55° (ii) 70° and 40° (iii) any measure In the given option(s) which of the above statement(s) are true?(a) (i) only (b) (ii) only (c) (iii) only (d) (i) and (ii)

Answer»

Correct answer is (d) (i) and (ii)

13.

State whether the statements are True or False. The top and bottom faces of a kaleidoscope are congruent.

Answer»

State whether the statements are True or False. 

The top and bottom faces of a kaleidoscope are congruent.

True

14.

The triangle ABC formed by AB = 5 cm, BC = 8 cm, AC = 4 cm is(a) an isosceles triangle only (b) a scalene triangle only(c) an isosceles right triangle (d) scalene as well as a right triangle

Answer»

(b) a scalene triangle only

A scalene triangle is a triangle that has three unequal sides.

15.

If in an isosceles triangle, each of the base angles is 40°, then the triangle is(a) Right-angled triangle(b) Acute angled triangle(c) Obtuse angled triangle(d) Isosceles right-angled triangle

Answer»

(c) Obtuse angled triangle

We know that, sum of interior angles of triangle is equal to 180o.

Let us assume the 3rd angle be Q,

Then, 40o + 40o + Q = 180o

80o + Q = 180o

Q = 180 – 80

Q = 100o

An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle’s angles must sum to 180o.

16.

Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.

Answer»

Correct answer is 12m

17.

Height of a pole is 8 m. Find the length of rope tied with its top from a point on the ground at a distance of 6 m from its bottom.

Answer»

Correct answer is 100 cm

18.

Choose the correct one. Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is(a) 3 m (b) 5 m (c) 4 m (d) 11 m

Answer»

Correct answer is (b) 5m

19.

In ΔDEF, ∠D = 60°, ∠E = 70° and the bisectors of ∠E and ∠F meet at O. Find (i) ∠F (ii) ∠EOF.

Answer»

Correct answer is 

(i)F = 50° (ii) EOF = 120°

20.

If ΔABC ~ ΔDEF, ∠A = 50°, then ∠E + ∠F = ……………… (A) 100° (B) 125° (C) 130° (D) 140°

Answer»

Correct option is (C) 130°

Given that \( \triangle ABC \sim \triangle DEF\)

\(\therefore\) \(\angle D=\angle A=50^\circ\)      (Given \(\angle A=50^\circ)\)

In \(\triangle DEF,\) \(\angle D+\angle E+\angle F=180^\circ\)  (Sum of angles in a triangle)

\(\Rightarrow\) \(\angle E+\angle F=180^\circ-\angle D\)

\(=180^\circ-50^\circ=130^\circ\)

Correct option is: (C) 130°

21.

ΔABC is similar to ΔDEF is denoted as (A) ΔABC = ΔDEF (B) ΔABC ~ ΔDEF (C) ΔABC ≅ ΔDEF (D) ΔABC || ΔDEF

Answer»

Correct option is (B) ΔABC ~ ΔDEF

ΔABC is similar to ΔDEF is denoted as \(\triangle ABC\sim\triangle DEF.\)

Correct option is: (B) ΔABC ~ ΔDEF

22.

Fill in the blanks to make the statements true.In Fig. 6.24, Δ ____ ≅ Δ PQR

Answer»

In Fig. 6.24, Δ PQO≅ Δ PQR

23.

Choose the correct one.If ΔABC and ΔDBC are on the same base BC, AB = DC and AC = DB (Fig. 6.21),then which of the following gives a congruence relationship?(a) ΔABC ≅ ΔDBC (b) ΔABC ≅ ΔCBD(c) ΔABC ≅ ΔDCB (d) ΔABC ≅ ΔBCD

Answer»

Correct answer is 

(c) ΔABC  ΔDCB

24.

In the figure given below AC = AE; AB = AD and ∠BAD = ∠EAC. Show that BC = DE.

Answer»

Given that AC = AE, AB = AD and 

∠BAD = ∠EAC 

In ΔABC and ΔADE 

AB = AD 

AC = AE 

∠BAD = ∠EAC 

∴ ΔABC ≅ ΔADE (∵ SAS congruence) 

⇒ BC = DE (CPCT)

25.

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.

Answer» In ΔBOC and ΔAOD,

∠BOC = ∠AOD (Vertically opposite angles)

∠CBO = ∠DAO (Each 90º)

BC = AD (Given)

∴ ΔBOC ≅ ΔAOD (AAS congruence rule)

∴ BO = AO (By CPCT)

⇒ CD bisects AB.
26.

In the given figure, AB || CD and EF ⊥ AB. If EG is the transversal such that ∠GED = 130°, find ∠EGF.

Answer»

We know that AB || CD and GE is the transversal

From the figure we know that ∠EGF and ∠GED are interior angles

So we get

∠EGF + ∠GED = 180o

By substituting the values

∠EGF + 130o = 180o

On further calculation

∠EGF = 180o – 130o

By subtraction

∠EGF = 50o

Therefore, ∠EGF = 50o

27.

In the figure PA = PB and QA = QB then ∠POA is angle.A) Acute B) obtuse C) right D) reflex

Answer»

Correct option is (C) right

In triangles \(\triangle PAQ\;and\;\triangle PBQ,\)

PA = PB,       (Given)

AQ = BQ,      (Given)

PQ = PQ       (Common side)

\(\therefore\) \(\triangle PAQ\cong\triangle PBQ\)    (By SSS congruence criteria))

\(\therefore\) \(\angle APQ=\angle BPQ\)    (By corresponding property of congruence triangles)

\(\Rightarrow\) \(\angle APO=\angle BPO\)   _______(1)

Now, in triangles \(\triangle APO\;and\;\triangle BPO,\)

AP = BP    (Given)

\(\angle APO=\angle BPO\)       (From (1))

OP = OP      (Common side)

\(\therefore\) \(\triangle APO\cong\triangle BPO\)   (By SAS congruence criteria)

\(\therefore\) \(\angle AOP=\angle BOP\) _______(2)  (By corresponding property of congruence triangles)

Since, \(\angle AOP\;and\;\angle BOP\) forms a linear pair.

\(\therefore\) \(\angle AOP+\angle BOP\) = \(180^\circ\)

\(\Rightarrow\) \(2\angle AOP\) = \(180^\circ\)    \((\because\) \(\angle AOP=\angle BOP\)   (From (2)))

\(\Rightarrow\) \(\angle AOP\) = \(\frac{180^\circ}2=90^\circ\)

\(\Rightarrow\) \(\angle POA\) = \(90^\circ\)

Hence, \(\angle POA\) is a right angle.

Correct option is  C) right

28.

Prove that an equilateral triangle is equiangular.

Answer»

Given: ∆ABC is an equilateral triangle.

 To prove: ∆ABC is equiangular

 i.e. ∠A ≅ ∠B ≅ ∠C …(i) 

[Sides of an equilateral triangle] 

In ∆ABC, 

seg AB ≅ seg BC [From (i)] 

∴ ∠C = ∠A (ii)

 [Isosceles triangle theorem] 

In ∆ABC, 

seg BC ≅ seg AC [From (i)] 

∴ ∠A ≅ ∠B (iii) [Isosceles triangle theorem] 

∴ ∠A ≅ ∠B ≅ ∠C [From (ii) and (iii)] 

∴ ∆ABC is equiangular.

29.

In the adjoining figure, if seg PR ≅ seg PQ, show that seg PS > seg PQ. 

Answer»

In ∆PQR,

 seg PR ≅ seg PQ [Given] 

∴ ∠PQR ≅ ∠PRQ ….(i) [Isosceles triangle theorem] 

∠PRQ is the exterior angle of ∆PRS. 

∴ ∠PRQ > ∠PSR ….(ii) [Property of exterior angle] 

∴ ∠PQR > ∠PSR [From (i) and (ii)] 

i.e. ∠Q > ∠S ….(iii)

In APQS, 

∠Q > ∠S [From (iii)] 

∴ PS > PQ [Side opposite to greater angle is greater] 

∴ seg PS > seg PQ

30.

In the figure given below AABC, D is the midpoint of BC. DE ⊥ AB, DF ⊥ AC and DE = DF. Show that ΔBED ≅ AΔCFD.

Answer»

Given that D is the mid point of BC of ΔABC. 

DF ⊥ AC; DE = DF 

DE ⊥ AB 

In ΔBED and ΔCFD 

∠BED = ∠CFD (given as 90°) 

BD = CD (∵D is mid point of BC) 

ED = FD (given) 

∴ ΔBED ≅ ΔCFD (RHS congruence)

31.

Prove that, if the bisector of ∠BAC of ∆ABC is perpendicular to side BC, then AABC is an isosceles triangle.

Answer»

Given: Seg AD is the bisector of ∠BAC. 

seg AD ⊥ seg BC

 To prove: ∆ABC is an isosceles triangle.

 Proof.

 In ∆ABD and ∆ACD,

 ∠BAD ≅ ∠CAD [seg AD is the bisector of ∠BAC] 

seg AD ≅ seg AD [Common side] 

∠ADB ≅ ∠ADC [Each angle is of measure 90°] 

∴ ∆ABD ≅ ∆ACD [ASA test] 

∴ seg AB ≅ seg AC [c. s. c. t.] 

∴ ∆ABC is an isosceles triangle.

32.

Can you give an alternative proof of the Converse of isosceles triangle theorem by drawing a line through point R and parallel to seg PQ in the above figure? 

Answer»

Yes. 

Construction: 

Draw line RM parallel to seg PQ through a point R. 

Proof: 

seg PQ || line RM and seg PR is their transversal. [Construction] 

∴ ∠PRM = ∠QPR ……..(i) [Alternate angles] 

seg PQ || line RM and seg QR is their transversal. [Construction]

∴ ∠SRM = ∠PQR ……..(ii) [Corresponding angles] 

∴ ∠PRM + ∠SRM = ∠QPR + ∠PQR [Adding (i) and (ii)] 

∴ ∠PRS = ∠PQR + ∠QPR [Angle addition property]

33.

Prove that, if the bisector of ∠BAC of ∆ABC is perpendicular to side BC, then AABC is an isosceles triangle.

Answer»

Given: 

Seg AD is the bisector of ∠BAC. seg AD ⊥ seg BC 

To prove: AABC is an isosceles triangle.

Proof: 

In ∆ABD and ∆ACD, 

∠BAD ≅ ∠CAD [seg AD is the bisector of ∠BAC] 

seg AD ≅ seg AD [Common side] 

∠ADB ≅ ∠ADC [Each angle is of measure 90°] 

∴ ∆ABD ≅ ∆ACD [ASA test] 

∴ seg AB ≅ seg AC [c. s. c. t.] 

∴ ∆ABC is an isosceles triangle.

34.

Can the theorem of isosceles triangle be proved without doing any construction?

Answer»

Yes 

Proof: 

In ∆ABC and ∆ACB, 

seg AB ≅ seg AC [Given] 

∠BAC ≅ ∠CAB [Common angle] 

seg AC ≅ seg AB [Given] 

∴ ∆ABC ≅ ∆ACB [SAS test] 

∴ ∠ABC ≅ ∠ACB [c. a. c. t.]

35.

Can the theorem of isosceles triangle be proved without doing any construction?

Answer»

Yes 

Proof:

In ∆ABC and ∆ACB, 

seg AB ≅ seg AC [Given] 

∠BAC ≅ ∠CAB [Common angle] 

seg AC ≅ seg AB [Given] 

∴ ∆ABC ≅ ∆ACB [SAS test] 

∴ ∠ABC ≅ ∠ACB [c. a. c. t.]

36.

Can the theorem of isosceles triangle be proved by doing a different construction?

Answer»

Yes 

Construction: Draw seg AD ⊥ seg BC. 

Proof: 

In ∆ABD and ∆ACD,

 seg AB≅ seg AC [Given] 

∠ADB ≅ ∠ADC [Each angle is of measure 90°] 

seg AD ≅ seg AD [Common side] 

∴ ∆ABD ≅ ∆ACD [Hypotenuse side test] 

∴ ∠ABD ≅ ∠ACD [c.a.c.t.] 

∴ ∠ABC ≅ ∠ACB [B-D-C]

37.

Can the theorem of isosceles triangle be proved by doing a different construction?

Answer»

Yes 

Construction: 

Draw seg AD ⊥ seg BC. 

Proof: 

In ∆ABD and ∆ACD, 

seg AB≅ seg AC [Given] 

∠ADB ≅ ∠ADC [Each angle is of measure 90°] 

seg AD ≅ seg AD [Common side] 

∴ ∆ABD ≅ ∆ACD [Hypotenuse side test] 

∴ ∠ABD ≅ ∠ACD [c.a.c.t.] 

∴ ∠ABC ≅ ∠ACB [B - D - C]

38.

If two sides of a tringle are of length 5 cm and 1.5 cm, then the length of third side of the triangle cannot beA. 3.6 cmB. 4.1 cmC. 3.8 cmD. 3.4 cm

Answer» Correct Answer - D
Given, the length of two sides of a triangle are 5 cm and 1.5 cm ,repectively
Let sides AB= 5 cm and CA = 1.5 cm
We know that , a closed figure fromed by three intersecting lines (or side ) is called a triangle, If difference of two sides `lt` third side and sum of two sides `gt` third side
`therefore " " 5-1.5 lt BC "and " 5 + 1.5 gt BC `
`rArr " " 3.5 lt BC " and " 6.5 gt BC `
Here,we see that option ( A) ,(B) and (C ) satisfy the above inequality but option ( d) does not satisfy the above inequality
39.

If Δ PQR∼ΔXYZ, QR = 3 cm, YZ = 4 cm, ar ΔPQR= 54 cm2, then ar ΔXYZ = ………..(A) 13.5 cm2(B) 46 cm2(C) 96 cm2(D) 12 cm2

Answer»

Correct option is (C) 96 cm2

We have \(\triangle PQR\sim\triangle XYZ,\)

QR = 3 cm, YZ = 4 cm and \(ar(\triangle PQR)=54\,cm^2\)

We know that the area of two similar triangles are in the ratio of the squares of their corresponding sides.

\(\because\) \(\triangle XYZ\sim\triangle PQR\)

\(\therefore\) \(\frac{ar(\triangle XYZ)}{ar(\triangle PQR)}=(\frac{XY}{PQ})^2\)

\(=(\frac{YZ}{QR})^2=(\frac{XZ}{PR})^2\)

\(\Rightarrow\) \(\frac{ar(\triangle XYZ)}{ar(\triangle PQR)}=(\frac{YZ}{QR})^2=\frac{YZ^2}{QR^2}\)

\(=\frac{4^2}{3^2}=\frac{16}{9}\)

\(\Rightarrow\) \(ar(\triangle XYZ)=\frac{16}9\,ar(\triangle PQR)\)

\(=\frac{16}9\times54\)       \((\because ar(\triangle PQR)=54\,cm^2)\)

\(=16\times6\) \(=96\,cm^2\)

Correct option is: (C) 96 cm2

40.

(i) Write the side opposite to vertex Y in ΔXYZ. (ii) Write the angle opposite to side \(\overline{PQ}\) in ΔPQR. 

Answer»

(i) Write the side opposite to vertex Y  = \(\overline{XZ}\)

(ii) Write the angle opposite to side \(\overline{PQ}\) = ∠R

41.

Find the value of the unknown ‘x’ in the following triangles.

Answer»

i) In ΔABC

∠A + ∠B + ∠C = 180° (angle sum property)

x° + 50° + 60° = 180° 

x° + 110° = 180° 

x° = 180° – 110°

ii) In ΔPQR

∠P + ∠Q + ∠R = 180° (angle – sum property) 

90° + 30° + x° = 180° 

120° + x° – 180° 

x° = 180° – 120° 

∴ x° = 60°

iii) In ΔXYZ,

∠X + ∠Y + ∠Z = 180° (angle – sum property) 

30°+110° + x° =180° 

140° + x° = 180° 

x° = 180° – 140° 

∴ x° = 40°

42.

Find the values of the unknowns ‘x ‘and y in the following diagrams.i)ii)iii)iv)v)vi)

Answer»

i) In ΔPQR

x° + 50° = 120° (exterior angle property) 

x°= 120°- 50° 

x°= 70° 

Also ∠P + ∠Q +∠R = 180° (angle – sum property) 

70° + 50° + y° = 180° 

120° + y° = 180° 

y° = 180° – 120° 

y° = 60°

(OR)

y° + 120° = 1800 (linear pair of angles) 

y° = 180°- 120° 

∴ y° = 60°

ii) In the figure ΔRST, 

x° = 80° (vertically opposite angles) 

also ∠R + ∠S + ∠T = 180° (angle – sum property) 

80° + 50°+ y°= 180° 

130° + y° = 180° 

y° = 180° – 130° 

∴ y° = 50°

iii) m ΔMAN, 

x° = ∠M + ∠A (exterior angle property) 

x° = 50° + 60° 

x° = 110° 

Also x° + y° = 180° 

110°+ y°= 180° 

y° = 180° – 110° 

y° = 70°

(OR) 

in ΔMAN, 

∠M + ∠A + ∠N = 180° (angle – sum property )

50° + 60° + y° = 180° 

110° + y° = 180° 

y° = 180°- 110° 

∴ y° = 70°

v) In the figure ΔABC, 

x° = 60° (vertically opposite angles) 

∠A + ∠B + ∠ACB = 180° (angle – sum property) 

y° + 30° + 60° = 180° 

y° + 90° = 180° 

y° = 180° – 90° 

∴ y° = 90°

v) In the figure ΔEFG, 

y° = 90° (vertically opposite angles)

Also in ΔEFG; 

∠F + ∠E + ∠G = 180° (angle – sum property) 

∴ x° + x° + y° = 180 

2x° + 90° = 180° 

2x° = 180°- 90° 

2x° = 90°

x° = 90°/2

∴ x° = 45°

vi) In the figure ΔLET, 

∠L = ∠T = ∠E = x° (vertically opposite angles) 

Also in ΔLET 

∠L + ∠E + ∠T = 180° (angle – sum property) 

x° + x° + x° = 180° 

3x° = 180°

x° = 180°/3

x° = 60°

43.

Prove that the line segments joining the mid-points of the sides of atriangle from four triangles, each of which is similar to the originaltriangle.A. congruent to the original triangleB. similar to the original triangleC. an isosceles triangleD. an equilateral triangle

Answer» Correct Answer - B
`ar (Delta QRP) = are (Delta PQR)`
`:. (ar (Delta ABC))/(ar (Delta QRP))=(9)/(4)=(3^(2))/(2^(2)) rArr (BC)/(RP)=(3)/(2) [ :. Delta ABC~Delta QRP]`
`rArr PR=(2)/(3)xxBC=(2)/(3)xx15 cm, 10 cm`
44.

Two triangles are similar if their corresponding(A) angles are equal (B) sides are in proportion (C) angles are equal (or) sides are in proportion (D) sides are not in proportion

Answer»

Correct option is (C) angles are equal (or) sides are in proportion

Two triangles are similar if their corresponding angles are equal or their corresponding sides are in proportion.

Correct option is: (C) angles are equal (or) sides are in proportion

45.

The corresponding sides of two similar triangles ABC and DEF are BC = 9.1cm and EF = 6.5cm. If the perimeter of ∆DEF is 25cm, find the perimeter of ∆ABC.

Answer»

It is given that ∆ ABC - ∆ DEF. 

Therefore, their corresponding sides will be proportional. 

Also, the ratio of the perimeters of similar triangles is same as the ratio of their corresponding sides. 

⇒ perimeter of ∆ABC/ perimeter of ∆DEF = BC/EF

Let the perimeter of ∆ABC be X cm 

Therefore, 

X/25 = 9.1/6.5 

⇒ X = 9.1×25/6.5 = 35 

Thus, the perimeter of ∆ABC is 35 cm.

46.

`Delta ABC~Delta DEF` and the perimeters of `Delta ABCd and Delta DEF` are 30 cm and 18 cm respectively. If `BC=9 cm`, then EF=?A. `6.3 cm`B. `5.4 cm`C. `7.2 cm`D. `4.5 cm `

Answer» Correct Answer - B
47.

The corresponding sides of two similar triangles ABC and DEF are `BC=9.1 cm, and EF=6.5cm`. If the perimete of `Delta DEF` is 25 cm, find the perimeter of `Delta ABC`.A. 35 cmB. 28 cmC. 42 cmD. 40 cm

Answer» Correct Answer - A
48.

In the two triangles ABC and DEF, AB = DE and AC = EF. Name two angles from the two triangles that must be equal so that the two triangles are congruent. Give reason for your answer.

Answer»

The required two angles are ∠A and ∠E. When ∠A = ∠E, ∆ ABC ≅ ∆ EDF by SAS criterion.

49.

In Two right angle triangles their hypotenuse AB, EF are equal and AC = DE then then which of the following is not true?A) ΔABC ≅ ΔDEFB) ΔABC ≅ ΔEFD C) ΔACB ≅ ΔEDF D) Both B and C

Answer»

Correct option is (A) ΔABC ≅ ΔDEF

In \(\triangle ABC\;and\;\triangle EFD,\)

AB = EF   (Both hypotenuse are equal)

\(\angle C=\angle D\) \(=90^\circ\)   (Angles opposite to hypotenuse)

AC = ED         (Given)

\(\therefore\) \(\triangle ABC\cong\triangle EFD\)       (By RHS congruence criteria)

Similarly we can say \(\triangle ACB \cong \triangle EDF\)

(B), (C) and (D) are correct.

A) ΔABC ≅ ΔDEF
50.

In a Δ ABC, AD and BE are medians of Δ ABC and BE || DF, then the ratio of CF : ACA) 1 : 3 B) 3 : 1 C) 4 : 1 D) 1 : 4

Answer»

Correct option is   D) 1 : 4